1
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Meldrum OW, Yakubov GE. Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. Crit Rev Food Sci Nutr 2024:1-29. [PMID: 39141568 DOI: 10.1080/10408398.2024.2390556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dietary fiber-rich foods have been associated with numerous health benefits, including a reduced risk of cardiovascular and metabolic diseases. Harnessing the potential to deliver positive health outcomes rests on our understanding of the underlying mechanisms that drive these associations. This review addresses data and concepts concerning plant-based food functionality by dissecting the cascade of physical and chemical digestive processes and interactions that underpin these physiological benefits. Functional transformations of dietary fiber along the gastrointestinal tract from the stages of oral processing and gastric emptying to intestinal digestion and colonic fermentation influence its capacity to modulate digestion, transit, and commensal microbiome. This analysis highlights the significance, limitations, and challenges in decoding the complex web of interactions to establish a coherent framework connecting specific fiber components' molecular and macroscale interactions across multiple length scales within the gastrointestinal tract. One critical area that requires closer examination is the interaction between fiber, mucus barrier, and the commensal microbiome when considering food structure design and personalized nutritional strategies for beneficial physiologic effects. Understanding the response of specific fibers, particularly concerning an individual's physiology, will offer the opportunity to exploit these functional characteristics to elicit specific, symptom-targeting effects or use fiber types as adjunctive therapies.
Collapse
Affiliation(s)
- Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
3
|
Stanforth KJ, Zakhour MI, Chater PI, Wilcox MD, Adamson B, Robson NA, Pearson JP. The MUC2 Gene Product: Polymerisation and Post-Secretory Organisation-Current Models. Polymers (Basel) 2024; 16:1663. [PMID: 38932019 PMCID: PMC11207715 DOI: 10.3390/polym16121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
MUC2 mucin, the primary gel-forming component of intestinal mucus, is well researched and a model of polymerisation and post-secretory organisation has been published previously. Recently, several significant developments have been made which either introduce new ideas or challenge previous theories. New ideas include an overhaul of the MUC2 C-terminal globular structure which is proposed to harbour several previously unobserved domains, and include a site for an extra intermolecular disulphide bridge dimer between the cysteine 4379 of adjacent MUC2 C-termini. MUC2 polymers are also now thought to be secreted attached to the epithelial surface of goblet cells in the small intestine and removed following secretion via a metalloprotease meprin β-mediated cleavage of the von Willebrand D2 domain of the N-terminus. It remains unclear whether MUC2 forms intermolecular dimers, trimers, or both, at the N-termini during polymerisation, with several articles supporting either trimer or dimer formation. The presence of a firm inner mucus layer in the small intestine is similarly unclear. Considering this recent research, this review proposes an update to the previous model of MUC2 polymerisation and secretion, considers conflicting theories and data, and highlights the importance of this research to the understanding of MUC2 mucus layers in health and disease.
Collapse
Affiliation(s)
- Kyle J. Stanforth
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Maria I. Zakhour
- Biosciences Institute, Newcastle University Biosciences Institute, Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (M.I.Z.); (J.P.P.)
| | - Peter I. Chater
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Matthew D. Wilcox
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Beth Adamson
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Niamh A. Robson
- Aelius Biotech, The Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (P.I.C.); (M.D.W.); (B.A.); (N.A.R.)
| | - Jeffrey P. Pearson
- Biosciences Institute, Newcastle University Biosciences Institute, Catherine Cookson Building, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK; (M.I.Z.); (J.P.P.)
| |
Collapse
|
4
|
Recktenwald CV, Karlsson G, Garcia-Bonete MJ, Katona G, Jensen M, Lymer R, Bäckström M, Johansson MEV, Hansson GC, Trillo-Muyo S. The structure of the second CysD domain of MUC2 and role in mucin organization by transglutaminase-based cross-linking. Cell Rep 2024; 43:114207. [PMID: 38733585 DOI: 10.1016/j.celrep.2024.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The MUC2 mucin protects the colonic epithelium by a two-layered mucus with an inner attached bacteria-free layer and an outer layer harboring commensal bacteria. CysD domains are 100 amino-acid-long sequences containing 10 cysteines that separate highly O-glycosylated proline, threonine, serine (PTS) regions in mucins. The structure of the second CysD, CysD2, of MUC2 is now solved by nuclear magnetic resonance. CysD2 shows a stable stalk region predicted to be partly covered by adjacent O-glycans attached to neighboring PTS sequences, whereas the CysD2 tip with three flexible loops is suggested to be well exposed. It shows transient dimer interactions at acidic pH, weakened at physiological pH. This transient interaction can be stabilized in vitro and in vivo by transglutaminase 3-catalyzed isopeptide bonds, preferring a specific glutamine residue on one flexible loop. This covalent dimer is modeled suggesting that CysD domains act as connecting hubs for covalent stabilization of mucins to form a protective mucus.
