1
|
Karri K, Waxman DJ. Dysregulation of murine long noncoding single-cell transcriptome in nonalcoholic steatohepatitis and liver fibrosis. RNA (NEW YORK, N.Y.) 2023; 29:977-1006. [PMID: 37015806 PMCID: PMC10275269 DOI: 10.1261/rna.079580.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a majority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis. Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population. Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-producing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2 linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associated functions were identified by their high network centrality metrics. For a subset of these lncRNAs, promoter sequences of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing independent mechanistic support for the lncRNA-target gene linkages predicted by the gene regulatory networks. These findings elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal patterns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
2
|
Zhao C, Xie W, Zhu H, Zhao M, Liu W, Wu Z, Wang L, Zhu B, Li S, Zhou Y, Jiang X, Xu Q, Ren C. LncRNAs and their RBPs: How to influence the fate of stem cells? Stem Cell Res Ther 2022; 13:175. [PMID: 35505438 PMCID: PMC9066789 DOI: 10.1186/s13287-022-02851-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells are distinctive cells that have self-renewal potential and unique ability to differentiate into multiple functional cells. Stem cell is a frontier field of life science research and has always been a hot spot in biomedical research. Recent studies have shown that long non-coding RNAs (lncRNAs) have irreplaceable roles in stem cell self-renewal and differentiation. LncRNAs play crucial roles in stem cells through a variety of regulatory mechanisms, including the recruitment of RNA-binding proteins (RBPs) to affect the stability of their mRNAs or the expression of downstream genes. RBPs interact with different RNAs to regulate gene expression at transcriptional and post-transcriptional levels and play important roles in determining the fate of stem cells. In this review, the functions of lncRNAs and their RBPs in self-renewal and differentiation of stem cell are summarized. We focus on the four regulatory mechanisms by which lncRNAs and their RBPs are involved in epigenetic regulation, signaling pathway regulation, splicing, mRNA stability and subcellular localization and further discuss other noncoding RNAs (ncRNAs) and their RBPs in the fate of stem cells. This work provides a more comprehensive understanding of the roles of lncRNAs in determining the fate of stem cells, and a further understanding of their regulatory mechanisms will provide a theoretical basis for the development of clinical regenerative medicine.
Collapse
Affiliation(s)
- Cong Zhao
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Wen Xie
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, 410205, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, 410205, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Zhaoping Wu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lei Wang
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Bin Zhu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Shasha Li
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Yao Zhou
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Qiang Xu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, 412007, China. .,School of Materials Science and Engineering, Central South University, Changsha, 410083, China.
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Wooten S, Smith KN. Long non-coding RNA OIP5-AS1 (Cyrano): A context-specific regulator of normal and disease processes. Clin Transl Med 2022; 12:e706. [PMID: 35040588 PMCID: PMC8764876 DOI: 10.1002/ctm2.706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding (lnc) RNAs have been implicated in a plethora of normal biological functions, and have also emerged as key molecules in various disease processes. OIP5-AS1, also commonly known by the alias Cyrano, is a lncRNA that displays broad expression across multiple tissues, with significant enrichment in particular contexts including within the nervous system and skeletal muscle. Thus far, this multifaceted lncRNA has been found to have regulatory functions in normal cellular processes including cell proliferation and survival, as well as in the development and progression of a myriad disease states. These widespread effects on normal and disease states have been found to be mediated through context-specific intermolecular interactions with dozens of miRNAs and proteins identified to date. This review explores recent studies to highlight OIP5-AS1's contextual yet pleiotropic roles in normal homeostatic functions as well as disease oetiology and progression, which may influence its utility in the generation of future theranostics.
Collapse
Affiliation(s)
- Serena Wooten
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| | - Keriayn N. Smith
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| |
Collapse
|
4
|
Lu P, Li M, Zhang D, Jiang W. Lnc-ing pluripotency maintenance and early differentiation in human pluripotent stem cells. FASEB J 2021; 35:e21438. [PMID: 33749897 DOI: 10.1096/fj.202002278r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 01/17/2023]
Abstract
Pluripotency maintenance and lineage differentiation are two major characteristics of human embryonic and induced pluripotent stem cells. The determination of self-renewal or differentiation is under the exquisite control of the gene regulatory network, which is composed of transcription factors, signaling pathways, metabolic factors, chromatin or histone modifiers, miRNAs, and lncRNAs. Growing evidence has shown that long noncoding RNAs (lncRNAs) play important roles in epigenetic, transcriptional, and posttranscriptional gene regulation during the cell fate determination of pluripotent stem cells. Here, we summarize recent reports of lncRNA functions in pluripotency maintenance/exit and the early germ layer specification of human pluripotent stem cells. We also illustrate four major lncRNA functional mechanisms according to different types of cofactors: chromatin or histone modifiers, transcription factors, canonical and noncanonical RNA-binding proteins, and miRNAs. Further understanding of lncRNA-based regulation will provide more insights into the drivers manipulating cell fate and promote the therapeutic and research potential of human embryonic and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Pei Lu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Mao Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
5
|
Dvir S, Argoetti A, Lesnik C, Roytblat M, Shriki K, Amit M, Hashimshony T, Mandel-Gutfreund Y. Uncovering the RNA-binding protein landscape in the pluripotency network of human embryonic stem cells. Cell Rep 2021; 35:109198. [PMID: 34077720 DOI: 10.1016/j.celrep.2021.109198] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/11/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Embryonic stem cell (ESC) self-renewal and cell fate decisions are driven by a broad array of molecular signals. While transcriptional regulators have been extensively studied in human ESCs (hESCs), the extent to which RNA-binding proteins (RBPs) contribute to human pluripotency remains unclear. Here, we carry out a proteome-wide screen and identify 810 proteins that bind RNA in hESCs. We reveal that RBPs are preferentially expressed in hESCs and dynamically regulated during early stem cell differentiation. Notably, many RBPs are affected by knockdown of OCT4, a master regulator of pluripotency, several dozen of which are directly targeted by this factor. Using cross-linking and immunoprecipitation (CLIP-seq), we find that the pluripotency-associated STAT3 and OCT4 transcription factors interact with RNA in hESCs and confirm the binding of STAT3 to the conserved NORAD long-noncoding RNA. Our findings indicate that RBPs have a more widespread role in human pluripotency than previously appreciated.
