1
|
Tokumaru K, Imafuku T, Satoh T, Inazumi T, Hirashima S, Nishinoiri A, Nagasaki T, Maeda H, Sugimoto Y, Tanaka M, Matsushita K, Maruyama T, Watanabe H. Omega 3 Fatty Acids Attenuate the Acute Kidney Injury to CKD Transition and Renal Fibrosis: Identification of Antifibrotic Metabolites. KIDNEY360 2024; 5:1422-1434. [PMID: 39259608 PMCID: PMC11556936 DOI: 10.34067/kid.0000000574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Key Points Omega-3 polyunsaturated fatty acids prevent AKI to CKD transition and renal fibrosis. Eicosapentaenoic acid metabolites 18-hydroxyeicosapentaenoic acid, 17,18-epoxyeicosatetraenoic acid, and 17,18-dihydroxyeicosatetraenoic acid have antifibrotic effects. Background AKI is an established risk factor for developing CKD. Recently, the renoprotective effect of omega-3 polyunsaturated fatty acids (ω 3PUFAs) has attracted attention. The aims of this study were to evaluate the effect of ω 3PUFAs on the transition of AKI to CKD and to identify fatty acid active metabolites in renal tissue. Methods Two mice models of the AKI to CKD transition (7-week, male) and unilateral ureteral obstruction–induced renal fibrosis (11-week, male) were fed linseed oil, rich in ω 3PUFAs (Lin group), or with soybean oil, low in ω 3PUFAs (Soy group). Renal fatty acids and metabolites composition in mice were measured by liquid chromatography-mass spectrometry. Rat renal fibroblast cells were used for in vitro study. Results At day 14 after 35 minutes of bilateral renal ischemia reperfusion, significant increase in survival was observed in the Lin group compared with the Soy group. Using the 30-minute bilateral renal ischemia–reperfusion model (AKI to CKD model), the Lin group showed attenuated renal tissue damage and fibrosis. In addition, the antifibrotic effect of the Lin group was also observed in the unilateral ureteral obstruction renal fibrosis model. In the two mice models, levels of eicosapentaenoic acid (EPA) and its metabolites were significantly elevated in renal tissue of mice fed with Lin. Cultured NRK-49F incubated with EPA and its metabolites 18-hydroxyeicosapentaenoic acid, 17,18-epoxyeicosatetraenoic acid, and 17,18-dihydroxyeicosatetraenoic acid displayed suppressed TGF-β 1–stimulated α -smooth muscle actin protein expression. These effects were suppressed in the presence of an inhibitor of a cytochrome P450 involved in EPA metabolism. This observation suggests that the EPA metabolites have antifibrotic effects. Conclusions ω 3PUFAs prevent the AKI to CKD transition and renal fibrosis. Moreover, the EPA metabolites 18-hydroxyeicosapentaenoic acid, 17,18-epoxyeicosatetraenoic acid, and 17,18-dihydroxyeicosatetraenoic acid were found to have antifibrotic effects.
Collapse
Affiliation(s)
- Kai Tokumaru
- Department of Clinical Pharmacy and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takao Satoh
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shu Hirashima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayano Nishinoiri
- Department of Clinical Pharmacy and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto, Japan
| | | | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Clinical Pharmacy and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Charalampous C, Dasari S, McPhail E, Theis JD, Vrana JA, Dispenzieri A, Leung N, Muchtar E, Gertz M, Ramirez-Alvarado M, Kourelis T. A proteomic atlas of kidney amyloidosis provides insights into disease pathogenesis. Kidney Int 2024; 105:484-495. [PMID: 38096952 PMCID: PMC10922603 DOI: 10.1016/j.kint.2023.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/04/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
The mechanisms of tissue damage in kidney amyloidosis are not well described. To investigate this further, we used laser microdissection-mass spectrometry to identify proteins deposited in amyloid plaques (expanded proteome) and proteins overexpressed in plaques compared to controls (plaque-specific proteome). This study encompassed 2650 cases of amyloidosis due to light chain (AL), heavy chain (AH), leukocyte chemotactic factor-2-type (ALECT2), secondary (AA), fibrinogen (AFib), apo AIV (AApoAIV), apo CII (AApoCII) and 14 normal/disease controls. We found that AFib, AA, and AApoCII have the most distinct proteomes predominantly driven by increased complement pathway proteins. Clustering of cases based on the expanded proteome identified two ALECT2 and seven AL subtypes. The main differences within the AL and ALECT2 subtypes were driven by complement proteins and, for AL only, 14-3-3 family proteins (a family of structurally similar phospho-binding proteins that regulate major cellular functions) widely implicated in kidney tissue dysfunction. The kidney AL plaque-specific proteome consisted of 24 proteins, including those implicated in kidney damage (α1 antitrypsin and heat shock protein β1). Hierarchical clustering of AL cases based on their plaque-specific proteome identified four clusters, of which one was associated with improved kidney survival and was characterized by higher overall proteomic content and 14-3-3 proteins but lower levels of light chains and most signature proteins. Thus, our results suggest that there is significant heterogeneity across and within amyloid types, driven predominantly by complement proteins, and that the plaque protein burden does not correlate with amyloid toxicity.