Collapse
Affiliation(s)
- Christian V Recktenwald
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Göran Karlsson
- Swedish NMR Centre, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Maja Jensen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Richard Lymer
- Mammalian Protein Expression core facility, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin Bäckström
- Mammalian Protein Expression core facility, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Sergio Trillo-Muyo
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
5
|
Nguyen TP, Fang M, Kim J, Wang B, Lin E, Khivansara V, Barrows N, Rivera-Cancel G, Goralski M, Cervantes CL, Xie S, Peterson JM, Povedano JM, Antczak MI, Posner BA, Harvey CJB, Naughton BT, McFadden DG, Ready JM, De Brabander JK, Nijhawan D. Inducible mismatch repair streamlines forward genetic approaches to target identification of cytotoxic small molecules. Cell Chem Biol 2023; 30:1453-1467.e8. [PMID: 37607550 PMCID: PMC10841267 DOI: 10.1016/j.chembiol.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
Orphan cytotoxins are small molecules for which the mechanism of action (MoA) is either unknown or ambiguous. Unveiling the mechanism of these compounds may lead to useful tools for biological investigation and new therapeutic leads. In selected cases, the DNA mismatch repair-deficient colorectal cancer cell line, HCT116, has been used as a tool in forward genetic screens to identify compound-resistant mutations, which have ultimately led to target identification. To expand the utility of this approach, we engineered cancer cell lines with inducible mismatch repair deficits, thus providing temporal control over mutagenesis. By screening for compound resistance phenotypes in cells with low or high rates of mutagenesis, we increased both the specificity and sensitivity of identifying resistance mutations. Using this inducible mutagenesis system, we implicate targets for multiple orphan cytotoxins, including a natural product and compounds emerging from a high-throughput screen, thus providing a robust tool for future MoA studies.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Fang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baiyun Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elisa Lin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vishal Khivansara
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Neha Barrows
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Giomar Rivera-Cancel
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria Goralski
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher L Cervantes
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shanhai Xie
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Johann M Peterson
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan Manuel Povedano
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Monika I Antczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | - David G McFadden
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jef K De Brabander
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Deepak Nijhawan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, Program in Molecular Medicine and Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Anzar I, Malone B, Samarakoon P, Vardaxis I, Simovski B, Fontenelle H, Meza-Zepeda LA, Stratford R, Keung EZ, Burgess M, Tawbi HA, Myklebost O, Clancy T. The interplay between neoantigens and immune cells in sarcomas treated with checkpoint inhibition. Front Immunol 2023; 14:1226445. [PMID: 37799721 PMCID: PMC10548483 DOI: 10.3389/fimmu.2023.1226445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Sarcomas are comprised of diverse bone and connective tissue tumors with few effective therapeutic options for locally advanced unresectable and/or metastatic disease. Recent advances in immunotherapy, in particular immune checkpoint inhibition (ICI), have shown promising outcomes in several cancer indications. Unfortunately, ICI therapy has provided only modest clinical responses and seems moderately effective in a subset of the diverse subtypes. Methods To explore the immune parameters governing ICI therapy resistance or immune escape, we performed whole exome sequencing (WES) on tumors and their matched normal blood, in addition to RNA-seq from tumors of 31 sarcoma patients treated with pembrolizumab. We used advanced computational methods to investigate key immune properties, such as neoantigens and immune cell composition in the tumor microenvironment (TME). Results A multifactorial analysis suggested that expression of high quality neoantigens in the context of specific immune cells in the TME are key prognostic markers of progression-free survival (PFS). The presence of several types of immune cells, including T cells, B cells and macrophages, in the TME were associated with improved PFS. Importantly, we also found the presence of both CD8+ T cells and neoantigens together was associated with improved survival compared to the presence of CD8+ T cells or neoantigens alone. Interestingly, this trend was not identified with the combined presence of CD8+ T cells and TMB; suggesting that a combined CD8+ T cell and neoantigen effect on PFS was important. Discussion The outcome of this study may inform future trials that may lead to improved outcomes for sarcoma patients treated with ICI.