Collapse
Affiliation(s)
- Shlomi Dvir
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Chen Lesnik
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | | | | | - Michal Amit
- Accellta LTD, Haifa 320003, Israel; Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 2161002, Israel
| | - Tamar Hashimshony
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Yael Mandel-Gutfreund
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 320003, Israel; Computer Science Department, Technion - Israel Institute of Technology, Haifa 320003, Israel.
| |
Collapse
|
6
|
Zhuang A, Calkin AC, Lau S, Kiriazis H, Donner DG, Liu Y, Bond ST, Moody SC, Gould EA, Colgan TD, Carmona SR, Inouye M, de Aguiar Vallim TQ, Tarling EJ, Quaife-Ryan GA, Hudson JE, Porrello ER, Gregorevic P, Gao XM, Du XJ, McMullen JR, Drew BG. Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. iScience 2021; 24:102537. [PMID: 34142046 PMCID: PMC8184514 DOI: 10.1016/j.isci.2021.102537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to influence numerous biological processes, being strongly implicated in the maintenance and physiological function of various tissues including the heart. The lncRNA OIP5-AS1 (1700020I14Rik/Cyrano) has been studied in several settings; however its role in cardiac pathologies remains mostly uncharacterized. Using a series of in vitro and ex vivo methods, we demonstrate that OIP5-AS1 is regulated during cardiac development in rodent and human models and in disease settings in mice. Using CRISPR, we engineered a global OIP5-AS1 knockout (KO) mouse and demonstrated that female KO mice develop exacerbated heart failure following cardiac pressure overload (transverse aortic constriction [TAC]) but male mice do not. RNA-sequencing of wild-type and KO hearts suggest that OIP5-AS1 regulates pathways that impact mitochondrial function. Thus, these findings highlight OIP5-AS1 as a gene of interest in sex-specific differences in mitochondrial function and development of heart failure. The lncRNA OIP5-AS1 is enriched in striated muscles in mice and humans. OIP5-AS1 is regulated during heart development and in models of heart disease. Global deletion of OIP5-AS1 exacerbates heart failure specifically in female mice. Transcriptomics analysis suggests that loss OIP5-AS1 alters mitochondrial function.
Collapse
Affiliation(s)
- Aowen Zhuang
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Anna C. Calkin
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Shannen Lau
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Daniel G. Donner
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Yingying Liu
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Simon T. Bond
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Sarah C. Moody
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | | | | | | | - Michael Inouye
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | | | - Elizabeth J. Tarling
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | - Enzo R. Porrello
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul Gregorevic
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiao-Ming Gao
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Xiao-Jun Du
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Julie R. McMullen
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Corresponding author
| | - Brian G. Drew
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Corresponding author
| |
Collapse
|
7
|
Mirzadeh Azad F, Polignano IL, Proserpio V, Oliviero S. Long Noncoding RNAs in Human Stemness and Differentiation. Trends Cell Biol 2021; 31:542-555. [PMID: 33663944 DOI: 10.1016/j.tcb.2021.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
There is increasing evidence that long noncoding RNAs (lncRNAs) are among the main regulatory factors of stem cell maintenance and differentiation. They act through various mechanisms and interactions with proteins, DNA, and RNA. This heterogeneity in function increases the capabilities of the lncRNome toolkit but also makes it difficult to predict the function of novel lncRNAs or even rely on biological information produced in animal models. As lncRNAs are species- and tissue-specific, the recent technical advances in self-renewal and differentiation of human embryonic stem cells (ESCs) make these cells the ideal system to identify key regulatory lncRNAs and study their molecular functions. Here we provide an overview of the functional versatility of lncRNA mechanistic heterogeneity in regulating pluripotency maintenance and human differentiation.
