1
|
Kim DH, Lee SH, Kim J, Lee J, Jeong JH, Kim JY, Song SU, Lee H, Cho AY, Hyeon JY, Youk S, Song CS. Efficacy of live and inactivated recombinant Newcastle disease virus vaccines expressing clade 2.3.4.4b H5 hemagglutinin against H5N1 highly pathogenic avian influenza in SPF chickens, Broilers, and domestic ducks. Vaccine 2024; 42:3756-3767. [PMID: 38724417 DOI: 10.1016/j.vaccine.2024.04.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024]
Abstract
A Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 Hemagglutinin was developed and assessed for efficacy against H5N1 highly pathogenic avian influenza (HPAI) in specific pathogen-free (SPF) chickens, broilers, and domestic ducks. In SPF chickens, the live recombinant NDV-vectored vaccine, rK148/22-H5, achieved complete survival against HPAI and NDV challenges and significantly reduced viral shedding. Notably, the live rK148/22-H5 vaccine conferred good clinical protection in broilers despite the presence of maternally derived antibodies. Good clinical protection was observed in domestic ducks, with decreased viral shedding. It demonstrated complete survival and reduced cloacal viral shedding when used as an inactivated vaccine from SPF chickens. The rK148/22-H5 vaccine is potentially a viable and supportive option for biosecurity measure, effectively protecting in chickens against the deadly clade 2.3.4.4b H5 HPAI and NDV infections. Furthermore, it aligns with the strategy of Differentiating Infected from Vaccinated Animals (DIVA).
Collapse
MESH Headings
- Animals
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Newcastle disease virus/immunology
- Newcastle disease virus/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Ducks/virology
- Ducks/immunology
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Virus Shedding
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Specific Pathogen-Free Organisms
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Poultry Diseases/immunology
- Newcastle Disease/prevention & control
- Newcastle Disease/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- Deok-Hwan Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea; KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Seung-Hun Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Jiwon Kim
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Jiho Lee
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Department of Agriculture-Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA
| | - Jei-Hyun Jeong
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea; KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Ji-Yun Kim
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Seung-Un Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Hyukchae Lee
- KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea
| | - Andrew Y Cho
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Ji-Yeon Hyeon
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Sungsu Youk
- Department of Microbiology, College of Medicine, Chungbuk National University, Cheongju, South Korea.
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, South Korea; KHAV Co., Ltd., 1 Hwayang-dong, Gwangjin-gu, Seoul, Korea.
| |
Collapse
|
2
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Fulber JPC, Kamen AA. Development and Scalable Production of Newcastle Disease Virus-Vectored Vaccines for Human and Veterinary Use. Viruses 2022; 14:975. [PMID: 35632717 PMCID: PMC9143368 DOI: 10.3390/v14050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic has highlighted the need for efficient vaccine platforms that can rapidly be developed and manufactured on a large scale to immunize the population against emerging viruses. Viral-vectored vaccines are prominent vaccine platforms that have been approved for use against the Ebola virus and SARS-CoV-2. The Newcastle Disease Virus is a promising viral vector, as an avian paramyxovirus that infects poultry but is safe for use in humans and other animals. NDV has been extensively studied not only as an oncolytic virus but also a vector for human and veterinary vaccines, with currently ongoing clinical trials for use against SARS-CoV-2. However, there is a gap in NDV research when it comes to process development and scalable manufacturing, which are critical for future approved vaccines. In this review, we summarize the advantages of NDV as a viral vector, describe the steps and limitations to generating recombinant NDV constructs, review the advances in human and veterinary vaccine candidates in pre-clinical and clinical tests, and elaborate on production in embryonated chicken eggs and cell culture. Mainly, we discuss the existing data on NDV propagation from a process development perspective and provide prospects for the next steps necessary to potentially achieve large-scale NDV-vectored vaccine manufacturing.
