1
|
Lei J, Wang L, Yang C, Li D, Zhang J, Ma J, Zhang P, Li Q, Zhang J. Dasatinib and erianin co-loaded ion-responsive in-situ hydrogel for effective treatment of corneal neovascularization. J Control Release 2024; 376:94-107. [PMID: 39368709 DOI: 10.1016/j.jconrel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Corneal neovasularization (CNV) is one of the leading causes for visual impairment. Dasatinib is a multi-target tyrosine kinase inhibitor, which can inhibit both platelet derived growth factor receptor and Src family kinases. Erianin exhibits excellent anti-inflammatory and anti-angiogenic effects. In this study, dasatinib and erianin were found to synergically inhibit the proliferation, migration and tube formation of Ea.hy926 cells, the three most important cellular processes of CNV. Next, dasatinib and erianin were co-encapsulated in nanostructured lipid carriers (dasa-eri-NLC), which increased the solubility of dasatinib by about 1790 times, increased the solubility of erianin by about 3 times. To improve its retention time on the ocular surface, dasa-eri-NLC was mixed with gellan gum (dasa-eri-NLC-gel), which achieved a sol-gel transformation when got in contact with tears. The dasa-eri-NLC-gel exhibited good rheological properties with shear thinning properties, extended the ocular residence time by more than 6 times, sustained the drug release, improved the corneal permeability of drug and exhibited good biocompatibility. Finally, the in vivo anti-CNV effect was evaluated in an alkaline burned mouse model of CNV, in which, the dasa-eri-NLC-gel significantly impeded the development and pathological changes of CNV, inhibited the expression of TNF-α, VEGF-A, HIF-1α, Src, pSrc in the cornea. In summary, dasa-eri-NLC-gel safely and efficiently delivered dasatinib and erianin to the cornea and exhibited significantly anti-CNV effect via inhibiting various angiogenesis related cytokines or factors. Dasa-eri-NLC-gel showed a great promise for the treatment of CNV and our study laid a solid foundation for future clinical transformation.
Collapse
Affiliation(s)
- Jiaxing Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dongdong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Sumioka T, Matsumoto KI, Reinach PS, Saika S. Tenascins and osteopontin in biological response in cornea. Ocul Surf 2023; 29:131-149. [PMID: 37209968 DOI: 10.1016/j.jtos.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The structural composition, integrity and regular curvature of the cornea contribute to the maintenance of its transparency and vision. Disruption of its integrity caused by injury results in scarring, inflammation and neovascularization followed by losses in transparency. These sight compromising effects is caused by dysfunctional corneal resident cell responses induced by the wound healing process. Upregulation of growth factors/cytokines and neuropeptides affect development of aberrant behavior. These factors trigger keratocytes to first transform into activated fibroblasts and then to myofibroblasts. Myofibroblasts express extracellular matrix components for tissue repair and contract the tissue to facilitate wound closure. Proper remodeling following primary repair is critical for restoration of transparency and visual function. Extracellular matrix components contributing to the healing process are divided into two groups; a group of classical tissue structural components and matrix macromolecules that modulate cell behaviors/activities besides being integrated into the matrix structure. The latter components are designated as matricellular proteins. Their functionality is elicited through mechanisms which modulate the scaffold integrity, cell behaviors, activation/inactivation of either growth factors or cytoplasmic signaling regulation. We discuss here the functional roles of matricellular proteins in mediating injury-induced corneal tissue repair. The roles are described of major matricellular proteins, which include tenascin C, tenascin X and osteopontin. Focus is directed towards dealing with their roles in modulating individual activities of wound healing-related growth factors, e. g., transforming growth factor β (TGF β). Modulation of matricellular protein functions could encompass a potential novel strategy to improve the outcome of injury-induced corneal wound healing.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, 693-8501, Japan
| | - Peter Sol Reinach
- Department of Biological. Sciences SUNY Optometry, New York, NY, 10036, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, 641-0012, Japan
| |
Collapse
|
3
|
