1
|
Sikder P. A comprehensive review on the State of the Art in the research and development of poly-ether-ether-ketone (PEEK) biomaterial-based implants. Acta Biomater 2025; 191:29-52. [PMID: 39579846 DOI: 10.1016/j.actbio.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyetheretherketone (PEEK) is a preferred high-performance polymer in the spine, orthopedic, and craniomaxillofacial implant industry. However, despite its commendable mechanical properties, its bioinert nature limits the implants from integrating with neighboring tissues, impacting the implant's long-term performance. To address this limitation, various kinds of surface functionalization techniques have been developed over the years. Noteworthy efforts have been made to incorporate bioactive fillers in the PEEK matrix to develop standalone bioactive composites. In personalized medicine, significant advances have been made in the 3D Printing of PEEK implants. 3D-printed PEEK implants are now being developed at Point-of-Care, significantly reducing manufacturing and logistic time. Given the recent clinical follow-up updates and advancements in PEEK-based implants, PEEK implants are witnessing an important phase in its history. Recognizing this vital phase, this paper aims to comprehensively review the advancements of PEEK implants over the past decade. The review starts with an overview of the clinical impact of varying PEEK implants, followed by PEEK's surface functionalization techniques and engineering of PEEK-based bioactive composites. Next, this review describes the advancements made in the 3D printing of PEEK implants and points out the essential considerations that should be considered when developing 3D-printed PEEK-based implants. Finally, the review ends with an estimated projection about the future of PEEK-based implants. Readers are expected to gain an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future, enabling researchers to advance the research and development of PEEK-based implants in the required direction. STATEMENT OF SIGNIFICANCE: PEEK is a preferred high-performance polymer in the implant industry, with notable benefits over metallic and ceramic implants, such as bone-matching stiffness and durability. Significant strides have been made in the last decade to make PEEK implants bioactive and utilize 3D Printing to develop patient-specific implants. Given the recent advancements in PEEK-based implants, this review aims to provide an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future. It will comprehensively discuss the know-how gained from the clinical follow-up, the strategies to address the limitations of PEEK implants, and the essential considerations in 3D Printing of PEEK implants. This review will enable researchers to advance the research and development of PEEK implants in the required direction.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States.
| |
Collapse
|
2
|
Sayadi S, Brouillette F. Silylation of phosphorylated cellulosic fibers with an aminosilane. Carbohydr Polym 2024; 343:122500. [PMID: 39174145 DOI: 10.1016/j.carbpol.2024.122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
In this work, phosphorylated cellulosic fibers were functionalized with an aminosilane ((3-aminopropyl)triethoxysilane, APTES) using a simple and economical method. Several characterization were performed to determine the types of bonds between phosphorylated fibers and grafted APTES. The thermal behavior, hydrophobicity and surface charge variation as a function of pH of the multifunctional cellulose fibers were determined. Results demonstrate that APTES should proceed through Si-O-C, and possibly Si-O-P, covalent bonds with cellulose although the dimerization of silane through Si-O-Si bonds has also been observed. The terminal amino groups are expected to be partially involved in hydrogen bonds with phosphate hydroxyl groups found at phosphorylated cellulose fiber surface, causing a pulling in the configuration of the grafted APTES. The two chemical modifications proposed in this work do not significantly modify the morphology of cellulose fibers. XRD analysis also shows that the crystal structure of the phosphorylated fibers did not change after functionalization with APTES. The silylated phosphorylated fibers show potential flame-retardant properties with improved hydrophobicity. Furthermore, the functionalization of phosphorylated fibers with APTES changes the pH of zero charge point from 3.2 to 9.4 and providing a zwitterionic structure suitable for the simultaneous adsorption of both cationic and anionic species.
Collapse
Affiliation(s)
- Sabrine Sayadi
- Université du Québec à Montréal, Department of Chemistry, 2101 Jeanne-Mance St., Montréal, Québec H2X 2J6, Canada; Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies (I2E3), Université du Québec à Trois-Rivières (UQTR), 3351 des Forges Blvd., Trois-Rivières, Québec G8Z 4M3, Canada
| | - François Brouillette
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies (I2E3), Université du Québec à Trois-Rivières (UQTR), 3351 des Forges Blvd., Trois-Rivières, Québec G8Z 4M3, Canada.