Collapse
Affiliation(s)
| | - Amine A. Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
4
|
Alqazlan N, Astill J, Raj S, Sharif S. Strategies for enhancing immunity against avian influenza virus in chickens: A review. Avian Pathol 2022; 51:211-235. [PMID: 35297706 DOI: 10.1080/03079457.2022.2054309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Poultry infection with avian influenza viruses (AIV) is a continuous source of concern for poultry production and human health. Uncontrolled infection and transmission of AIV in poultry increases the potential for viral mutation and reassortment, possibly resulting in the emergence of zoonotic viruses. To this end, implementing strategies to disrupt the transmission of AIVs in poultry, including a wide array of traditional and novel methods, is much needed. Vaccination of poultry is a targeted approach to reduce clinical signs and shedding in infected birds. Strategies aimed at enhancing the effectiveness of AIV vaccines are multi-pronged and include methods directed towards eliciting immune responses in poultry. Strategies include producing vaccines of greater immunogenicity via vaccine type and adjuvant application and increasing bird responsiveness to vaccines by modification of the gastrointestinal tract (GIT) microbiome and dietary interventions. This review provides an in-depth discussion of recent findings surrounding novel AIV vaccines for poultry, including reverse genetics vaccines, vectors, protein vaccines and virus like particles, highlighting their experimental efficacy among other factors such as safety and potential for use in the field. In addition to the type of vaccine employed, vaccine adjuvants also provide an effective way to enhance AIV vaccine efficacy, therefore, research on different types of vaccine adjuvants and vaccine adjuvant delivery strategies is discussed. Finally, the poultry gastrointestinal microbiome is emerging as an important factor in the effectiveness of prophylactic treatments. In this regard, current findings on the effects of the chicken GIT microbiome on AIV vaccine efficacy are summarized here.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jake Astill
- Artemis Technologies Inc., Guelph, ON, N1L 1E3, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
5
|
Vilela J, Rohaim MA, Munir M. Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human. Vaccines (Basel) 2022; 10:259. [PMID: 35214716 PMCID: PMC8876055 DOI: 10.3390/vaccines10020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Avian orthoavulaviruses type-1 (AOaV-1) have recently transitioned from animal vaccine vector to a bona fide vaccine delivery vehicle in human. Owing to induction of robust innate and adaptive immune responses in mucus membranes in both birds and mammals, AOaVs offer an attractive vaccine against respiratory pathogens. The unique features of AOaVs include over 50 years of safety profile, stable expression of foreign genes, high infectivity rates in avian and mammalian hosts, broad host spectrum, limited possibility of recombination and lack of pre-existing immunity in humans. Additionally, AOaVs vectors allow the production of economical and high quantities of vaccine antigen in chicken embryonated eggs and several GMP-grade mammalian cell lines. In this review, we describe the biology of AOaVs and define protocols to manipulate AOaVs genomes in effectively designing vaccine vectors. We highlighted the potential and established portfolio of AOaV-based vaccines for multiple respiratory and non-respiratory viruses of veterinary and medical importance. We comment on the limitations of AOaV-based vaccines and propose mitigations strategies. The exploitation of AOaVs vectors is expanding at an exciting pace; thus, we have limited the scope to their use as vaccines against viral pathogens in both animals and humans.
Collapse
Affiliation(s)
- Julianne Vilela
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK; (J.V.); (M.A.R.)
| |
Collapse
|
6
|
Chen J, Wang J, Zhang J, Ly H. Advances in Development and Application of Influenza Vaccines. Front Immunol 2021; 12:711997. [PMID: 34326849 PMCID: PMC8313855 DOI: 10.3389/fimmu.2021.711997] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus is one of the most important zoonotic pathogens that can cause severe symptoms and has the potential to cause high number of deaths and great economic loss. Vaccination is still the best option to prevent influenza virus infection. Different types of influenza vaccines, including live attenuated virus vaccines, inactivated whole virus vaccines, virosome vaccines, split-virion vaccines and subunit vaccines have been developed. However, they have several limitations, such as the relatively high manufacturing cost and long production time, moderate efficacy of some of the vaccines in certain populations, and lack of cross-reactivity. These are some of the problems that need to be solved. Here, we summarized recent advances in the development and application of different types of influenza vaccines, including the recent development of viral vectored influenza vaccines. We also described the construction of other vaccines that are based on recombinant influenza viruses as viral vectors. Information provided in this review article might lead to the development of safe and highly effective novel influenza vaccines.