Collapse
Affiliation(s)
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ellen McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason D Theis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julie A Vrana
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Morie Gertz
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
3
|
Yasuda K, Maeda H, Kinoshita R, Minayoshi Y, Mizuta Y, Nakamura Y, Imoto S, Nishi K, Yamasaki K, Sakuragi M, Nakamura T, Ikeda-Imafuku M, Iwao Y, Ishima Y, Ishida T, Iwakiri Y, Otagiri M, Watanabe H, Maruyama T. Encapsulation of an Antioxidant in Redox-Sensitive Self-Assembled Albumin Nanoparticles for the Treatment of Hepatitis. ACS NANO 2023; 17:16668-16681. [PMID: 37579503 DOI: 10.1021/acsnano.3c02877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hepatitis is an inflammation of the liver caused by the inadequate elimination of reactive oxygen species (ROS) derived from Kupffer cells. Edaravone is clinically used as an antioxidant but shows poor liver distribution. Herein, we report on the design of a Kupffer cell-oriented nanoantioxidant based on a disulfide cross-linked albumin nanoparticle containing encapsulated edaravone (EeNA) as a therapeutic for the treatment of hepatitis. Since the edaravone is bound to albumin, this results in a soluble and stable form of edaravone in water. Exchanging the intramolecular disulfide bonds to intermolecular disulfide bridges of albumin molecules allowed the preparation of a redox responsive albumin nanoparticle that is stable in the blood circulation but can release drugs into cells. Consequently, EeNA was fabricated by the nanoscale self-assembly of edaravone and albumin nanoparticles without the additives that are contained in commercially available edaravone preparations. EeNA retained its nanostructure under serum conditions, but the encapsulated edaravone was released efficiently under intracellular reducing conditions in macrophages. The EeNA was largely distributed in the liver and subsequently internalized into Kupffer cells within 60 min after injection in a concanavalin-A-induced hepatitis mouse. The survival rate of the hepatitis mice was significantly improved by EeNA due to the suppression of liver necrosis and oxidative stress by scavenging excessive ROS. Moreover, even through the postadministration, EeNA showed an excellent hepatoprotective action as well. In conclusion, EeNA has the potential for use as a nanotherapeutic against various types of hepatitis because of its Kupffer cell targeting ability and redox characteristics.
Collapse
Affiliation(s)
- Kengo Yasuda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hitoshi Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryo Kinoshita
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Minayoshi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Mizuta
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuka Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mina Sakuragi
- Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Mayumi Ikeda-Imafuku
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yasunori Iwao
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-Cho, Wakayama 640-8156, Japan
| | - Yu Ishima
- Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroshi Watanabe
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Maruyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
4
|
Martinelli RP, Rayego-Mateos S, Alique M, Márquez-Expósito L, Tejedor-Santamaria L, Ortiz A, González-Parra E, Ruiz-Ortega M. Vitamin D, Cellular Senescence and Chronic Kidney Diseases: What Is Missing in the Equation? Nutrients 2023; 15:1349. [PMID: 36986078 PMCID: PMC10056834 DOI: 10.3390/nu15061349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023] Open
Abstract
As life expectancy increases in many countries, the prevalence of age-related diseases also rises. Among these conditions, chronic kidney disease is predicted to become the second cause of death in some countries before the end of the century. An important problem with kidney diseases is the lack of biomarkers to detect early damage or to predict the progression to renal failure. In addition, current treatments only retard kidney disease progression, and better tools are needed. Preclinical research has shown the involvement of the activation of cellular senescence-related mechanisms in natural aging and kidney injury. Intensive research is searching for novel treatments for kidney diseases as well as for anti-aging therapies. In this sense, many experimental shreds of evidence support that treatment with vitamin D or its analogs can exert pleiotropic protective effects in kidney injury. Moreover, vitamin D deficiency has been described in patients with kidney diseases. Here, we review recent evidence about the relationship between vitamin D and kidney diseases, explaining the underlying mechanisms of the effect of vitamin D actions, with particular attention to the modulation of cellular senescence mechanisms.
Collapse
Affiliation(s)
- Romina P. Martinelli
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Matilde Alique
- Ricors2040, 28029 Madrid, Spain
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- Ricors2040, 28029 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Emilio González-Parra
- Ricors2040, 28029 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma, 28040 Madrid, Spain
- Ricors2040, 28029 Madrid, Spain
| |
Collapse
|
5
|
Kraemer AN, Schäfer AL, Sprenger DTL, Sehnert B, Williams JP, Luo A, Riechert L, Al-Kayyal Q, Dumortier H, Fauny JD, Winter Z, Heim K, Hofmann M, Herrmann M, Heine G, Voll RE, Chevalier N. Impact of dietary vitamin D on immunoregulation and disease pathology in lupus-prone NZB/W F1 mice. Front Immunol 2022; 13:933191. [PMID: 36505422 PMCID: PMC9730823 DOI: 10.3389/fimmu.2022.933191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Vitamin D (VD) deficiency is a highly prevalent worldwide phenomenon and is extensively discussed as a risk factor for the development of systemic lupus erythematosus (SLE) and other immune-mediated diseases. In addition, it is now appreciated that VD possesses multiple immunomodulatory effects. This study aims to explore the impact of dietary VD intake on lupus manifestation and pathology in lupus-prone NZB/W F1 mice and identify the underlying immunological mechanisms modulated by VD. Here, we show that low VD intake accelerates lupus progression, reflected in reduced overall survival and an earlier onset of proteinuria, as well higher concentrations of anti-double-stranded DNA autoantibodies. This unfavorable effect gained statistical significance with additional low maternal VD intake during the prenatal period. Among examined immunological effects, we found that low VD intake consistently hampered the adoption of a regulatory phenotype in lymphocytes, significantly reducing both IL-10-expressing and regulatory CD4+ T cells. This goes along with a mildly decreased frequency of IL-10-expressing B cells. We did not observe consistent effects on the phenotype and function of innate immune cells, including cytokine production, costimulatory molecule expression, and phagocytic capacity. Hence, our study reveals that low VD intake promotes lupus pathology, likely via the deviation of adaptive immunity, and suggests that the correction of VD deficiency might not only exert beneficial functions by preventing osteoporosis but also serve as an important module in prophylaxis and as an add-on in the treatment of lupus and possibly other immune-mediated diseases. Further research is required to determine the most appropriate dosage, as too-high VD serum levels may also induce adverse effects, possibly also on lupus pathology.