Le PM, Pal-Ghosh S, Menko AS, Stepp MA. Immune Cells Localize to Sites of Corneal Erosions in C57BL/6 Mice. Biomolecules 2023; 13:1059. [PMID: 37509096 PMCID: PMC10377654 DOI: 10.3390/biom13071059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Recurrent epithelial erosions develop in the cornea due to prior injury or genetic predisposition. Studies of recurrent erosions in animal models allow us to gain insight into how erosions form and are resolved. While slowing corneal epithelial cell migration and reducing their proliferation following treatment with mitomycin C reduce erosion formation in mice after sterile debridement injury, additional factors have been identified related to cytokine expression and immune cell activation. The relationship between recruitment of immune cells to the region of the cornea where erosions form and their potential roles in erosion formation and/or erosion repair remains unexplored in the C57BL/6 mouse recurrent erosion model. Here, high resolution imaging of mouse corneas was performed at D1, D7, and D28 after dulled-blade debridement injury in C57BL/6 mice. Around 50% of these mice have frank corneal erosions at D28 after wounding. A detailed assessment of corneas revealed the involvement of M2 macrophages in both frank and developing erosions at early stages of their formation.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
- Department of Ophthalmology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| |
Collapse
|
4
|
Pal-Ghosh S, Karpinski BA, Datta Majumdar H, Ghosh T, Thomasian J, Brooks SR, Sawaya AP, Morasso MI, Scholand KK, de Paiva CS, Galletti JG, Stepp MA. Molecular mechanisms regulating wound repair: Evidence for paracrine signaling from corneal epithelial cells to fibroblasts and immune cells following transient epithelial cell treatment with Mitomycin C. Exp Eye Res 2023; 227:109353. [PMID: 36539051 PMCID: PMC10560517 DOI: 10.1016/j.exer.2022.109353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In this paper, we use RNAseq to identify senescence and phagocytosis as key factors to understanding how mitomyin C (MMC) stimulates regenerative wound repair. We use conditioned media (CM) from untreated (CMC) and MMC treated (CMM) human and mouse corneal epithelial cells to show that corneal epithelial cells indirectly exposed to MMC secrete elevated levels of immunomodulatory proteins including IL-1α and TGFβ1 compared to cells exposed to CMC. These factors increase epithelial and macrophage phagocytosis and promote ECM turnover. IL-1α supplementation can increase phagocytosis in control epithelial cells and attenuate TGFβ1 induced αSMA expression by corneal fibroblasts. Yet, we show that epithelial cell CM contains factors besides IL-1α that regulate phagocytosis and αSMA expression by fibroblasts. Exposure to CMM also impacts the activation of bone marrow derived dendritic cells and their ability to present antigen. These in vitro studies show how a brief exposure to MMC induces corneal epithelial cells to release proteins and other factors that function in a paracrine way to enhance debris removal and enlist resident epithelial and immune cells as well as stromal fibroblasts to support regenerative and not fibrotic wound healing.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Beverly A Karpinski
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Himani Datta Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Trisha Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Julie Thomasian
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew P Sawaya
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Biosciences, Rice University, TX, 77030, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA; Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, DC, 20037, USA.
| |
Collapse
|
5
|
Segars KL, Azzari NA, Gomez S, Machen C, Rich CB, Trinkaus-Randall V. Age Dependent Changes in Corneal Epithelial Cell Signaling. Front Cell Dev Biol 2022; 10:886721. [PMID: 35602595 PMCID: PMC9117764 DOI: 10.3389/fcell.2022.886721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
The cornea is exposed daily to a number of mechanical stresses including shear stress from tear film and blinking. Over time, these stressors can lead to changes in the extracellular matrix that alter corneal stiffness, cell-substrate structures, and the integrity of cell-cell junctions. We hypothesized that changes in tissue stiffness of the cornea with age may alter calcium signaling between cells after injury, and the downstream effects of this signaling on cellular motility and wound healing. Nanoindentation studies revealed that there were significant differences in the stiffness of the corneal epithelium and stroma between corneas of 9- and 27-week mice. These changes corresponded to differences in the timeline of wound healing and in cell signaling. Corneas from 9-week mice were fully healed within 24 h. However, the wounds on corneas from 27-week mice remained incompletely healed. Furthermore, in the 27-week cohort there was no detectable calcium signaling at the wound in either apical or basal corneal epithelial cells. This is in contrast to the young cohort, where there was elevated basal cell activity relative to background levels. Cell culture experiments were performed to assess the roles of P2Y2, P2X7, and pannexin-1 in cellular motility during wound healing. Inhibition of P2Y2, P2X7, or pannexin-1 all significantly reduce wound closure. However, the inhibitors all have different effects on the trajectories of individual migrating cells. Together, these findings suggest that there are several significant differences in the stiffness and signaling that underlie the decreased wound healing efficacy of the cornea in older mice.