Collapse
Affiliation(s)
- Jidang Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiehuang Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jipei Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, MN, United States
| |
Collapse
|
7
|
Tan L, Wen G, Yuan Y, Huang M, Sun Y, Liao Y, Song C, Liu W, Shi Y, Shao H, Qiu X, Ding C. Development of a Recombinant Thermostable Newcastle Disease Virus (NDV) Vaccine Express Infectious Bronchitis Virus (IBV) Multiple Epitopes for Protecting against IBV and NDV Challenges. Vaccines (Basel) 2020; 8:vaccines8040564. [PMID: 33019497 PMCID: PMC7712034 DOI: 10.3390/vaccines8040564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Newcastle disease (ND) and infectious bronchitis (IB) are two highly contagious diseases that severely threaten the poultry industry. The goal of this study is to prevent these two diseases and reduce the vaccine costs during storage and transportation. In this study, we design a thermostable recombinant Newcastle disease virus (NDV) candidate live vaccine strain designated as rLS-T-HN-T/B, which expresses the multiple epitope cassette of the identified infectious bronchitis virus (IBV) (S-T/B). The rLS-T-HN-T/B strain was found to possess similar growth kinetics, passage stability, morphological characteristics, and virulence to the parental LaSota strain. After incubation at 56 °C at the indicated time points, the rLS-T-HN-T/B strain was determined by the hemagglutination (HA), and 50% embryo infectious dose (EID50) assays demonstrated that it accords with the criteria for thermostability. The thermostable rLS-T-HN-T/B and parental LaSota vaccines were stored at 25 °C for 16 days prior to immunizing the one-day-old specific pathogen-free (SPF) chicks. Three weeks postimmunization, the virus challenge results suggested that the chicks vaccinated with the rLS-T-HN-T/B vaccine were protected by 100% and 90% against a lethal dose of NDV and IBV, respectively. Furthermore, the trachea ciliary activity assay indicated that the mean ciliostasis score of the chicks vaccinated with thermostable rLS-T-HN-T/B vaccine was significantly superior to that of the LaSota and PBS groups (p < 0.05). The rLS-T-HN-T/B vaccine stored at 25 °C for 16 days remained capable of eliciting the immune responses and protecting against IBV and NDV challenges. However, the same storage conditions had a great impact on the parental LaSota strain vaccinated chicks, and the NDV challenge protection ratio was only 20%. We conclude that the thermostable rLS-T-HN-T/B strain is a hopeful bivalent candidate vaccine to control both IB and ND and provides an alternative strategy for the development of cost-effective vaccines for village chickens, especially in the rural areas of developing countries.
Collapse
Affiliation(s)
- Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (G.W.); (H.S.)
| | - Yanmei Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Meizhen Huang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Yonghong Shi
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; (G.W.); (H.S.)
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (L.T.); (Y.Y.); (M.H.); (Y.S.); (Y.L.); (C.S.); (W.L.); (Y.S.); (X.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-21-34293508
| |
Collapse
|
8
|
Emerging Role of Mucosal Vaccine in Preventing Infection with Avian Influenza A Viruses. Viruses 2020; 12:v12080862. [PMID: 32784697 PMCID: PMC7472103 DOI: 10.3390/v12080862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Avian influenza A viruses (AIVs), as a zoonotic agent, dramatically impacts public health and the poultry industry. Although low pathogenic avian influenza virus (LPAIV) incidence and mortality are relatively low, the infected hosts can act as a virus carrier and provide a resource pool for reassortant influenza viruses. At present, vaccination is the most effective way to eradicate AIVs from commercial poultry. The inactivated vaccines can only stimulate humoral immunity, rather than cellular and mucosal immune responses, while failing to effectively inhibit the replication and spread of AIVs in the flock. In recent years, significant progresses have been made in the understanding of the mechanisms underlying the vaccine antigen activities at the mucosal surfaces and the development of safe and efficacious mucosal vaccines that mimic the natural infection route and cut off the AIVs infection route. Here, we discussed the current status and advancement on mucosal immunity, the means of establishing mucosal immunity, and finally a perspective for design of AIVs mucosal vaccines. Hopefully, this review will help to not only understand and predict AIVs infection characteristics in birds but also extrapolate them for distinction or applicability in mammals, including humans.