Collapse
Affiliation(s)
- Antoine N. Kraemer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dalina T. L. Sprenger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johanna P. Williams
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aileen Luo
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Riechert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Qusai Al-Kayyal
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hélène Dumortier
- Centre national de la recherche scientifique (CNRS) UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, France
| | - Jean-Daniel Fauny
- Centre national de la recherche scientifique (CNRS) UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, France
| | - Zoltan Winter
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Heim
- Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, and Deutsches Zentrum Immuntherapie (DZI), University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Guido Heine
- Division of Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
The significance of NAD + metabolites and nicotinamide N-methyltransferase in chronic kidney disease. Sci Rep 2022; 12:6398. [PMID: 35430611 PMCID: PMC9013399 DOI: 10.1038/s41598-022-10476-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulation of nicotinamide adenine dinucleotide (NAD +) metabolism contributes to the initiation and progression of age-associated diseases, including chronic kidney disease (CKD). Nicotinamide N-methyltransferase (NNMT), a nicotinamide (NAM) metabolizing enzyme, regulates both NAD + and methionine metabolism. Although NNMT is expressed abundantly in the kidney, its role in CKD and renal fibrosis remains unclear. We generated NNMT-deficient mice and a unilateral ureter obstruction (UUO) model and conducted two clinical studies on human CKD to investigate the role of NNMT in CKD and fibrosis. In UUO, renal NNMT expression and the degraded metabolites of NAM increased, while NAD + and NAD + precursors decreased. NNMT deficiency ameliorated renal fibrosis; mechanistically, it (1) increased the DNA methylation of connective tissue growth factor (CTGF), and (2) improved renal inflammation by increasing renal NAD + and Sirt1 and decreasing NF-κB acetylation. In humans, along with CKD progression, a trend toward a decrease in serum NAD + precursors was observed, while the final NAD + metabolites were accumulated, and the level of eGFR was an independent variable for serum NAM. In addition, NNMT was highly expressed in fibrotic areas of human kidney tissues. In conclusion, increased renal NNMT expression induces NAD + and methionine metabolism perturbation and contributes to renal fibrosis.
Collapse
|
7
|
Lv Q, Long M, Wang X, Shi J, Wang P, Guo X, Song J, Midgley AC, Fan H, Hou S. The Role of Alpha-1-Acid Glycoprotein in the Diagnosis and Treatment of Crush Syndrome-Induced Acute Kidney Injury. Shock 2021; 56:1028-1039. [PMID: 34313253 DOI: 10.1097/shk.0000000000001839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Crush syndrome (CS) is the most common cause of deaths following earthquakes and other disasters. The pathogenesis of CS has yet to be fully elucidated. Thus, clinical choice of ideal drug treatments for CS remains deficient. METHODS AND RESULTS In this study, we first evaluated the relation between extrusion force and the severities of CS. Rats were exposed to different extrusion forces: 1 kg, 3 kg, 5 kg, and 8 kg, respectively. Survival rates, crushed muscle tissue edema, serum biochemical parameters, and histopathological staining were used to assess severity. Our results showed that there were no statistical differences in survival rate or changes in thigh circumference among the different extrusion forces groups. However, serum levels of potassium, creatine kinase, blood urea nitrogen, creatinine, and myoglobin were elevated at 12- and 24-h post-decompression in 5 kg and 8 kg groups, compared with 1 kg and 3 kg groups. Histopathological staining demonstrated that the degree of organ damage to kidney, muscle, and lung tissues correlated with increasing extrusion force. We next analyzed changes in serum protein profiles in 3 kg or 5 kg extrusion pressure groups. A total of 76 proteins (20 upregulated, 56 downregulated) were found to be altered at all three time points (0, 12, and 72 h) post-decompression, compared with the control group. Three common upregulated proteins alpha-1-acid glycoprotein (α1-AGP), neutrophil gelatinase-associated lipocalin (NGAL), and Haptoglobin were selected for validation of increased expression. α1-AGP was explored as a treatment for CS-induced acute kidney injury (AKI). Intraperitoneal injection of α1-AGP protected kidneys from CS-induced AKI by regulating TNF-α and IL-6 production, attenuating neutrophil recruitment, and reducing renal cell apoptosis. CONCLUSION Our findings demonstrated that the severity of crush injury is causally related to extrusion pressure and increase in blood serum markers. Our identification of the biomarker and treatment candidate, α1-AGP, suggests its implication in predicting the severity of CS and its use as a mediator of CS-induced AKI, respectively.