Collapse
Affiliation(s)
- Kristen L. Segars
- Department of Pharmacology, School of Medicine, Boston University, Boston, MA, United States
| | - Nicholas A. Azzari
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Stephanie Gomez
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Cody Machen
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
| | - Celeste B. Rich
- Department of Ophthalmology, School of Medicine, School of Medicine, Boston, MA, United States
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA, United States
- Department of Ophthalmology, School of Medicine, School of Medicine, Boston, MA, United States
- *Correspondence: Vickery Trinkaus-Randall,
| |
Collapse
|
6
|
Pal-Ghosh S, Tadvalkar G, Karpinski BA, Stepp MA. Diurnal Control of Sensory Axon Growth and Shedding in the Mouse Cornea. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 32870244 PMCID: PMC7476672 DOI: 10.1167/iovs.61.11.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose The circadian clock plays an important role in the expression and regulation of various genes and cellular processes in the body. Here, we study diurnal regulation of the growth and shedding of the sensory axons in the mouse cornea. Methods Male and female BALB/cN mice were euthanized 90 minutes before and after the lights are turned on and off; at 5:30 AM, 8:30 AM, 5:30 PM, and 8:30 PM. Nerve terminal growth, shedding and overall axon density were assessed at these four time points using confocal imaging after staining axons in en face whole mount corneas with antibodies against βIII tubulin, GAP43, and L1CAM. In addition, corneal epithelial cell proliferation, thickness, and desquamation were assessed using ki67, LAMP1, Involucrin, and ZO1. Results Nerve terminal shedding took place between 5:30 AM and 8:30 AM and correlated positively with the timing of apical cell desquamation. After shedding the tips of the nerve terminals, axonal growth increased as indicated by increased axonal GAP43 expression. At 5:30 PM and 8:30 PM before and after the lights are turned off, cell proliferation was reduced, and epithelial thickness was maximal. Conclusions Intraepithelial corneal nerve growth and shedding are under diurnal control regulated by the time of day and whether lights are on or off. Axons extend during the day and are shed within 90 minutes after lights are turned on. The data presented in this article shed light on the potential role that circadian clock plays in corneal pain and discomfort.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Gauri Tadvalkar
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Beverly A Karpinski
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States.,Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, United States
| |
Collapse
|
7
|
Bargagna‐Mohan P, Schultz G, Rheaume B, Trakhtenberg EF, Robson P, Pal‐Ghosh S, Stepp MA, Given KS, Macklin WB, Mohan R. Corneal nonmyelinating Schwann cells illuminated by single-cell transcriptomics and visualized by protein biomarkers. J Neurosci Res 2021; 99:731-749. [PMID: 33197966 PMCID: PMC7894186 DOI: 10.1002/jnr.24757] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/23/2022]
Abstract
The cornea is the most innervated tissue in the human body. Myelinated axons upon inserting into the peripheral corneal stroma lose their myelin sheaths and continue into the central cornea wrapped by only nonmyelinating corneal Schwann cells (nm-cSCs). This anatomical organization is believed to be important for central vision. Here we employed single-cell RNA sequencing (scRNA-seq), microscopy, and transgenics to characterize these nm-cSCs of the central cornea. Using principal component analysis, uniform manifold approximation and projection, and unsupervised hierarchal cell clustering of scRNA-seq data derived from central corneal cells of male rabbits, we successfully identified several clusters representing different corneal cell types, including a unique cell cluster representing nm-cSCs. To confirm protein expression of cSC genes, we performed cross-species validation, employing corneal whole-mount immunostaining with confocal microscopy in mouse corneas. The expression of several representative proteins of nm-cSCs were validated. As the proteolipid protein 1 (PLP1) gene was also expressed in nm-cSCs, we explored the Plp1-eGFP transgenic reporter mouse line to visualize cSCs. Specific and efficient eGFP expression was observed in cSCs in adult mice of different ages. Of several putative cornea-specific SC genes identified, Dickkopf-related protein 1 was shown to be present in nm-cSCs. Taken together, our findings, for the first time, identify important insights and tools toward the study nm-cSCs in isolated tissue and adult animals. We expect that our results will advance the future study of nm-cSCs in applications of nerve repair, and provide a resource for the study of corneal sensory function.