Collapse
Affiliation(s)
- Irantzu Anzar
- Oslo Cancer Cluster, NEC OncoImmunity AS, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | - Leonardo A. Meza-Zepeda
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Oslo University Hospital, Oslo, Norway
| | | | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melissa Burgess
- Department of Medical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ola Myklebost
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Trevor Clancy
- Oslo Cancer Cluster, NEC OncoImmunity AS, Oslo, Norway
| |
Collapse
|
7
|
Luis AS, Hansson GC. Intestinal mucus and their glycans: A habitat for thriving microbiota. Cell Host Microbe 2023; 31:1087-1100. [PMID: 37442097 PMCID: PMC10348403 DOI: 10.1016/j.chom.2023.05.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
The colon mucus layer is organized with an inner colon mucus layer that is impenetrable to bacteria and an outer mucus layer that is expanded to allow microbiota colonization. A major component of mucus is MUC2, a glycoprotein that is extensively decorated, especially with O-glycans. In the intestine, goblet cells are specialized in controlling glycosylation and making mucus. Some microbiota members are known to encode multiple proteins that are predicted to bind and/or cleave mucin glycans. The interactions between commensal microbiota and host mucins drive intestinal colonization, while at the same time, the microbiota can utilize the glycans on mucins and affect the colonic mucus properties. This review will examine this interaction between commensal microbes and intestinal mucins and discuss how this interplay affects health and disease.
Collapse
Affiliation(s)
- Ana S Luis
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
8
|
Gallego P, Garcia-Bonete MJ, Trillo-Muyo S, Recktenwald CV, Johansson MEV, Hansson GC. The intestinal MUC2 mucin C-terminus is stabilized by an extra disulfide bond in comparison to von Willebrand factor and other gel-forming mucins. Nat Commun 2023; 14:1969. [PMID: 37031240 PMCID: PMC10082768 DOI: 10.1038/s41467-023-37666-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/20/2023] [Indexed: 04/10/2023] Open
Abstract
The MUC2 mucin polymer is the main building unit of the intestinal mucus layers separating intestinal microbiota from the host epithelium. The MUC2 mucin is a large glycoprotein with a C-terminal domain similar to the MUC5AC and MUC5B mucins and the von Willebrand factor (VWF). A structural model of the C-terminal part of MUC2, MUC2-C, was generated by combining Cryo-electron microscopy, AlphaFold prediction, information of its glycosylation, and small angle X-ray scattering information. The globular VWD4 assembly in the N-terminal of MUC2-C is followed by 3.5 linear VWC domains that form an extended flexible structure before the C-terminal cystine-knot. All gel-forming mucins and VWF form tail-tail disulfide-bonded dimers in their C-terminal cystine-knot domain, but interestingly the MUC2 mucin has an extra stabilizing disulfide bond on the N-terminal side of the VWD4 domain, likely essential for a stable intestinal mucus barrier.
Collapse
Affiliation(s)
- Pablo Gallego
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Maria-Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Sergio Trillo-Muyo
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Christian V Recktenwald
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
9
|
Nguyen TP, Fang M, Kim J, Wang B, Lin E, Khivansara V, Barrows N, Rivera-Cancel G, Goralski M, Cervantes CL, Xie S, Peterson JM, Povedano JM, Antczak MI, Posner BA, McFadden DG, Ready JM, De Brabander JK, Nijhawan D. Inducible mismatch repair streamlines forward genetic approaches to target identification of cytotoxic small molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529401. [PMID: 36865268 PMCID: PMC9980046 DOI: 10.1101/2023.02.21.529401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Orphan cytotoxins are small molecules for which the mechanism of action (MoA) is either unknown or ambiguous. Unveiling the mechanism of these compounds may lead to useful tools for biological investigation and in some cases, new therapeutic leads. In select cases, the DNA mismatch repair-deficient colorectal cancer cell line, HCT116, has been used as a tool in forward genetic screens to identify compound-resistant mutations, which have ultimately led to target identification. To expand the utility of this approach, we engineered cancer cell lines with inducible mismatch repair deficits, thus providing temporal control over mutagenesis. By screening for compound resistance phenotypes in cells with low or high rates of mutagenesis, we increased both the specificity and sensitivity of identifying resistance mutations. Using this inducible mutagenesis system, we implicate targets for multiple orphan cytotoxins, including a natural product and compounds emerging from a high-throughput screen, thus providing a robust tool for future MoA studies.