Collapse
Affiliation(s)
- Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Manman Long
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Department of Intensive Care Medicine, Teda International Cardiovascular Hospital, Tianjin, China
| | - Xin Wang
- Department of Intensive Care Medicine, Shijiazhuang Circular Chemical Industry Park Hospital, Hebei, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Pengtao Wang
- Department of Emergency Medicine, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Jie Song
- Department of Nephrology, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
8
|
Wang F, Hu R, Zhang J, Pei T, He Z, Ju L, Han Z, Wang M, Xiao W. High-dose vitamin D3 supplementation ameliorates renal fibrosis by vitamin D receptor activation and inhibiting TGF-β1/Smad3 signaling pathway in 5/6 nephrectomized rats. Eur J Pharmacol 2021; 907:174271. [PMID: 34147475 DOI: 10.1016/j.ejphar.2021.174271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Renal fibrosis is the pathological consequence of progressive chronic kidney disease. Although it has been reported that vitamin D3 exerts antifibrotic effects, the underlying mechanisms remain unclear. This study is aimed at investigating the effects and molecular mechanisms in high-dose vitamin D3 treatment on renal fibrosis. A model of chronic kidney disease was established by 5/6 nephrectomy in rats characterised by high levels of serum creatine, urea nitrogen, and urinary protein. Serum 25-dihydroxyvitamin D3, calcium and parathormone levels were measured to evaluate vitamin D levels. Hematoxylin and eosin, periodic acid Schiff and Mallory's Trichrome staining were used to evaluate histopathological changes in rats. Moreover, the expression of vimentin, collagen I, α-smooth muscle actin and E-cadherin were analyzed at molecular and histopathological levels. Our results showed that exposure to vitamin D3 decreased the levels of serum creatine, urea nitrogen and urine protein and restored the homeostasis of calcium and parathormone. Vitamin D3 also downregulated the expression of vimentin, collagen I and α-smooth muscle actin and attenuated renal fibrosis and epithelial to mesenchymal transition in the kidney. Importantly, vitamin D3 treatment increased the expression of the vitamin D receptor and inhibited Transforming growth factor-β1 (TGF-β1)/Smad3 signaling pathway in rats kidneys with chronic kidney disease. Mechanistically, the upregulation of TGF-β1 and phosphorylation of Smad3 induced by vitamin D3 was reversed by activation of the vitamin D receptor. Our findings indicated that vitamin D3 is a potential antifibrotic drug in chronic kidney disease via the vitmin D receptor and inhibiting TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Fujing Wang
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong Hu
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxing Zhang
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Pei
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuo'en He
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Liliang Ju
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhongxiao Han
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingqing Wang
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wei Xiao
- Department of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Greenan-Barrett J, Doolan G, Shah D, Virdee S, Robinson GA, Choida V, Gak N, de Gruijter N, Rosser E, Al-Obaidi M, Leandro M, Zandi MS, Pepper RJ, Salama A, Jury EC, Ciurtin C. Biomarkers Associated with Organ-Specific Involvement in Juvenile Systemic Lupus Erythematosus. Int J Mol Sci 2021; 22:7619. [PMID: 34299237 PMCID: PMC8306911 DOI: 10.3390/ijms22147619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/16/2022] Open
Abstract
Juvenile systemic lupus erythematosus (JSLE) is characterised by onset before 18 years of age and more severe disease phenotype, increased morbidity and mortality compared to adult-onset SLE. Management strategies in JSLE rely heavily on evidence derived from adult-onset SLE studies; therefore, identifying biomarkers associated with the disease pathogenesis and reflecting particularities of JSLE clinical phenotype holds promise for better patient management and improved outcomes. This narrative review summarises the evidence related to various traditional and novel biomarkers that have shown a promising role in identifying and predicting specific organ involvement in JSLE and appraises the evidence regarding their clinical utility, focusing in particular on renal biomarkers, while also emphasising the research into cardiovascular, haematological, neurological, skin and joint disease-related JSLE biomarkers, as well as genetic biomarkers with potential clinical applications.
Collapse
Affiliation(s)
- James Greenan-Barrett
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Georgia Doolan
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Devina Shah
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Simrun Virdee
- Department of Ophthalmology, Royal Free Hospital, London NW3 2QG, UK;
| | - George A. Robinson
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Varvara Choida
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Nataliya Gak
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
| | - Nina de Gruijter
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Elizabeth Rosser
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
| | - Muthana Al-Obaidi
- Department of Paediatric Rheumatology, Great Ormond Street Hospital, London WC1N 3JH, UK;
- NIHR Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Maria Leandro
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6DH, UK;
| | - Michael S. Zandi
- Department of Neurology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK;
| | - Ruth J. Pepper
- Department of Renal Medicine, Royal Free Hospital, University College London, London NW3 2QG, UK; (R.J.P.); (A.S.)
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital, University College London, London NW3 2QG, UK; (R.J.P.); (A.S.)
| | - Elizabeth C. Jury
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6DH, UK;
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, London WC1E 6DH, UK; (J.G.-B.); (G.D.); (D.S.); (G.A.R.); (V.C.); (N.d.G.); (E.R.)
- Department of Rheumatology, University College London Hospital NHS Foundation Trust, London NW1 2BU, UK; (N.G.); (M.L.)