Collapse
Affiliation(s)
- Paola Bargagna‐Mohan
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Gwendolyn Schultz
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Bruce Rheaume
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | | | - Paul Robson
- Department of Genetics & Genome SciencesUniversity of Connecticut Health CenterFarmingtonCTUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonCTUSA
| | - Sonali Pal‐Ghosh
- Department of Anatomy and Regenerative BiologyGeorge Washington University Medical SchoolWashingtonDCUSA
| | - Mary Ann Stepp
- Department of Anatomy and Regenerative BiologyGeorge Washington University Medical SchoolWashingtonDCUSA
| | - Katherine S. Given
- Department of Cell and Developmental BiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Wendy B. Macklin
- Department of Cell and Developmental BiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Royce Mohan
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| |
Collapse
|
8
|
Kandarakov OF, Kravatsky YV, Polyakova NS, Bruter AV, Gordeeva EG, Belyavsky AV. Mitomycin C Treatment of Stromal Layers Enhances the Support of In Vitro Hematopoiesis in Co-Culture Systems. Mol Biol 2021. [DOI: 10.1134/s0026893321010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Tadvalkar G, Pal-Ghosh S, Pajoohesh-Ganji A, Stepp MA. The impact of euthanasia and enucleation on mouse corneal epithelial axon density and nerve terminal morphology. Ocul Surf 2020; 18:821-828. [PMID: 32798735 DOI: 10.1016/j.jtos.2020.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Here we study the impact of using either CO2 gas or cervical dislocation (CD) for euthanasia and using different techniques to enucleate the eye on preserving axonal density and morphology of the intraepithelial corneal nerves (ICNs). OBJECTIVES To determine whether using CO2 gas or CD for euthanasia and enucleating by cutting or pulling eyes out impacts axon density and nerve terminal morphology in the mouse cornea. METHODS Mice were euthanized by CO2 gas or CD; the impact of delaying fixation for 5 min post-euthanasia was also assessed. We tested two different techniques to enucleate the eyes: cutting the optic nerve by curved scissors or pulling the eye out. A minimum of 10 corneas from 5 male and female BALB/c mice were used for each variable. Axons and intraepithelial corneal nerve terminals (ICNTs) were visualized utilizing βIII tubulin and L1CAM and quantified using confocal microscopy. RESULTS The variations seen in axon density between individual mice are not gender- or euthanasia-dependent. A significant reduction in axon density and loss of ICNT morphology are observed in eyes enucleated by pulling the optic nerve out. Similar results are obtained in male and female mice. CONCLUSION While the variations tested in euthanasia do not affect axon density in male and female mouse corneas, enucleation by proptosing and gently cutting out the eyes yields increased axon density and improved ICNT morphology compared to pulling eyes out and leaving the optic nerve attached.