Collapse
|
9
|
Hu Z, Ni J, Cao Y, Liu X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines (Basel) 2020; 8:vaccines8020222. [PMID: 32422944 PMCID: PMC7349365 DOI: 10.3390/vaccines8020222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/08/2023] Open
Abstract
It has been 20 years since Newcastle disease virus (NDV) was first used as a vector. The past two decades have witnessed remarkable progress in vaccine generation based on the NDV vector and optimization of the vector. Protective antigens of a variety of pathogens have been expressed in the NDV vector to generate novel vaccines for animals and humans, highlighting a great potential of NDV as a vaccine vector. More importantly, the research work also unveils a major problem restraining the NDV vector vaccines in poultry, i.e., the interference from maternally derived antibody (MDA). Although many efforts have been taken to overcome MDA interference, a lack of understanding of the mechanism of vaccination inhibition by MDA in poultry still hinders vaccine improvement. In this review, we outline the history of NDV as a vaccine vector by highlighting some milestones. The recent advances in the development of NDV-vectored vaccines or therapeutics for animals and humans are discussed. Particularly, we focus on the mechanisms and hypotheses of vaccination inhibition by MDA and the efforts to circumvent MDA interference with the NDV vector vaccines. Perspectives to fill the gap of understanding concerning the mechanism of MDA interference in poultry and to improve the NDV vector vaccines are also proposed.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jie Ni
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Roy Chowdhury I, Yeddula SGR, Pierce BG, Samal SK, Kim SH. Newcastle disease virus vectors expressing consensus sequence of the H7 HA protein protect broiler chickens and turkeys against highly pathogenic H7N8 virus. Vaccine 2019; 37:4956-4962. [PMID: 31320218 DOI: 10.1016/j.vaccine.2019.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
Abstract
Continuous outbreaks of highly pathogenic avian influenza (HPAI) viruses in commercial poultry have caused devastating losses to domestic poultry with a raising public health concern. The outbreaks of HPAI viruses have increased worldwide, including the North America. Therefore, vaccination has been considered as an alternative strategy for an efficient control of HPAI viruses. In this study, we aimed to generate Newcastle disease virus (NDV) vectored H7 serotype-specific vaccines by expressing the consensus sequence of the HA protein. Conventional NDV strain LaSota vector and a chimeric NDV vector containing the avian paramyxovirus type-2 F and HN protein were able to express the consensus sequence of HA protein. The protective efficacy of vaccines was evaluated in broiler chickens and in turkeys. One-day-old poults were prime immunized with the chimeric vector expressing the HA protein followed by boost immunization with LaSota vector expressing the HA protein or co-expressing the HA and NA proteins. Our vaccine candidates provided complete protection of broiler chickens from mortality and shedding of H7N8 HPAI challenge virus. Turkeys were better protected by boosting with the LaSota vector co-expressing the HA and NA proteins than the LaSota vector expressing only the HA protein. Our study demonstrated a potential use of heterologous prime and boost vaccination strategy to protect poultry against H7 HPAI viruses.
Collapse
Affiliation(s)
- Ishita Roy Chowdhury
- VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Shin-Hee Kim
- VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
11
|
Innovation in Newcastle Disease Virus Vectored Avian Influenza Vaccines. Viruses 2019; 11:v11030300. [PMID: 30917500 PMCID: PMC6466292 DOI: 10.3390/v11030300] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/12/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) and Newcastle disease are economically important avian diseases worldwide. Effective vaccination is critical to control these diseases in poultry. Live attenuated Newcastle disease virus (NDV) vectored vaccines have been developed for bivalent vaccination against HPAI viruses and NDV. These vaccines have been generated by inserting the hemagglutinin (HA) gene of avian influenza virus into NDV genomes. In laboratory settings, several experimental NDV-vectored vaccines have protected specific pathogen-free chickens from mortality, clinical signs, and virus shedding against H5 and H7 HPAI viruses and NDV challenges. NDV-vectored H5 vaccines have been licensed for poultry vaccination in China and Mexico. Recently, an antigenically chimeric NDV vector has been generated to overcome pre-existing immunity to NDV in poultry and to provide early protection of poultry in the field. Prime immunization of one-day-old poults with a chimeric NDV vector followed by boosting with a conventional NDV vector has shown to protect broiler chickens against H5 HPAI viruses and a highly virulent NDV. This novel vaccination approach can provide efficient control of HPAI viruses in the field and facilitate poultry vaccination.
Collapse
|