| |
Collapse
|
10
|
Matsusaka K, Fujiwara Y, Pan C, Esumi S, Saito Y, Bi J, Nakamura Y, Mukunoki A, Takeo T, Nakagata N, Yoshii D, Fukuda R, Nagasaki T, Tanaka R, Komori H, Maeda H, Watanabe H, Tamada K, Komohara Y, Maruyama T. α 1-Acid Glycoprotein Enhances the Immunosuppressive and Protumor Functions of Tumor-Associated Macrophages. Cancer Res 2021; 81:4545-4559. [PMID: 34210751 DOI: 10.1158/0008-5472.can-20-3471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/04/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Blood levels of acute-phase protein α1-acid glycoprotein (AGP, orosmucoid) increase in patients with cancer. Although AGP is produced from hepatocytes following stimulation by immune cell-derived cytokines under conditions of inflammation and tumorigenesis, the functions of AGP in tumorigenesis and tumor progression remain unknown. In the present study, we revealed that AGP contributes directly to tumor development by induction of programmed death ligand 1 (PD-L1) expression and IL6 production in macrophages. Stimulation of AGP induced PD-L1 expression in both human monocyte-derived macrophages through STAT1 activation, whereas AGP had no direct effect on PD-L1 expression in tumor cells. AGP also induced IL6 production from macrophages, which stimulated proliferation in tumor cells by IL6R-mediated activation of STAT3. Furthermore, administration of AGP to AGP KO mice phenocopied effects of tumor-associated macrophages (TAM) on tumor progression. AGP decreased IFNγ secretion from T cells and enhanced STAT3 activation in subcutaneous tumor tissues. In addition, AGP regulated PD-L1 expression and IL6 production in macrophages by binding with CD14, a coreceptor for Toll-like receptor 4 (TLR4), and inducing TLR4 signaling. These results provide the first evidence that AGP is directly involved in tumorigenesis by interacting with TAMs and that AGP might be a target molecule for anticancer therapy. SIGNIFICANCE: AGP-mediated suppression of antitumor immunity contributes to tumor progression by inducing PD-L1 expression and IL6 production in TAMs.
Collapse
Affiliation(s)
- Kotaro Matsusaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoichi Saito
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jing Bi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Nakamura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayumi Mukunoki
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Daiki Yoshii
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryo Fukuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryusei Tanaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisakazu Komori
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Tamada
- Department of Immunology, Graduate School of Medicine, Faculty of Medicine and Health Sciences, Yamaguchi University, Yamaguchi Prefecture, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan. .,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
11
|
Ruiz M. Into the Labyrinth of the Lipocalin α1-Acid Glycoprotein. Front Physiol 2021; 12:686251. [PMID: 34168570 PMCID: PMC8217824 DOI: 10.3389/fphys.2021.686251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
α1-acid glycoprotein (AGP), also known as Orosomucoid (ORM), belongs to the Lipocalin protein family and it is well-known for being a positive acute-phase protein. AGP is mostly found in plasma, with the liver as main contributor, but it is also expressed in other tissues such as the brain or the adipose tissue. Despite the vast literature on AGP, the physiological functions of the protein remain to be elucidated. A large number of activities mostly related to protection and immune system modulation have been described. Recently created AGP-knockout models have suggested novel physiological roles of AGP, including regulation of metabolism. AGP has an outstanding ability to efficiently bind endogenous and exogenous small molecules that together with the complex and variable glycosylation patterns, determine AGP functions. This review summarizes and discusses the recent findings on AGP structure (including glycans), ligand-binding ability, regulation, and physiological functions of AGP. Moreover, this review explores possible molecular and functional connections between AGP and other members of the Lipocalin protein family.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Alshanwani AR, Mohamed AM, Faddah LM, Shaheen S, Arafah MM, Hagar H, Alhusaini AM, Alharbi FMB, AlHarthii A, Badr AM. Cyanocobalamin and/or calcitriol mitigate renal damage-mediated by tamoxifen in rats: Implication of caspase-3/NF-κB signaling pathways. Life Sci 2021; 277:119512. [PMID: 33862116 DOI: 10.1016/j.lfs.2021.119512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022]
Abstract
AIM Tamoxifen (TAMO) is a chemotherapeutic drug used for the treatment of breast cancer. Nevertheless, there is a lack of information available in regarding its nephrotoxicity. The purpose of this work was to investigate the impact of cyanocobalamin (COB) and/or calcitriol (CAL) injections on TAMO-induced nephrotoxicity. MAIN METHODS Animals were allocated into five groups as follows: normal control group; TAMO (45 mg/kg) administered group; TAMO+COB (6mg/kg, i.p) treated group; TAMO+CAL (0.3 μg/kg, i.p) treated group; TAMO+COB+CAL combination groups. KEY FINDINGS Renal injury induced by TAMO was confirmed by the alteration in renal function parameters in the serum (urea and creatinine), as well as in the urine (creatinine clearance, total protein and albumin). These results were supported by histopathological examination. Upregulation of renal inflammatory parameters; tumor necrosis factor (TNF)-α, interleukin (IL)-6, C-reactive protein (CRP); and transforming growth factor (TGF)-β1 as well as in protein expression of nuclear factor-kappa B (NF-κB) and cleaved caspase-3 were observed to a greater extent in the TAMO-treated rats compared with the control. Renal fibrosis was also evidenced by a elevation in renal L-hydroxyproline level as well as by histomorphological collagen deposition in TAMO-treated groups compared to the control group. Administration of COB and/or CAL concurrently with TAMO significantly ameliorated the deviation in the above-studied parameters and improved the histopathological renal picture. SIGNIFICANCE Inhibition of NF-κβ-mediated inflammation and caspase-3-induced apoptosis are possible renoprotective mechanisms of COB and/or CAL against TAMO nephrotoxicity, which was more noticeable in the TAMO group treated with the combination of the two vitamins in question.