Collapse
Affiliation(s)
- Gauri Tadvalkar
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Ahdeah Pajoohesh-Ganji
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA; Department of Ophthalmology, The George Washington School of Medicine and Health Sciences, Washington DC, 20037, USA.
| |
Collapse
|
10
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, de Paiva CS. Parity Attenuates Intraepithelial Corneal Sensory Nerve Loss in Female Mice. Int J Mol Sci 2020; 21:E5172. [PMID: 32708332 PMCID: PMC7404034 DOI: 10.3390/ijms21145172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022] Open
Abstract
Aging impacts the ocular surface and reduces intraepithelial corneal nerve (ICN) density in male and female mice. Many researchers use retired breeders to study naturally aged female mice. Yet, the impact of parity and the length of time since breeders were retired on age-related changes in the intraepithelial corneal nerves is not known. Here we study 2 month (M) nulliparous (NP) females as well as 9M, 10M, and 11M NP and multiparous (MP) female mice to determine whether parity impacts the age-related decline seen in corneal axon density; 9M male mice are also included in these assessments. After showing that parity attenuates age-related loss in axon density, we also assess the impact of parity on corneal epithelial cell proliferation and find that it impacts cell proliferation and axon density normalized by cell proliferation. Stromal nerve arborization is also impacted by aging with parity enhancing stromal nerves in older mice. qPCR was performed on 20 genes implicated in ICN density using corneal epithelial RNA isolated from 10M NP and MP mice and showed that NGF expression was significantly elevated in MP corneal epithelium. Corneal sensitivity was significantly higher in 9M MP mice compared to NP mice and increased sensitivity in MP mice was accompanied by increased nerve terminals in the apical and middle cell layers. Together, these data show that parity in mice attenuates several aspects of the age-related decline seen on the ocular surface by retaining sensory axons and corneal sensitivity as mice age.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
DeDreu J, Bowen CJ, Logan CM, Pal-Ghosh S, Parlanti P, Stepp MA, Menko AS. An immune response to the avascular lens following wounding of the cornea involves ciliary zonule fibrils. FASEB J 2020; 34:9316-9336. [PMID: 32452112 PMCID: PMC7384020 DOI: 10.1096/fj.202000289r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
The lens and central cornea are avascular. It was assumed that the adult lens had no source of immune cells and that the basement membrane capsule surrounding the lens was a barrier to immune cell migration. Yet, microfibril‐associated protein‐1 (MAGP1)‐rich ciliary zonules that originate from the vasculature‐rich ciliary body and extend along the surface of the lens capsule, form a potential conduit for immune cells to the lens. In response to cornea debridement wounding, we find increased expression of MAGP1 throughout the central corneal stroma. The immune cells that populate this typically avascular region after wounding closely associate with this MAGP1‐rich matrix. These results suggest that MAGP1‐rich microfibrils support immune cell migration post‐injury. Using this cornea wound model, we investigated whether there is an immune response to the lens following cornea injury involving the lens‐associated MAGP1‐rich ciliary zonules. Our results provide the first evidence that following corneal wounding immune cells are activated to travel along zonule fibers that extend anteriorly along the equatorial surface of the lens, from where they migrate across the anterior lens capsule. These results demonstrate that lens‐associated ciliary zonules are directly involved in the lens immune response and suggest the ciliary body as a source of immune cells to the avascular lens.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Caitlin J Bowen
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Caitlin M Logan
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Paola Parlanti