Collapse
Affiliation(s)
- Fatemeh Mirzadeh Azad
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy; IIGM Foundation, Italian Institute for Genomic Medicine, Candiolo, Torino, Italy
| | - Isabelle Laurence Polignano
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy; IIGM Foundation, Italian Institute for Genomic Medicine, Candiolo, Torino, Italy
| | - Valentina Proserpio
- IIGM Foundation, Italian Institute for Genomic Medicine, Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy; IIGM Foundation, Italian Institute for Genomic Medicine, Candiolo, Torino, Italy.
| |
Collapse
|
8
|
Wanowska E, Kubiak M, Makałowska I, Szcześniak MW. A chromatin-associated splicing isoform of OIP5-AS1 acts in cis to regulate the OIP5 oncogene. RNA Biol 2021; 18:1834-1845. [PMID: 33404283 PMCID: PMC8582974 DOI: 10.1080/15476286.2021.1871816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A large portion of the human genome is transcribed into long noncoding RNAs that can range from 200 nucleotides to several kilobases in length. The number of identified lncRNAs is still growing, but only a handful of them have been functionally characterized. However, it is known that the functions of lncRNAs are closely related to their subcellular localization. Cytoplasmic lncRNAs can regulate mRNA stability, affect translation and act as miRNA sponges, while nuclear-retained long noncoding RNAs have been reported to be involved in transcriptional control, chromosome scaffolding, modulation of alternative splicing and chromatin remodelling. Through these processes, lncRNAs have diverse regulatory roles in cell biology and diseases. OIP5-AS1 (also known as Cyrano), a poorly characterized lncRNA expressed antisense to the OIP5 oncogene, is deregulated in multiple cancers. We showed that one of the OIP5-AS1 splicing forms (ENST00000501665.2) is retained in the cell nucleus where it associates with chromatin, thus narrowing down the spectrum of its possible mechanisms of action. Its knockdown with antisense LNA gapmeRs led to inhibited expression of a sense partner, OIP5, strongly suggesting a functional coupling between OIP5 and ENST00000501665.2. A subsequent bioinformatics analysis followed by RAP-MS and RNA Immunoprecipitation experiments suggested its possible mode of action; in particular, we found that ENST00000501665.2 directly binds to a number of nuclear proteins, including SMARCA4, a component of the SWI/SNF chromatin remodelling complex, whose binding motif is located in the promoter of the OIP5 oncogene.
Collapse
Affiliation(s)
- Elżbieta Wanowska
- Faculty of Biology, Adam Mickiewicz University in Poznan, Institute of Human Biology and Evolution, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Magdalena Kubiak
- Faculty of Biology, Adam Mickiewicz University in Poznan, Institute of Human Biology and Evolution, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Izabela Makałowska
- Faculty of Biology, Adam Mickiewicz University in Poznan, Institute of Human Biology and Evolution, Uniwersytetu Poznańskiego 6, Poznan, Poland
| | - Michał Wojciech Szcześniak
- Faculty of Biology, Adam Mickiewicz University in Poznan, Institute of Human Biology and Evolution, Uniwersytetu Poznańskiego 6, Poznan, Poland
| |
Collapse
|
9
|
Smith KN, Miller SC, Varani G, Calabrese JM, Magnuson T. Multimodal Long Noncoding RNA Interaction Networks: Control Panels for Cell Fate Specification. Genetics 2019; 213:1093-1110. [PMID: 31796550 PMCID: PMC6893379 DOI: 10.1534/genetics.119.302661] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs.
Collapse
Affiliation(s)
- Keriayn N Smith
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Sarah C Miller
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, Washington 98195
| | - J Mauro Calabrese
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Terry Magnuson
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Ruiz-Orera J, Albà MM. Conserved regions in long non-coding RNAs contain abundant translation and protein-RNA interaction signatures. NAR Genom Bioinform 2019; 1:e2. [PMID: 33575549 PMCID: PMC7671363 DOI: 10.1093/nargab/lqz002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
The mammalian transcriptome includes thousands of transcripts that do not correspond to annotated protein-coding genes and that are known as long non-coding RNAs (lncRNAs). A handful of lncRNAs have well-characterized regulatory functions but the biological significance of the majority of them is not well understood. LncRNAs that are conserved between mice and humans are likely to be enriched in functional sequences. Here, we investigate the presence of different types of ribosome profiling signatures in lncRNAs and how they relate to sequence conservation. We find that lncRNA-conserved regions contain three times more ORFs with translation evidence than non-conserved ones, and identify nine cases that display significant sequence constraints at the amino acid sequence level. The study also reveals that conserved regions in intergenic lncRNAs are significantly enriched in protein–RNA interaction signatures when compared to non-conserved ones; this includes sites in well-characterized lncRNAs, such as Cyrano, Malat1, Neat1 and Meg3, as well as in tens of lncRNAs of unknown function. This work illustrates how the analysis of ribosome profiling data coupled with evolutionary analysis provides new opportunities to explore the lncRNA functional landscape.
Collapse
Affiliation(s)
- Jorge Ruiz-Orera
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Research Institute, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona 08003, Spain
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Research Institute, Universitat Pompeu Fabra, Dr Aiguader 88, Barcelona 08003, Spain.,Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|