Collapse
Affiliation(s)
- Aliah R Alshanwani
- College of Medicine, Physiology Department, King Saud University, Saudi Arabia.
| | - Azza M Mohamed
- Therapeutic Chemistry Department, National Research Center, Cairo, Egypt; Biochemistry Department, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Laila M Faddah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sameerah Shaheen
- College of Medicine, Anatomy Department, Stem Cell Unit, King Saud University, Riyadh, Saudi Arabia
| | - Maha M Arafah
- Pathology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Hagar
- College of Medicine, Physiology Department, King Saud University, Saudi Arabia; College of Pharmacy, Pharmacology and Toxicology Department, Zagazig University, Zagazig, Egypt
| | - Ahlam M Alhusaini
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fatima M B Alharbi
- College of Science, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Alaa AlHarthii
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amira M Badr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
13
|
Watanabe H, Fujimura R, Hiramoto Y, Murata R, Nishida K, Bi J, Imafuku T, Komori H, Maeda H, Mukunoki A, Takeo T, Nakagata N, Tanaka M, Matsushita K, Fukagawa M, Maruyama T. An acute phase protein α 1-acid glycoprotein mitigates AKI and its progression to CKD through its anti-inflammatory action. Sci Rep 2021; 11:7953. [PMID: 33846468 PMCID: PMC8041882 DOI: 10.1038/s41598-021-87217-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanism for acute kidney injury (AKI) and its progression to chronic kidney disease (CKD) continues to be unclear. In this study, we investigated the pathophysiological role of the acute phase protein α1-acid glycoprotein (AGP) in AKI and its progression to CKD using AGP KO mice. Plasma AGP levels in WT mice were increased by about 3.5-fold on day 1-2 after renal ischemia-reperfusion (IR), and these values then gradually decreased to the level before renal IR on day 7-14. On day 1 after renal IR, the AGP KO showed higher renal dysfunction, tubular injury and renal inflammation as compared with WT. On day 14, renal function, tubular injury and renal inflammation in WT had recovered, but the recovery was delayed, and renal fibrosis continued to progress in AGP KO. These results obtained from AGP KO were rescued by the administration of human-derived AGP (hAGP) simultaneously with renal IR. In vitro experiments using RAW264.7 cells showed hAGP treatment suppressed the LPS-induced macrophage inflammatory response. These data suggest that endogenously induced AGP in early renal IR functions as a renoprotective molecule via its anti-inflammatory action. Thus, AGP represents a potential target molecule for therapeutic development in AKI and its progression CKD.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuto Hiramoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Jing Bi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hisakazu Komori
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Ayumi Mukunoki
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, 1-1 Shirafuji 5 Chome, Minami-ku, Kumamoto, 861-4112, Japan
| | - Kazutaka Matsushita
- Department of Nephrology, Akebono Clinic, 1-1 Shirafuji 5 Chome, Minami-ku, Kumamoto, 861-4112, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, 259-1193, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
14
|
Song J, Gong YH, Yan X, Liu Y, Zhang M, Luo J, Jiang CM, Zhang M, Shi GP, Zhu W. Regulatory T Cells Accelerate the Repair Process of Renal Fibrosis by Regulating Mononuclear Macrophages. Am J Med Sci 2021; 361:776-785. [PMID: 33667434 DOI: 10.1016/j.amjms.2021.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND We aimed to investigate the mechanisms of renal fibrosis and explore the effect of CD4+CD25+Foxp3+ regulatory T cells (Treg) on renal fibrosis after the obstruction was removed. METHODS Fifty-five C57BL/6 mice were randomly divided into three groups: the unilateral ureteral obstruction (UUO) group, the relief for unilateral ureteral obstruction (RUUO) group, and the RUUO+Treg group. Renal fibrosis indexes of RUUO mice were evaluated using hematoxylin and eosin (HE) and, Masson staining and immunohistochemistry after CD4+CD25+Treg cells were injected into the tail vein at the moment of recanalization. We detected the levels of Treg, M1, and M2 markers by flow cytometry, and the levels of transforming growth factor (TGF)-β1, interleukin (IL)-1β, IL-6 and IL-10 using ELISA. RESULTS The tubular necrosis score, AO value of α-SMA (smooth muscle actin), and collagen area on the 3rd and 14th days post RUUO were up-regulated compared with the 7th day post RUUO (P<0.05). After injection of Treg via tail vein, the tubular necrosis score, AO value of α-SMA, TGF-β1 level, and collagen area in the RUUO+Treg group on the 14th day were down-regulated compared with the RUUO group (P<0.05). Moreover, Treg could transform M1 macrophages into M2 macrophages, manifesting as up-regulated expression of CD206 compared with the RUUO group (P<0.05). Treg could also down-regulate the secretion of IL-6 and IL-1β while up-regulating the secretion of IL-10 in vitro compared with the M1 group (P<0.05). CONCLUSIONS The kidney could deteriorate into a state of injury and fibrosis after the obstruction was removed, and Treg could effectively protect the kidney function.
Collapse
Affiliation(s)
- Jie Song
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Hang Gong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiang Yan
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Ying Liu
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Mingzhuo Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jia Luo
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Ming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Miao Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Wei Zhu
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
15
|
Higuchi H, Kamimura D, Jiang JJ, Atsumi T, Iwami D, Hotta K, Harada H, Takada Y, Kanno-Okada H, Hatanaka KC, Tanaka Y, Shinohara N, Murakami M. Orosomucoid 1 is involved in the development of chronic allograft rejection after kidney transplantation. Int Immunol 2020; 32:335-346. [PMID: 31930291 DOI: 10.1093/intimm/dxaa003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic allograft rejection is the most common cause of long-term allograft failure. One reason is that current diagnostics and therapeutics for chronic allograft rejection are very limited. We here show that enhanced NFκB signaling in kidney grafts contributes to chronic active antibody-mediated rejection (CAAMR), which is a major pathology of chronic kidney allograft rejections. Moreover, we found that urinary orosomucoid 1 (ORM1) is a candidate marker molecule and therapeutic target for CAAMR. Indeed, urinary ORM1 concentration was significantly higher in kidney transplant recipients pathologically diagnosed with CAAMR than in kidney transplant recipients with normal histology, calcineurin inhibitor toxicity, or interstitial fibrosis and tubular atrophy. Additionally, we found that kidney biopsy samples with CAAMR expressed more ORM1 and had higher NFκB and STAT3 activation in tubular cells than samples from non-CAAMR samples. Consistently, ORM1 production was induced after cytokine-mediated NFκB and STAT3 activation in primary kidney tubular cells. The loss- and gain-of-function of ORM1 suppressed and promoted NFκB activation, respectively. Finally, ORM1-enhanced NFκB-mediated inflammation development in vivo. These results suggest that an enhanced NFκB-dependent pathway following NFκB and STAT3 activation in the grafts is involved in the development of chronic allograft rejection after kidney transplantation and that ORM1 is a non-invasive candidate biomarker and possible therapeutic target for chronic kidney allograft rejection.