- George Washington University Nanofabrication and Imaging Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Jiao H, Downie LE, Huang X, Wu M, Oberrauch S, Keenan RJ, Jacobson LH, Chinnery HR. Novel alterations in corneal neuroimmune phenotypes in mice with central nervous system tauopathy. J Neuroinflammation 2020; 17:136. [PMID: 32345316 PMCID: PMC7189727 DOI: 10.1186/s12974-020-01803-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Tauopathy in the central nervous system (CNS) is a histopathological hallmark of frontotemporal dementia (FTD) and Alzheimer's disease (AD). Although AD is accompanied by various ocular changes, the effects of tauopathy on the integrity of the cornea, which is densely innervated by the peripheral nervous system and is populated by resident dendritic cells, is still unknown. The aim of this study was to investigate if neuroimmune interactions in the cornea are affected by CNS tauopathy. METHODS Corneas from wild type (WT) and transgenic rTg4510 mice that express the P301L tau mutation were examined at 2, 6, 8, and 11 months. Clinical assessment of the anterior segment of the eye was performed using spectral domain optical coherence tomography. The density of the corneal epithelial sensory nerves and the number and field area of resident epithelial dendritic cells were assessed using immunofluorescence. The immunological activation state of corneal and splenic dendritic cells was examined using flow cytometry and compared between the two genotypes at 9 months of age. RESULTS Compared to age-matched WT mice, rTg4510 mice had a significantly lower density of corneal nerve axons at both 8 and 11 months of age. Corneal nerves in rTg4510 mice also displayed a higher percentage of beaded nerve axons and a lower density of epithelial dendritic cells compared to WT mice. From 6 months of age, the size of the corneal dendritic cells was significantly smaller in rTg4510 compared to WT mice. Phenotypic characterization by flow cytometry demonstrated an activated state of dendritic cells (CD86+ and CD45+ CD11b+CD11c+) in the corneas of rTg4510 compared to WT mice, with no distinct changes in the spleen monocytes/dendritic cells. At 2 months of age, there were no significant differences in the neural or immune structures between the two genotypes. CONCLUSIONS Corneal sensory nerves and epithelial dendritic cells were altered in the rTg4510 mouse model of tauopathy, with temporal changes observed with aging. The activation of corneal dendritic cells prior to the gradual loss of neighboring sensory nerves suggests an early involvement of corneal immune cells in tau-associated pathology originating in the CNS.
Collapse
Affiliation(s)
- Haihan Jiao
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Xin Huang
- Innate Phagocytosis Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia
| | - Sara Oberrauch
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Ryan J Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia.,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Laura H Jacobson
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia. .,Sleep and Cognition Laboratory, Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
13
|
Parlanti P, Pal-Ghosh S, Williams A, Tadvalkar G, Popratiloff A, Stepp MA. Axonal debris accumulates in corneal epithelial cells after intraepithelial corneal nerves are damaged: A focused Ion Beam Scanning Electron Microscopy (FIB-SEM) study. Exp Eye Res 2020; 194:107998. [PMID: 32209319 PMCID: PMC7697722 DOI: 10.1016/j.exer.2020.107998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
The intraepithelial corneal nerves (ICNs) that innervate the corneal epithelium are maintained through interactions with corneal epithelial cells and the extracellular matrix they produce. One to several axons bundle together within the basal cell layer and extend parallel to the ocular surface or branch and extend apically. Here we use 3-dimentional (3D) ultrastructural reconstructions of control and trephine injured mouse corneal epithelium and stroma produced using Focused Ion Beam Scanning Electron Microscope (FIB-SEM) to determine whether corneal epithelial or immune cells resident in the epithelium remove axonal debris and degrade it in their lysosomes after trephine injury to the cornea. We demonstrate that axonal fragments are internalized in the corneal epithelium and accumulate within electron dense structures consistent with lysosomes 3 h after trephine injury in both epithelial and immune cells located among the basal cells of the trephine injured cornea. Confocal imaging showed fewer CD45+ immune cells within the corneal epithelium after trephine injury compared to controls. The resolution obtained using FIB-SEM also allowed us to show that the presence of sensory axons at the basal aspect of the epithelial basal cells close to the anterior aspect of the epithelial basement membrane (EBM) is associated with a focal reduction in EBM thickness. In addition, we show using FIB-SEM and confocal imaging that superficial trephine injuries that do not penetrate the stroma, damage the integrity of anterior stromal nerves. These studies are the first to look at the mouse cornea following nerve injury using FIB-SEM.