| |
Collapse
|
3
|
Meng W, Nie Y, Zhang J, Qin L, Liu X, Ma T, Wu J. Enhancing bioactivity and biocompatibility of polyetheretherketone (PEEK) for dental and maxillofacial implants: A novel sequential soaking process. Heliyon 2024; 10:e33381. [PMID: 39027560 PMCID: PMC11255662 DOI: 10.1016/j.heliyon.2024.e33381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
Polyetheretherketone (PEEK) exhibits excellent biocompatibility, fatigue resistance, and an elastic modulus similar to bone, presenting broad application prospects in the field of dental and maxillofacial implants. However, the bioinertness of PEEK limits its applications. In this study, we developed a method to generate biocompatible and bioactive PEEK through a simple sequential soaking process, aimed at inducing bone differentiation and enhancing antibacterial properties. Initially, a three-dimensional (3D) porous network was introduced on the PEEK surface by soaking in concentrated sulfuric acid and water. Subsequently, the sulfonated PEEK surface was treated with oxygen plasma, followed by immersion in a dopamine solution to coat a polydopamine (PDA) layer. Finally, polydopamine phosphate ester-modified 3D porous PEEK was obtained through the reaction of phosphoryl chloride with surface phenolic hydroxyl groups. Systematic studies were conducted using scanning electron microscopy, X-ray photoelectron spectroscopy, water contact angle analysis, cell proliferation and adhesion, osteogenic gene expression detection, alkaline phosphatase staining, alizarin red staining, and bacterial culture. Overall, compared to unmodified PEEK, the modified PEEK significantly enhanced in vitro cell proliferation and adhesion, osteogenic differentiation, and antibacterial properties. The simple surface modification measures combined in this study may represent a promising technology and could facilitate the application of PEEK in dental and maxillofacial implants.
Collapse
Affiliation(s)
- Wenqing Meng
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Yifei Nie
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Jiajia Zhang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Ludan Qin
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Xueye Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Tongtong Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Junling Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| |
Collapse
|
4
|
El Shafei SF, Raafat SN, Farag EA. Enhanced human periodontal ligament stem cell viability and osteogenic differentiation on two implant materials: An experimental in vitro study. F1000Res 2023; 12:447. [PMID: 37614561 PMCID: PMC10442589 DOI: 10.12688/f1000research.129562.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Background: Surface roughness of dental implants impacts the survival of adult periodontal stem cells and rate of differentiation. This research was conducted to test how human periodontal ligament stem cells behaved on yttria stabilized tetragonal zirconia polycrystals and polyetheretherketone (PEEK) discs with different surface topographies. Methods: Discs roughening was prepared by sandblasting. Stem cells were cultivated on zirconia discs with a polished surface, PEEK discs with a polished surface, sandblasted zirconia discs and sandblasted PEEK discs. Cells viability was assessed after 24, 48, 72 hours. Scanning electron microscopy was used to examine the adherence and attachment of cells. Osteoblastic differentiation capacity was studied by checking the mineralization clusters development through alizarin red S staining and alkaline phosphatase assay. ANOVA and the Tukey post hoc test were used for the statistical analysis. Results: Polished PEEK discs showed lower cell viability, whereas roughened sandblasted zirconia and PEEK discs showed the highest proliferation rates and cell viability percent. The osteogenic differentiation was enhanced for rough surfaces in comparison to polished surfaces. Sandblasted zirconia and PEEK discs showed a markedly increased mineralized nodule development and ALP enzyme activity compared to the polished surface and control. Conclusions: Micro- topographies creation on the PEEK implant surface enhances stem cell attachment, viability, and osteogenic differentiation.
Collapse
Affiliation(s)
- Sara F. El Shafei
- Removable Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Shereen N. Raafat
- Department of Pharmacology, Director of Stem Cell and Tissue Culture Hub, Centre of Innovative Dental Sciences (CIDS), Faculty of Dentistry,, The British University in Egypt, Cairo, Egypt
| | - Engy A. Farag
- Fixed Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
5
|
Chen T, Jinno Y, Atsuta I, Tsuchiya A, Stocchero M, Bressan E, Ayukawa Y. Current surface modification strategies to improve the binding efficiency of emerging biomaterial polyetheretherketone (PEEK) with bone and soft tissue: A literature review. J Prosthodont Res 2023; 67:337-347. [PMID: 36372438 DOI: 10.2186/jpr.jpr_d_22_00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE The aim of this study was to review the literature on current surface modification strategies used to improve the binding efficiency of an emerging biological material, polyetheretherketone (PEEK), with bone and soft tissues. STUDY SELECTION This review was based on articles retrieved from PubMed, Google Scholar, Web of Science, and ScienceDirect databases. The main keywords used during the search were "polyetheretherketone (PEEK)," "implant," "surface modification," "biomaterials," "bone," "osseointegration," and "soft tissue." RESULTS The suitability of PEEK surface modification strategies has been critically analyzed and summarized here. Many cell and in vivo experiments in small animals have shown that the use of advanced modification technologies with appropriate surface modification strategies can effectively improve the surface inertness of PEEK, thereby improving its binding efficiency with bone and soft tissues. CONCLUSIONS Surface modifications of PEEK have revealed new possibilities for implant treatment; however, most results are based on in vitro or short-term in vivo evaluations in small animals. To achieve a broad application of PEEK in the field of oral implantology, more in vivo experiments and long-term clinical evaluations are needed to investigate the effects of various surface modifications on the tissue integration ability of PEEK to develop an ideal implant material.