Collapse
Affiliation(s)
- Haruka Higuchi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Toru Atsumi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daiki Iwami
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Harada
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Yusuke Takada
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Kanno-Okada
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Tan L, Deng X, Lai X, Zeng T, Li A, Hu J, Xiong Z. Mesoscale nanoparticles encapsulated with emodin for targeting antifibrosis in animal models. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractThe aim of this study is to explore the kidney-targeting capability of mesoscale nanoparticles (MNPs)-emodin (Em-MNPs) and its potential antifibrosis in the animal model. First, MNPs and Em-MNPs were synthesized via nanoprecipitation method, and their diameters were both ∼400 nm with the uniform size. The entrapment efficiency of MNPs was 45.1% when adding emodin at the concentration of 12 mg/mL. Moreover, cytotoxicity assay showed that Em-MNPs presented excellent biocompatibility in rat proximal tubular cells. Cellular uptake assay demonstrated that Em-MNPs had high-efficiency uptake, especially in the cytoplasm. Ex vivo organ fluorescence imaging revealed that Em-MNPs possessed specific kidney-targeting ability with relative long retention time in the kidney (∼24 h). In the renal unilateral ureteral obstruction model, Em-MNPs treatment could significantly alleviate kidney tubule injury and reduce extracellular matrix deposition compared with free MNPs. Herein, Em-MNPs with specific kidney-targeting and preferable antifibrosis effects in animal model may pave an avenue for treating renal diseases.
Collapse
Affiliation(s)
- Lishan Tan
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| | - Xiulong Deng
- Department of Chemical and Chemical Engineering, Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, Jiangxi Province, 341000, China
| | - Xuandi Lai
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Tao Zeng
- Department of Nephrology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Aiqing Li
- Department of Nephrology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianqiang Hu
- Department of Nephrology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zuying Xiong
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, 518036, China
| |
Collapse
|
17
|
Watanabe H, Bi J, Murata R, Fujimura R, Nishida K, Imafuku T, Nakamura Y, Maeda H, Mukunoki A, Takeo T, Nakagata N, Kurauchi Y, Katsuki H, Tanaka M, Matsushita K, Fukagawa M, Maruyama T. A synthetic retinoic acid receptor agonist Am80 ameliorates renal fibrosis via inducing the production of alpha-1-acid glycoprotein. Sci Rep 2020; 10:11424. [PMID: 32651445 PMCID: PMC7351735 DOI: 10.1038/s41598-020-68337-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/09/2020] [Indexed: 01/30/2023] Open
Abstract
Renal fibrosis is a major factor in the progression of chronic kidney disease and the final common pathway of kidney injury. Therefore, the effective therapies against renal fibrosis are urgently needed. The objective of this study was to investigate the effect of Am80, a synthetic retinoic acid receptor (RAR) agonist, in the treatment of renal interstitial fibrosis using unilateral ureteral obstruction (UUO) mice. The findings indicate that Am80 treatment suppressed renal fibrosis and inflammation to the same degree as the naturally-occuring retinoic acid, all-trans retinoic acid (atRA). But the adverse effect of body weight loss in Am80-treated mice was lower compared to the atRA treatment. The hepatic mRNA levels of alpha-1-acid glycoprotein (AGP), a downstream molecule of RAR agonist, was increased following administration of Am80 to healthy mice. In addition, increased AGP mRNA expression was also observed in HepG2 cells and THP-1-derived macrophages that had been treated with Am80. AGP-knockout mice exacerbated renal fibrosis, inflammation and macrophage infiltration in UUO mice, indicating endogenous AGP played an anti-fibrotic and anti-inflammatory role during the development of renal fibrosis. We also found that no anti-fibrotic effect of Am80 was observed in UUO-treated AGP-knockout mice whereas atRA treatment tended to show a partial anti-fibrotic effect. These collective findings suggest that Am80 protects against renal fibrosis via being involved in AGP function.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| | - Jing Bi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Ryota Murata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Yuka Nakamura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Ayumi Mukunoki
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto, Japan
| | | | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
18
|
Imafuku T, Watanabe H, Satoh T, Matsuzaka T, Inazumi T, Kato H, Tanaka S, Nakamura Y, Nakano T, Tokumaru K, Maeda H, Mukunoki A, Takeo T, Nakagata N, Tanaka M, Matsushita K, Tsuchiya S, Sugimoto Y, Shimano H, Fukagawa M, Maruyama T. Advanced Oxidation Protein Products Contribute to Renal Tubulopathy via Perturbation of Renal Fatty Acids. ACTA ACUST UNITED AC 2020; 1:781-796. [DOI: 10.34067/kid.0000772019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/01/2020] [Indexed: 11/27/2022]
Abstract
BackgroundRenal proximal tubulopathy plays a crucial role in kidney disease, but its molecular mechanism is incompletely understood. Because proximal tubular cells consume a lot of energy during reabsorption, the relationship between fatty acids (FAs) and proximal tubulopathy has been attracting attention. The purpose of this study is to investigate the association between change in renal FA composition and tubulopathy.MethodsMice with cisplatin-induced nephrotoxicity were used as a model of AKI and 5/6-nephrectomized mice were used as a model of CKD. Renal FA composition in mice was measured by GC-MS. Human tubular epithelial cells (HK-2 cells) were used for in vitro studies.ResultsIn kidneys of AKI mice, increased stearic acid (C18:0) and decreased palmitic acid (C16:0) were observed, accompanied by increased expression of the long-chain FA elongase Elovl6. Similar results were also obtained in CKD mice. We show that C18:0 has higher tubular toxicity than C16:0 via induction of ER stress. Using adenovirus-expressing Elovl6 or siRNA for Elovl6 in HK-2 cells, we demonstrated that increased Elovl6 expression contributes to tubulopathy via increasing C18:0. Elovl6 knockout suppressed the increased serum creatinine levels, renal ER stress, and inflammation that would usually result after 5/6 nephrectomy. Advanced oxidation protein products (AOPPs), specifically an oxidized albumin, was found to induce Elovl6 via the mTORC1/SREBP1 pathway.ConclusionsAOPPs may contribute to renal tubulopathy via perturbation of renal FAs through induction of Elovl6. The perturbation of renal FAs induced by the AOPPs-Elovl6 system could be a potential target for the treatment of tubulopathy.