Collapse
|
10
|
Tandem repeats structure of gel-forming mucin domains could be revealed by SMRT sequencing data. Sci Rep 2022; 12:20652. [PMID: 36450890 PMCID: PMC9712336 DOI: 10.1038/s41598-022-25262-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Mucins are large glycoproteins that cover and protect epithelial surface of the body. Mucin domains of gel-forming mucins are rich in proline, threonine, and serine that are heavily glycosylated. These domains show great complexity with tandem repeats, thus make it difficult to study the sequences. With the coming of single molecule real-time (SMRT) sequencing technologies, we manage to present sequence structure of mucin domains via SMRT long reads for gel-forming mucins MUC2, MUC5AC, MUC5B and MUC6. Our study shows that for different individuals, single nucleotide polymorphisms could be found in mucin domains of MUC2, MUC5AC, MUC5B and MUC6, while different number of tandem repeats could be found in mucin domains of MUC2 and MUC6. Furthermore, we get the sequence of MUC2, MUC5AC, and MUC5B mucin domain in a Chinese individual for each nucleotide at accuracy of possibly 99.98-99.99%, 99.93-99.99%, and 99.76-99.99%, respectively. We report a new method to obtain DNA sequence of gel-forming mucin domains. This method will provided new insights on getting the sequence for Tandem Repeat parts which locate in coding region. With the sequences we obtained through this method, we can give more information for people to study the sequences of gel-forming mucin domains.
Collapse
|
11
|
Lang T, Pelaseyed T. Discovery of a MUC3B gene reconstructs the membrane mucin gene cluster on human chromosome 7. PLoS One 2022; 17:e0275671. [PMID: 36256656 PMCID: PMC9578598 DOI: 10.1371/journal.pone.0275671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022] Open
Abstract
Human tissue surfaces are coated with mucins, a family of macromolecular sugar-laden proteins serving diverse functions from lubrication to the formation of selective biochemical barriers against harmful microorganisms and molecules. Membrane mucins are a distinct group of mucins that are attached to epithelial cell surfaces where they create a dense glycocalyx facing the extracellular environment. All mucin proteins carry long stretches of tandemly repeated sequences that undergo extensive O-linked glycosylation to form linear mucin domains. However, the repetitive nature of mucin domains makes them prone to recombination and renders their genetic sequences particularly difficult to read with standard sequencing technologies. As a result, human mucin genes suffer from significant sequence gaps that have hampered the investigation of gene function in health and disease. Here we leveraged a recent human genome assembly to characterize a previously unmapped MUC3B gene located at the q22 locus on chromosome 7, within a cluster of four structurally related membrane mucin genes that we name the MUC3 cluster. We found that MUC3B shares high sequence identity with the known MUC3A gene and that the two genes are governed by evolutionarily conserved regulatory elements. Furthermore, we show that MUC3A, MUC3B, MUC12, and MUC17 in the human MUC3 cluster are expressed in intestinal epithelial cells (IECs). Our results complete existing genetic gaps in the MUC3 cluster which is a conserved genetic unit in vertebrates. We anticipate our results to be the starting point for the detection of disease-associated polymorphisms in the human MUC3 cluster. Moreover, our study provides the basis for the exploration of intestinal mucin gene function in widely used experimental models such as human intestinal organoids and genetic mouse models.