Collapse
Affiliation(s)
- Tianjie Chen
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yohei Jinno
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ikiru Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Michele Stocchero
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Eriberto Bressan
- Department of Neurosciences, Section of Dentistry, University of Padova, Padova, Italy
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Chen Z, Chen Y, Wang Y, Deng J, Wang X, Wang Q, Liu Y, Ding J, Yu L. Polyetheretherketone implants with hierarchical porous structure for boosted osseointegration. Biomater Res 2023; 27:61. [PMID: 37370127 DOI: 10.1186/s40824-023-00407-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Good osseointegration is the key to the long-term stability of bone implants. Thermoplastic polyetheretherketone (PEEK) has been widely used in orthopedics; however, its inherent biological inertia causes fibrous tissue to wrap its surface, which leads to poor osseointegration and thus greatly limits its clinical applications. METHODS Herein, we developed a facile yet effective surface modification strategy. A commonly used sulfonation coupled with "cold pressing" treatment in the presence of porogenic agent formed a three-dimensional hierarchical porous structure on PEEK surface. Subsequently, the effects of porous surface on the in vitro adhesion, proliferation and differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) were evaluated. Finally, the osteoinduction and osseointegration of surface-porous PEEK implant were examined in the rat distal femoral defect model. RESULTS In vitro results showed that the surface modification did not significantly affect the mechanical performance and cytocompatibility of PEEK substance, and the porous structure on the modified PEEK substrate provided space for cellular ingrowth and enhanced osteogenic differentiation and mineralization of BMSCs. In vivo tests demonstrated that the surface-porous PEEK implant could effectively promote new bone formation and had higher bone-implant contact rate, thereby achieving good bone integration with the surrounding host bone. In addition, this modification technique was also successfully demonstrated on a medical PEEK interbody fusion cage. CONCLUSION The present study indicates that topological morphology plays a pivotal role in determining implant osseointegration and this facile and effective modification strategy developed by us is expected to achieve practical applications quickly.
Collapse
Affiliation(s)
- Zhiyong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Yu Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - JiaJia Deng
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Xin Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200001, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
7
|
Ma T, Zhang J, Sun S, Meng W, Zhang Y, Wu J. Current treatment methods to improve the bioactivity and bonding strength of PEEK for dental application: A systematic review. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
9
|
Buck E, Lee S, Gao Q, Tran SD, Tamimi F, Stone LS, Cerruti M. The Role of Surface Chemistry in the Osseointegration of PEEK Implants. ACS Biomater Sci Eng 2022; 8:1506-1521. [PMID: 35290033 DOI: 10.1021/acsbiomaterials.1c01434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(etheretherketone) (PEEK) implants suffer from poor osseointegration because of chronic inflammation. In this study, we hypothesized that adding NH2 and COOH groups to the surface of PEEK could modulate macrophage responses by altering protein adsorption and improve its osseointegration. NH2 and COOH-functionalized PEEK surfaces induced pro- and anti-inflammatory macrophage responses, respectively, and differences in protein adsorption patterns on these surfaces were related to the varied inflammatory responses. The macrophage responses to NH2 surfaces significantly reduced the osteogenic differentiation of mesenchymal stem cells (MSCs). MSCs cultured on NH2 surfaces differentiated less than those on COOH surfaces even though NH2 surfaces promoted the most mineralization in simulated body fluid solutions. After 14 days in rat tibia unicortical defects, the bone around NH2 surfaces had thinner trabeculae and higher specific bone surface than the bone around unmodified implants; surprisingly, the NH2 implants significantly increased bone-binding over the unmodified implants, while COOH implants only showed a trend for increasing bone-binding. Taken together, these results suggest that both mineral-binding and immune responses play a role in osseointegration, and PEEK implant integration may be improved with mixtures of these two functional groups to harness the ability to reduce inflammation and bind bone strongly.