Collapse
Affiliation(s)
- Paola Parlanti
- GW Nanofabrication and Imaging Center, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Alexa Williams
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Gauri Tadvalkar
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Anastas Popratiloff
- GW Nanofabrication and Imaging Center, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA; Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA; Department of Ophthalmology, The George Washington School of Medicine and Health Sciences, Washington DC, 20052, USA.
| |
Collapse
|
14
|
Abstract
The cornea is a transparent outermost structure of the eye anterior segment comprising the highest density of innervated tissue. In the process of corneal innervation, trigeminal ganglion originated corneal nerves diligently traverse different corneal cell types in different corneal layers including the corneal stroma and epithelium. While crossing the stromal and epithelial cell layers during innervation, due to the existing physical contacts, close interactions occur between stromal keratocytes, epithelial cells, resident immune cells and corneal nerves. Furthermore, by producing various trophic and growth factors corneal cells assist in maintaining the growth and function of corneal nerves. Similarly, corneal nerve generated growth factors critically modify the corneal cell function in all the corneal layers. Due to their close association and contacts, on-going cross-communication between these cell types and corneal nerves play a vital role in the modulation of corneal nerve function, regeneration during wound healing. The present review highlights the influence of different corneal cell types and growth factors released from these cells on corneal nerve regeneration and function.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
15
|
Pal-Ghosh S, Tadvalkar G, Lieberman VR, Guo X, Zieske JD, Hutcheon A, Stepp MA. Transient Mitomycin C-treatment of human corneal epithelial cells and fibroblasts alters cell migration, cytokine secretion, and matrix accumulation. Sci Rep 2019; 9:13905. [PMID: 31554858 PMCID: PMC6761181 DOI: 10.1038/s41598-019-50307-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022] Open
Abstract
A single application of Mitomycin C (MMC) is used clinically in ophthalmology to reduce scarring and enhance wound resolution after surgery. Here we show in vitro that a 3-hour MMC treatment of primary and telomerase immortalized human corneal limbal epithelial (HCLE) cells impacts their migration and adhesion. Transient MMC treatment induces HCLE expression of senescence associated secretory factors, cytokine secretion, and deposition of laminin 332 for several days. Transient MMC treatment also reduces migration and deposition of transforming growth factor-β1 (TGFβ1)-stimulated collagen by corneal fibroblasts. Using conditioned media from control and MMC treated cells, we demonstrate that factors secreted by MMC-treated corneal epithelial cells attenuate collagen deposition by HCFs whereas those secreted by MMC-treated HCFs do not. These studies are the first to probe the roles played by corneal epithelial cells in reducing collagen deposition by corneal fibroblasts in response to MMC.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I St. NW, Washington, DC, 20037, USA
| | - Gauri Tadvalkar
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I St. NW, Washington, DC, 20037, USA
| | - Verna Rose Lieberman
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I St. NW, Washington, DC, 20037, USA
| | - Xiaoqing Guo
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114-2500, USA
| | - James D Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114-2500, USA
| | - Audrey Hutcheon
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114-2500, USA
| | - Mary Ann Stepp
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I St. NW, Washington, DC, 20037, USA. .,George Washington University School of Medicine and Health Sciences, Department of Ophthalmology, 2300 I St. NW, Washington, DC, 20037, USA.