Collapse
|
19
|
Fujimura R, Watanabe H, Nishida K, Fujiwara Y, Koga T, Bi J, Imafuku T, Kobayashi K, Komori H, Miyahisa M, Maeda H, Tanaka M, Matsushita K, Wada T, Fukagawa M, Maruyama T. α 1-Acid Glycoprotein Attenuates Adriamycin-Induced Nephropathy via CD163 Expressing Macrophage Induction. KIDNEY360 2020; 1:343-353. [PMID: 35369369 PMCID: PMC8809281 DOI: 10.34067/kid.0000782019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 06/14/2023]
Abstract
BACKGROUND Recent clinical studies have shown that proteinuria is a critical factor in the progression of CKD and onset of cardiovascular disease. Inflammation and infiltration of macrophages into renal tissue are implicated as causes of proteinuria. α1-Acid glycoprotein (AGP), an acute-phase plasma protein, is leaked into the urine in patients with proteinuria. However, the relationship between urinary leakage of AGP, renal inflammation, and proteinuria remains unclear. METHODS Human AGP (hAGP) was exogenously administrated for 5 consecutive days to adriamycin-induced nephropathy model mice. RESULTS Adriamycin treatment increased urinary AGP, accompanied by decreased plasma AGP in mice. Exogenous hAGP administration to adriamycin-treated mice suppressed proteinuria, renal histologic injury, and inflammation. hAGP administration increased renal CD163 expression, a marker of anti-inflammatory macrophages. Similar changes were observed in PMA-differentiated THP-1 cells treated with hAGP. Even in the presence of LPS, hAGP treatment increased CD163/IL-10 expression in differentiated THP-1 cells. CONCLUSIONS AGP alleviates proteinuria and renal injury in mice with proteinuric kidney disease via induction of CD163-expressing macrophages with anti-inflammatory function. The results demonstrate that endogenous AGP could work to protect against glomerular disease. Thus, AGP supplementation could be a possible new therapeutic intervention for patients with glomerular disease.
Collapse
Affiliation(s)
- Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program,” Kumamoto University, Kumamoto, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Jing Bi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program,” Kumamoto University, Kumamoto, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Global Oriented) Program,” Kumamoto University, Kumamoto, Japan
| | - Kazuki Kobayashi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisakazu Komori
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto, Japan
| | | | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Vitamin D regulates cell viability, migration and proliferation by suppressing galectin-3 (Gal-3) gene in ovarian cancer cells. J Biosci 2020. [DOI: 10.1007/s12038-020-00038-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Alfieri C, Ruzhytska O, Vettoretti S, Caldiroli L, Cozzolino M, Messa P. Native Hypovitaminosis D in CKD Patients: From Experimental Evidence to Clinical Practice. Nutrients 2019; 11:E1918. [PMID: 31443249 PMCID: PMC6723756 DOI: 10.3390/nu11081918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Native hypovitaminosis D (n-hVITD) is frequently found from the early stages of chronic kidney disease (CKD) and its prevalence increases with CKD progression. Even if the implications of n-hVITD in chronic kidney disease-mineral bone disorder (CKD-MBD) have been extensively characterized in the literature, there is a lot of debate nowadays about the so called "unconventional effects" of native vitamin D (25(OH)VitD) supplementation in CKD patients. In this review, highlights of the dimension of the problem of n-hVITD in CKD stages 2-5 ND patients will be presented. In addition, it will focus on the "unconventional effects" of 25(OH)VitD supplementation, the clinical impact of n-hVITD and the most significant interventional studies regarding 25(OH)VitD supplementation in CKD stages 2-5 ND.
Collapse
Affiliation(s)
- Carlo Alfieri
- Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Oksana Ruzhytska
- Department of Internal Medicine n3, Ternopil State Medical University, 46002 Ternopil, Ukraine
| | - Simone Vettoretti
- Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lara Caldiroli
- Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Cozzolino
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Piergiorgio Messa
- Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy.
| |
Collapse
|