Collapse
Affiliation(s)
- Emily Buck
- Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| | - Seunghwan Lee
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada.,Alan Edwards Center for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec H3A 0G1, Canada
| | - Qiman Gao
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada
| | - Simon D Tran
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada
| | - Faleh Tamimi
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada
| | - Laura S Stone
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue #500, Montreal, Quebec H3A 1G1, Canada.,Alan Edwards Center for Research on Pain, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec H3A 0G1, Canada
| | - Marta Cerruti
- Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
10
|
Chen J, Cao G, Li L, Cai Q, Dunne N, Li X. Modification of polyether ether ketone for the repairing of bone defects. Biomed Mater 2022; 17. [PMID: 35395651 DOI: 10.1088/1748-605x/ac65cd] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/08/2022] [Indexed: 11/12/2022]
Abstract
Bone damage as a consequence of disease or trauma is a common global occurrence. For bone damage treatment - bone implant materials are necessary across three classifications of surgical intervention (i.e. fixation, repair, and replacement). Many types of bone implant materials have been developed to meet the requirements of bone repair. Among them, polyether ether ketone (PEEK) has been considered as one of the next generation of bone implant materials, owing to its advantages related to good biocompatibility, chemical stability, X-ray permeability, elastic modulus comparable to natural bone, as well as the ease of processing and modification. However, as PEEK is a naturally bioinert material, some modification is needed to improve its integration with adjacent bones after implantation. Therefore, it has become a very hot topic of biomaterials research and various strategies for the modification of PEEK including blending, 3D printing, coating, chemical modification and the introduction of bioactive and/or antibacterial substances have been proposed. In this systematic review, the recent advances in modification of PEEK and its application prospect as bone implants are summarized, and the remaining challenges are also discussed.
Collapse
Affiliation(s)
- Junfeng Chen
- Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, Beijing, 100083, CHINA
| | - Guangxiu Cao
- Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, Beijing, 100083, CHINA
| | - Linhao Li
- Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, CHINA
| | - Qiang Cai
- Tsinghua University Department of Materials Science and Engineering, 30 shuangqing Rd, Haidian District, Beijing, Beijing, 100084, CHINA
| | - Nicholas Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Dublin, D09, IRELAND
| | - Xiaoming Li
- Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, Beijing, 100083, CHINA
| |
Collapse
|
11
|
Yu D, Lei X, Zhu H. Modification of polyetheretherketone (PEEK) physical features to improve osteointegration. J Zhejiang Univ Sci B 2022; 23:189-203. [PMID: 35261215 DOI: 10.1631/jzus.b2100622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polyetheretherketone (PEEK) has been widely applied in orthopedics because of its excellent mechanical properties, radiolucency, and biocompatibility. However, the bioinertness and poor osteointegration of PEEK have greatly limited its further application. Growing evidence proves that physical factors of implants, including their architecture, surface morphology, stiffness, and mechanical stimulation, matter as much as the composition of their surface chemistry. This review focuses on the multiple strategies for the physical modification of PEEK implants through adjusting their architecture, surface morphology, and stiffness. Many research findings show that transforming the architecture and incorporating reinforcing fillers into PEEK can affect both its mechanical strength and cellular responses. Modified PEEK surfaces at the macro scale and micro/nano scale have positive effects on cell-substrate interactions. More investigations are necessary to reach consensus on the optimal design of PEEK implants and to explore the efficiency of various functional implant surfaces. Soft-tissue integration has been ignored, though evidence shows that physical modifications also improve the adhesion of soft tissue. In the future, ideal PEEK implants should have a desirable topological structure with better surface hydrophilicity and optimum surface chemistry.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyue Lei
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
12
|
Wang N, Qi D, Liu L, Zhu Y, Liu H, Zhu S. Fabrication of In Situ Grown Hydroxyapatite Nanoparticles Modified Porous Polyetheretherketone Matrix Composites to Promote Osteointegration and Enhance Bone Repair. Front Bioeng Biotechnol 2022; 10:831288. [PMID: 35295654 PMCID: PMC8919038 DOI: 10.3389/fbioe.2022.831288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
The repairment of critical-sized bone defects is a serious problem that stimulates the development of new biomaterials. In this study, nanohydroxyapatite (nHA)-doped porous polyetheretherketone (pPEEK) were successfully fabricated by the thermally induced phase separation method and hydrothermal treatment. Structural analysis was performed by X-ray diffraction. The water contact angles and scanning electron microscopy were measured to assess physical properties of surfaces. The mechanical strength of the composites is also determined. Microcomputed tomography is used to characterize the nHA content of the composites. The in vitro bioactivity of the composites with or without nHA was investigated by using murine pre-osteoblasts MC3T3-E1, and the results of cytotoxicity and cell proliferation assays revealed that the cytocompatibility of all specimens was good. Adherence assays were employed to examine the adhesion and morphology of cells on different materials. However, nHA-doped composites induced cell attachment and cell spreading more significantly. Osteogenic differentiation was investigated using alkaline phosphatase activity and alizarin red staining, and these in vitro results demonstrated that composites containing nHA particles enhanced osteoblast differentiation. Its effectiveness for promoting osteogenesis was also confirmed in an in vivo animal experiment using a tibial defective rat model. After 8 weeks of implantation, compared to the pure PEEK and pPEEK without nHA groups, the nHA-pPEEK group showed better osteogenic activity. The results indicate that the nHA-pPEEK composites are possibly a well-designed bone substitute for critical-sized bone defects by promoting bone regeneration and osteointegration successfully.