Collapse
Affiliation(s)
- Tiange Lang
- Big Data Decision Institution, Jinan University, Tianhe, Guangzhou, China
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Sung MT, Wang YH, Li CF. Open the Technical Black Box of Tumor Mutational Burden (TMB): Factors Affecting Harmonization and Standardization of Panel-Based TMB. Int J Mol Sci 2022; 23:ijms23095097. [PMID: 35563486 PMCID: PMC9103036 DOI: 10.3390/ijms23095097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
As tumor mutational burden (TMB) has been approved as a predictive biomarker for immune checkpoint inhibitors (ICIs), next-generation sequencing (NGS) TMB panels are being increasingly used clinically. However, only a few of them have been validated in clinical trials or authorized by administration. The harmonization and standardization of TMB panels are thus essential for clinical implementation. In this review, preanalytic, sequencing, bioinformatics and interpretative factors are summarized to provide a comprehensive picture of how the different factors affect the estimation of panel-based TMB. Among the factors, poor DNA quality, improper formalin fixation and residual germline variants after filtration may overestimate TMB, while low tumor purity may decrease the sensitivity of the TMB panel. In addition, a small panel size leads to more variability when comparing with true TMB values detected by whole-exome sequencing (WES). A panel covering a genomic region of more than 1Mb is more stable for harmonization and standardization. Because the TMB estimate reflects the sum of effects from multiple factors, deliberation based on laboratory and specimen quality, as well as clinical information, is essential for decision making.
Collapse
Affiliation(s)
- Meng-Ta Sung
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan;
- Division of Hematology and Medical Oncology, Mennonite Christian Hospital, Hualien 970472, Taiwan
| | - Yeh-Han Wang
- Division of Pathology and Medical Informatics, ACT Genomics Co., Ltd., Taipei 114065, Taiwan
- ACT Precision Medicine Clinic, Taipei 114063, Taiwan
- College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
- Institute of Public Health, National Yang Ming Chao Tung University, Taipei 112304, Taiwan
- Correspondence:
| | - Chien-Feng Li
- Department of Medical Research, Chi Mei Medical Center, Tainan 710402, Taiwan;
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704016, Taiwan
| |
Collapse
|
13
|
Syed ZA, Zhang L, Ten Hagen KG. In vivo models of mucin biosynthesis and function. Adv Drug Deliv Rev 2022; 184:114182. [PMID: 35278522 PMCID: PMC9068269 DOI: 10.1016/j.addr.2022.114182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
The secreted mucus layer that lines and protects epithelial cells is conserved across diverse species. While the exact composition of this protective layer varies between organisms, certain elements are conserved, including proteins that are heavily decorated with N-acetylgalactosamine-based sugars linked to serines or threonines (O-linked glycosylation). These heavily O-glycosylated proteins, known as mucins, exist in many forms and are able to form hydrated gel-like structures that coat epithelial surfaces. In vivo studies in diverse organisms have highlighted the importance of both the mucin proteins as well as their constituent O-glycans in the protection and health of internal epithelia. Here, we summarize in vivo approaches that have shed light on the synthesis and function of these essential components of mucus.
Collapse
Affiliation(s)
- Zulfeqhar A Syed
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Liping Zhang
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States.
| |
Collapse
|
14
|
Transglutaminase 3 crosslinks the secreted gel-forming mucus component Mucin-2 and stabilizes the colonic mucus layer. Nat Commun 2022; 13:45. [PMID: 35017479 PMCID: PMC8752817 DOI: 10.1038/s41467-021-27743-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activity on this architecture was analyzed. Here, we show that transglutaminase TGM3 is the major transglutaminase-isoform expressed and synthesized in the colon. Furthermore, intrinsic extracellular transglutaminase activity in the secreted mucus was demonstrated in vitro and ex vivo. Absence of this acyl-transferase activity resulted in faster degradation of the major mucus component the MUC2 mucin and changed the biochemical properties of mucus. Finally, TGM3-deficient mice showed an early increased susceptibility to Dextran Sodium Sulfate-induced colitis. Here, we report that natural isopeptide cross-linking by TGM3 is important for mucus homeostasis and protection of the colon from inflammation, reducing the risk of colitis. The colonic mucus layer is an organized system providing a physical barrier against pathogens and simultaneously harbouring the commensal flora. Here the authors report that transglutaminase 3 activity contributes to homeostasis of the colonic mucus layer and the lack of this enzymatic activity leads to increased susceptibility against DSS-induced colitis in mice.