| |
Collapse
|
16
|
Hindman HB, DeMagistris M, Callan C, McDaniel T, Bubel T, Huxlin KR. Impact of topical anti-fibrotics on corneal nerve regeneration in vivo. Exp Eye Res 2019; 181:49-60. [PMID: 30660507 PMCID: PMC6443430 DOI: 10.1016/j.exer.2019.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022]
Abstract
Recent work in vitro has shown that fibroblasts and myofibroblasts have opposing effects on neurite outgrowth by peripheral sensory neurons. Here, we tested a prediction from this work that dampening the fibrotic response in the early phases of corneal wound healing in vivo could enhance reinnervation after a large, deep corneal injury such as that induced by photorefractive keratectomy (PRK). Since topical steroids and Mitomycin C (MMC) are often used clinically for mitigating corneal inflammation and scarring after PRK, they were ideal to test this prediction. Twenty adult cats underwent bilateral, myopic PRK over a 6 mm optical zone followed by either: (1) intraoperative MMC (n = 12 eyes), (2) intraoperative prednisolone acetate (PA) followed by twice daily topical application for 14 days (n = 12 eyes), or (3) no post-operative treatment (n = 16 eyes). Anti-fibrotic effects of MMC and PA were verified optically and histologically. First, optical coherence tomography (OCT) performed pre-operatively and 2, 4 and 12 weeks post-PRK was used to assess changes in corneal backscatter reflectivity. Post-mortem immunohistochemistry was then performed at 2, 4 and 12 weeks post-PRK, using antibodies against α-smooth muscle actin (α-SMA). Finally, immunohistochemistry with antibodies against βIII-tubulin (Tuj-1) was performed in the same corneas to quantify changes in nerve distribution relative to unoperated, control cat corneas. Two weeks after PRK, untreated corneas exhibited the greatest amount of staining for α-SMA, followed by PA-treated and MMC-treated eyes. This was matched by higher OCT-based stromal reflectivity values in untreated, than PA- and MMC-treated eyes. PA treatment appeared to slow epithelial healing and although normal epithelial thickness was restored by 12 weeks-post-PRK, intra-epithelial nerve length only reached ∼1/6 normal values in PA-treated eyes. Even peripheral cornea (outside the ablation zone) exhibited depressed intra-epithelial nerve densities after PA treatment. Stromal nerves were abundant under the α-SMA zone, but appeared to largely avoid it, creating an area of sub-epithelial stroma devoid of nerve trunks. In turn, this may have led to the lack of sub-basal and intra-epithelial nerves in the ablation zone of PA-treated eyes 4 weeks after PRK, and their continuing paucity 12 weeks after PRK. Intra-operative MMC, which sharply decreased α-SMA staining, was followed by rapid restoration of nerve densities in all corneal layers post-PRK compared to untreated corneas. Curiously, stromal nerves appeared unaffected by the development of large, stromal, acellular zones in MMC-treated corneas. Overall, it appears that post-PRK treatments that were most effective at reducing α-SMA-positive cells in the early post-operative period benefited nerve regeneration the most, resulting in more rapid restoration of nerve densities in all corneal layers of the ablation zone and of the corneal periphery.
Collapse
Affiliation(s)
- Holly B Hindman
- The Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | | | - Christine Callan
- The Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Thurma McDaniel
- The Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Tracy Bubel
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
| | - Krystel R Huxlin
- The Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA; Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
17
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, Williams AR, Pflugfelder SC, de Paiva CS. Reduced Corneal Innervation in the CD25 Null Model of Sjögren Syndrome. Int J Mol Sci 2018; 19:ijms19123821. [PMID: 30513621 PMCID: PMC6320862 DOI: 10.3390/ijms19123821] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Decreased corneal innervation is frequent in patients with Sjögren Syndrome (SS). To investigate the density and morphology of the intraepithelial corneal nerves (ICNs), corneal sensitivity, epithelial cell proliferation, and changes in mRNA expression of genes that are involved in autophagy and axon targeting and extension were assessed using the IL-2 receptor alpha chain (CD25 null) model of SS. ICN density and thickness in male and female wt and CD25 null corneas were assessed at 4, 6, 8, and 10/11 wk of age. Cell proliferation was assessed using ki67. Mechanical corneal sensitivity was measured. Quantitative PCR was performed to quantify expression of beclin 1, LC3, Lamp-1, Lamp-2, CXCL-1, BDNF, NTN1, DCC, Unc5b1, Efna4, Efna5, Rgma, and p21 in corneal epithelial mRNA. A significant reduction in corneal axon density and mechanical sensitivity were observed, which negatively correlate with epithelial cell proliferation. CD25 null mice have increased expression of genes regulating autophagy (beclin-1, LC3, LAMP-1, LAMP-2, CXCL1, and BDNF) and no change was observed in genes that were related to axonal targeting and extension. Decreased anatomic corneal innervation in the CD25 null SS model is accompanied by reduced corneal sensitivity, increased corneal epithelial cell proliferation, and increased expression of genes regulating phagocytosis and autophagy.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
- Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Gauri Tadvalkar
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Alexa R Williams
- Department of Anatomy and Regenerative Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| | - Stephen C Pflugfelder
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|