Collapse
Affiliation(s)
- Ningning Wang
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Desheng Qi
- College of Chemistry, Engineering Research Center of Special Engineering Plastics, Ministry of Education, Jilin University, Changchun, China
| | - Lu Liu
- Department of Stomatology, China-Japan Friendship Hospital, Jilin University, Changchun, China
| | - Yanlin Zhu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hong Liu
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Song Zhu
- Department of Prosthetic Dentistry, School and Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Song Zhu,
| |
Collapse
|
13
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Zamani Y, Amoabediny G, Mohammadi J, Zandieh-Doulabi B, Klein-Nulend J, Helder MN. Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration. IRANIAN BIOMEDICAL JOURNAL 2021; 25:78-87. [PMID: 33461289 PMCID: PMC7921523 DOI: 10.29252/ibj.25.2.78] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using three-dimensional printing (3DP). Herein, we aimed to determine whether the much tighter control of microstructure of 3DP poly(lactic-co-glycolic) acid/β-tricalcium phosphate (PLGA/β-TCP) scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results TThe 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. Alkaline phosphatase (ALP) activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/β-TCP scaffolds are possibly more favorable for bone formation.
Collapse
Affiliation(s)
- Yasaman Zamani
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers-location VUmc and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)-University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)-University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Marco N Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers-location VUmc and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Chua CYX, Liu HC, Di Trani N, Susnjar A, Ho J, Scorrano G, Rhudy J, Sizovs A, Lolli G, Hernandez N, Nucci MC, Cicalo R, Ferrari M, Grattoni A. Carbon fiber reinforced polymers for implantable medical devices. Biomaterials 2021; 271:120719. [PMID: 33652266 DOI: 10.1016/j.biomaterials.2021.120719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
Carbon fibers reinforced polymers (CFRPs) are prolifically finding applications in the medical field, moving beyond the aerospace and automotive industries. Owing to its high strength-to-weight ratio, lightness and radiolucency, CFRP-based materials are emerging to replace traditional metal-based medical implants. Numerous types of polymers matrices can be incorporated with carbon fiber using various manufacturing methods, creating composites with distinct properties. Thus, prior to biomedical application, comprehensive evaluation of material properties, biocompatibility and safety are of paramount importance. In this study, we systematically evaluated a series of novel CFRPs, aiming at analyzing biocompatibility for future development into medical implants or implantable drug delivery systems. These CFRPs were produced either via Carbon Fiber-Sheet Molding Compound or Fused Deposition Modelling-based additive manufacturing. Unlike conventional methods, both fabrication processes afford high production rates in a time-and cost-effective manner. Importantly, they offer rapid prototyping and customization in view of personalized medical devices. Here, we investigate the physicochemical and surface properties, material mutagenicity or cytotoxicity of 20 CFRPs, inclusive of 2 surface finishes, as well as acute and sub-chronic toxicity in mice and rabbits, respectively. We demonstrate that despite moderate in vitro physicochemical and surface changes over time, most of the CFRPs were non-mutagenic and non-cytotoxic, as well as biocompatible in small animal models. Future work will entail extensive material assessment in the context of orthopedic applications such as evaluating potential for osseointegration, and a chronic toxicity study in a larger animal model, pigs.
Collapse
Affiliation(s)
- Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; University of Chinese Academy of Science (UCAS), Shijingshan, 19 Yuquan Road, Beijing, 100049, China
| | - Antonia Susnjar
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Jeremy Ho
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Weill Cornell Medical College, New York, NY, 10065, USA
| | - Giovanni Scorrano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Material Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Jessica Rhudy
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Antons Sizovs
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Graziano Lolli
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Mechanical and Aerospace Engineering, Polytechnic of Turin, Turin, 10129, Italy
| | - Nathanael Hernandez
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Maria Concetta Nucci
- Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, Bologna, 40138, Italy
| | - Roberto Cicalo
- D-Verge Srl, Sant'Agata Bolognese, Emilia-Romagna, 40019, Italy
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Zhou H, Boys AJ, Harrod JB, Bonassar LJ, Estroff LA. Mineral Distribution Spatially Patterns Bone Marrow Stromal Cell Behavior on Monolithic Bone Scaffolds. Acta Biomater 2020; 112:274-285. [PMID: 32479819 PMCID: PMC7372954 DOI: 10.1016/j.actbio.2020.05.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 11/25/2022]
Abstract
Interfaces between soft tissue and bone are characterized by transitional gradients in composition and structure that mediate substantial changes in mechanical properties. For interfacial tissue engineering, scaffolds with mineral gradients have shown promise in controlling osteogenic behavior of seeded bone marrow stromal cells (bMSCs). Previously, we have demonstrated a 'top-down' method for creating monolithic bone-derived scaffolds with patterned mineral distributions similar to native tissue. In the present work, we evaluated the ability of these scaffolds to pattern osteogenic behavior in bMSCs in basic, osteogenic, and chondrogenic biochemical environments. Immunohistochemical (IHC) and histological stains were used to characterize cellular behavior as a function of local mineral content. Alkaline phosphatase, an early marker of osteogenesis, and osteocalcin, a late marker of osteogenesis, were positively correlated with mineral content in basic, osteogenic, and chondrogenic media. The difference in bMSC behavior between the mineralized and demineralized regions was most pronounced in an basic biochemical environment. In the mineralized regions of the scaffold, osteogenic markers were clearly present as early as 4 days in culture. In osteogenic media, osteogenic behavior was observed across the entire scaffold, whereas in chondrogenic media, there was an overall reduction in osteogenic biomarkers. Overall, these results indicate local mineral content of the scaffold plays a key role in spatially patterning bMSC behavior. Our results can be utilized for the development of interfacial tissue engineered scaffolds and understanding the role of local environment in determining bMSC behavior. STATEMENT OF SIGNIFICANCE: Soft tissue-to-bone interfaces, such as tendon-bone, ligament-bone, and cartilage-bone, are ubiquitous in mammalian musculoskeletal systems. These interfacial tissues have distinct, hierarchically-structured gradients of cellular, biochemical, and materials components. Given the complexity of the biological structures, interfacial tissues present unique challenges for tissue engineering. Here, we demonstrate that material-derived cues can spatially pattern osteogenic behavior in bone marrow stromal cells (bMSCs). Specifically, we observed that when the bMSCs are cultured on bone-derived scaffolds with mineral gradients, cells in contact with higher mineral content display osteogenic behavior at earlier times than those on the unmineralized substrate. The ability to pattern the cellular complexity found in native interfaces while maintaining biologically relevant structures is a key step towards creating engineered tissue interfaces.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jordan B Harrod
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States.
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States; Kavli Institute for Nanoscale Science at Cornell, Cornell University, Ithaca, New York 14853, United States.
| |
Collapse
|
17
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
18
|
Zhao C, Song X, Lu X. Directional Osteo-Differentiation Effect of hADSCs on Nanotopographical Self-Assembled Polystyrene Nanopit Surfaces. Int J Nanomedicine 2020; 15:3281-3290. [PMID: 32440124 PMCID: PMC7217320 DOI: 10.2147/ijn.s240300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Cells exhibit high sensitivity and a diverse response to the nanotopography of the extracellular matrix, thereby endowing materials with instructive performances formerly reserved for growth factors. This finding leads to opportunities for improvement. However, the interplay between the topographical surface and cell behaviors remains incompletely understood. Methods In the present study, we showed nanosurfaces with various dimensions of nanopits (200–750 nm) fabricated by self-assembling polystyrene (PS) nanospheres. Human adipose-derived stem cell behaviors, such as cell morphology, adhesion, cytoskeleton contractility, proliferation, and differentiation, were investigated on the prepared PS nanopit surface. Results The osteogenic differentiation can be enhanced by nanopits with a diameter of 300–400 nm. Discussion The present study provided exciting new avenues to investigate cellular responses to well-defined nanoscale topographic features, which could further guide bone tissue engineering and stem cell clinical research. The capability to control developing biomaterials mimicking nanotopographic surfaces promoted functional tissue engineering, such as artificial joint replacement, bone repair, and dental applications.
Collapse
Affiliation(s)
- Changhong Zhao
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Xuebin Song
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China
| | - Xiaoyuan Lu
- College of Medical Engineering, Xinxiang Medical University, Henan 453003, People's Republic of China
| |
Collapse
|
19
|
Sreeja S, Muraleedharan C, Varma PH, Sailaja G. Surface-transformed osteoinductive polyethylene terephthalate scaffold as a dual system for bone tissue regeneration with localized antibiotic delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110491. [DOI: 10.1016/j.msec.2019.110491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023]
|
20
|
Bochev I, Kostadinova M, Antonov B, Oreshkova T, Kinov P, Mourdjeva M. TI-6AL-4V alloy and β-tricalcium phosphate-based systems for in vitro study of mesenchymal stem cell functions at implant–tissue interface. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1738274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Ivan Bochev
- Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Milena Kostadinova
- Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Boris Antonov
- Department of Orthopedics and Traumatology, University Hospital “Queen Giovanna - ISUL”, Sofia, Bulgaria
| | - Tsvetelina Oreshkova
- Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Plamen Kinov
- Department of Orthopedics and Traumatology, University Hospital “Queen Giovanna - ISUL”, Sofia, Bulgaria
| | | |
Collapse
|
21
|
Raic A, Friedrich F, Kratzer D, Bieback K, Lahann J, Lee-Thedieck C. Potential of electrospun cationic BSA fibers to guide osteogenic MSC differentiation via surface charge and fibrous topography. Sci Rep 2019; 9:20003. [PMID: 31882795 PMCID: PMC6934613 DOI: 10.1038/s41598-019-56508-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/12/2019] [Indexed: 01/18/2023] Open
Abstract
Large or complex bone fractures often need clinical treatments for sufficient bone repair. New treatment strategies have pursued the idea of using mesenchymal stromal cells (MSCs) in combination with osteoinductive materials to guide differentiation of MSCs into bone cells ensuring complete bone regeneration. To overcome the challenge of developing such materials, fundamental studies are needed to analyze and understand the MSC behavior on modified surfaces of applicable materials for bone healing. For this purpose, we developed a fibrous scaffold resembling the bone/bone marrow extracellular matrix (ECM) based on protein without addition of synthetic polymers. With this biomimetic in vitro model we identified the fibrous structure as well as the charge of the material to be responsible for its effects on MSC differentiation. Positive charge was introduced via cationization that additionally supported the stability of the scaffold in cell culture, and acted as nucleation point for mineralization during osteogenesis. Furthermore, we revealed enhanced focal adhesion formation and osteogenic differentiation of MSCs cultured on positively charged protein fibers. This pure protein-based and chemically modifiable, fibrous ECM model allows the investigation of MSC behavior on biomimetic materials to unfold new vistas how to direct cells' differentiation for the development of new bone regenerating strategies.
Collapse
Affiliation(s)
- Annamarija Raic
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30419, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Eggenstein-Leopoldshafen, 76344, Germany
| | - Frank Friedrich
- Karlsruhe Institute of Technology (KIT), Competence Center for Material Moisture, Eggenstein-Leopoldshafen, 76344, Germany
| | - Domenic Kratzer
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30419, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Eggenstein-Leopoldshafen, 76344, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University; German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, 68167, Germany
| | - Joerg Lahann
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, Eggenstein-Leopoldshafen, 76344, Germany
- Biointerfaces Institute and Departments of Chemical Engineering, Materials Science and Engineering, Macromolecular Science and Engineering and Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cornelia Lee-Thedieck
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30419, Germany.
| |
Collapse
|
22
|
Sunarso, Tsuchiya A, Toita R, Tsuru K, Ishikawa K. Enhanced Osseointegration Capability of Poly(ether ether ketone) via Combined Phosphate and Calcium Surface-Functionalization. Int J Mol Sci 2019; 21:E198. [PMID: 31892154 PMCID: PMC6981423 DOI: 10.3390/ijms21010198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
Biomedical applications of poly(ether ether ketone) (PEEK) are hindered by its inherent bioinertness and lack of osseointegration capability. In the present study, to enhance osteogenic activity and, hence, the osseointegration capability of PEEK, we proposed a strategy of combined phosphate and calcium surface-functionalization, in which ozone-gas treatment and wet chemistry were used for introduction of hydroxyl groups and modification of phosphate and/or calcium, respectively. Surface functionalization significantly elevated the surface hydrophilicity without changing the surface roughness or topography. The cell study demonstrated that immobilization of phosphate or calcium increased the osteogenesis of rat mesenchymal stem cells compared with bare PEEK, including cell proliferation, alkaline phosphatase activity, and bone-like nodule formation. Interestingly, further enhancement was observed for samples co-immobilized with phosphate and calcium. Furthermore, in the animal study, phosphate and calcium co-functionalized PEEK demonstrated significantly enhanced osseointegration, as revealed by a greater direct bone-to-implant contact ratio and bond strength between the bone and implant than unfunctionalized and phosphate-functionalized PEEK, which paves the way for the orthopedic and dental application of PEEK.
Collapse
Affiliation(s)
- Sunarso
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Department of Dental Materials, Faculty of Dentistry, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
| | - Riki Toita
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, 2-15-1 Tamura, Sawara, Fukuoka 814-0193, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
| |
Collapse
|
23
|
Buck E, Li H, Cerruti M. Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromol Biosci 2019; 20:e1900271. [DOI: 10.1002/mabi.201900271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/18/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Emily Buck
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Hao Li
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| | - Marta Cerruti
- Department of Mining and Materials EngineeringMcGill University 3610 University Street Montreal QC H3A 0C5 Canada
| |
Collapse
|
24
|
Can the Macrogeometry of Dental Implants Influence Guided Bone Regeneration in Buccal Bone Defects? Histomorphometric and Biomechanical Analysis in Beagle Dogs. J Clin Med 2019; 8:jcm8050618. [PMID: 31067735 PMCID: PMC6572352 DOI: 10.3390/jcm8050618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this experimental animal study was to assess guided bone regeneration (GBR) and implant stability (ISQ) around two dental implants with different macrogeometries. Forty eight dental implants were placed within six Beagle dogs. The implants were divided into two groups (n = 24 per group): G1 group implants presented semi-conical macrogeometry, a low apical self-tapping portion, and an external hexagonal connection (whereby the cervical portion was bigger than the implant body). G2 group implants presented parallel walls macrogeometry, a strong apical self-tapping portion, and an external hexagonal connection (with the cervical portion parallel to the implant body). Buccal (mouth-related) defects of 2 mm (c2 condition) and 5 mm (c3 condition) were created. For the control condition with no defect (c1), implants were installed at crestal bone level. Eight implants in each group were installed under each condition. The implant stability quotient (ISQ) was measured immediately after implant placement, and on the day of sacrifice (3 months after the implant placement). Histological and histomorphometric procedures and analysis were performed to assess all samples, measuring crestal bone loss (CBL) and bone-to-implant contact (BIC). The data obtained were compared with statistical significance set at p < 0.05. The ISQ results showed a similar evolution between the groups at the two evaluation times, although higher values were found in the G1 group under all conditions. Within the limitations of this animal study, it may be concluded that implant macrogeometry is an important factor influencing guided bone regeneration in buccal defects. Group G1 showed better buccal bone regeneration (CBL) and BIC % at 3 months follow up, also parallel collar design can stimulate bone regeneration more than divergent collar design implants. The apical portion of the implant, with a stronger self-tapping feature, may provide better initial stability, even in the presence of a bone defect in the buccal area.
Collapse
|
25
|
Santos-Rosales V, Ardao I, Alvarez-Lorenzo C, Ribeiro N, Oliveira AL, García-González CA. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO₂-Based Approach. Molecules 2019; 24:molecules24050871. [PMID: 30823685 PMCID: PMC6429194 DOI: 10.3390/molecules24050871] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 01/20/2023] Open
Abstract
Aerogels from natural polymers are endowed with attractive textural and biological properties for biomedical applications due to their high open mesoporosity, low density, and reduced toxicity. Nevertheless, the lack of macroporosity in the aerogel structure and of a sterilization method suitable for these materials restrict their use for regenerative medicine purposes and prompt the research on getting ready-to-implant dual (macro + meso)porous aerogels. In this work, zein, a family of proteins present in materials for tissue engineering, was evaluated as a sacrificial porogen to obtain macroporous starch aerogels. This approach was particularly advantageous since it could be integrated in the conventional aerogel processing method without extra leaching steps. Physicochemical, morphological, and mechanical characterization were performed to study the effect of porogen zein at various proportions (0:1, 1:2, and 1:1 zein:starch weight ratio) on the properties of the obtained starch-based aerogels. From a forward-looking perspective for its clinical application, a supercritical CO₂ sterilization treatment was implemented for these aerogels. The sterilization efficacy and the influence of the treatment on the aerogel final properties were evaluated mainly in terms of absence of microbial growth, cytocompatibility, as well as physicochemical, structural, and mechanical modifications.
Collapse
Affiliation(s)
- Víctor Santos-Rosales
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Inés Ardao
- BioFarma Research group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Nilza Ribeiro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-375 Porto, Portugal.
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4200-375 Porto, Portugal.
| | - Carlos A García-González
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|