Collapse
|
15
|
Pignochino Y, Crisafulli G, Giordano G, Merlini A, Berrino E, Centomo ML, Chiabotto G, Brusco S, Basiricò M, Maldi E, Pisacane A, Leuci V, Sangiolo D, D’Ambrosio L, Aglietta M, Kasper B, Bardelli A, Grignani G. PARP1 Inhibitor and Trabectedin Combination Does Not Increase Tumor Mutational Burden in Advanced Sarcomas-A Preclinical and Translational Study. Cancers (Basel) 2021; 13:cancers13246295. [PMID: 34944915 PMCID: PMC8699802 DOI: 10.3390/cancers13246295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Immunotherapy has revolutionized cancer treatment, but not for all tumor types. Indeed, sarcomas are considered “immune-cold” tumors, which are relatively unresponsive to immunotherapy. One strategy to potentiate immunotherapy efficacy is to increase tumor immunogenicity, for instance by boosting the number of candidate targets (neoantigens) to be recognized by the immune system. Tumor mutational burden indicates the number of somatic mutations identified in the tumor and normalized per megabase. Tumor mutational burden is considered as an acceptable, measurable surrogate of tumor neoantigens. Here, we explored whether the combination of two DNA-damaging agents, trabectedin and olaparib, could increase tumor mutational burden in sarcomas, to prime subsequent immunotherapy. We found no variation in tumor mutational burden after trabectedin + olaparib in preclinical and clinical samples. Therefore, other aspects should be considered to increase sarcoma immunogenicity, by exploiting different pathways such as the potential modulation of the tumor microenvironment induced by trabectedin + olaparib. Abstract Drug-induced tumor mutational burden (TMB) may contribute to unleashing the immune response in relatively “immune-cold” tumors, such as sarcomas. We previously showed that PARP1 inhibition perpetuates the DNA damage induced by the chemotherapeutic agent trabectedin in both preclinical models and sarcoma patients. In the present work, we explored acquired genetic changes in DNA repair genes, mutational signatures, and TMB in a translational platform composed of cell lines, xenografts, and tumor samples from patients treated with trabectedin and olaparib combination, compared to cells treated with temozolomide, an alkylating agent that induces hypermutation. Whole-exome and targeted panel sequencing data analyses revealed that three cycles of trabectedin and olaparib combination neither affected the mutational profiles, DNA repair gene status, or copy number alterations, nor increased TMB both in homologous recombinant-defective and proficient cells or in xenografts. Moreover, TMB was not increased in tumor specimens derived from trabectedin- and olaparib-treated patients (5–6 cycles) when compared to pre-treatment biopsies. Conversely, repeated treatments with temozolomide induced a massive TMB increase in the SJSA-1 osteosarcoma model. In conclusion, a trabectedin and olaparib combination did not show mutagenic effects and is unlikely to prime subsequent immune-therapeutic interventions based on TMB increase. On the other hand, these findings are reassuring in the increasing warning of treatment-induced hematologic malignancies correlated to PARP1 inhibitor use.
Collapse
Affiliation(s)
- Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10100 Torino, Italy;
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Giorgia Giordano
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
- Correspondence: ; Tel.: +39-0119933623
| | - Enrico Berrino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Medical Sciences, University of Torino, 10100 Torino, Italy;
| | - Maria Laura Centomo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Giulia Chiabotto
- Department of Medical Sciences, University of Torino, 10100 Torino, Italy;
| | - Silvia Brusco
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Marco Basiricò
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Alberto Pisacane
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Lorenzo D’Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Cardinal Massaia Hospital, 14100 Asti, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Bernd Kasper
- Sarcoma Unit, Mannheim University Medical Center, University of Heidelberg, 68167 Mannheim, Germany;
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
- Department of Oncology, University of Torino, 10100 Torino, Italy
| | - Giovanni Grignani
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (G.G.); (E.B.); (M.L.C.); (S.B.); (M.B.); (E.M.); (A.P.); (V.L.); (D.S.); (L.D.); (M.A.); (A.B.); (G.G.)
| |
Collapse
|
16
|
Fortunato A, Mallo D, Rupp SM, King LM, Hardman T, Lo JY, Hall A, Marks JR, Hwang ES, Maley CC. A new method to accurately identify single nucleotide variants using small FFPE breast samples. Brief Bioinform 2021; 22:6296507. [PMID: 34117742 PMCID: PMC8574974 DOI: 10.1093/bib/bbab221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/14/2022] Open
Abstract
Most tissue collections of neoplasms are composed of formalin-fixed and paraffin-embedded (FFPE) excised tumor samples used for routine diagnostics. DNA sequencing is becoming increasingly important in cancer research and clinical management; however it is difficult to accurately sequence DNA from FFPE samples. We developed and validated a new bioinformatic pipeline to use existing variant-calling strategies to robustly identify somatic single nucleotide variants (SNVs) from whole exome sequencing using small amounts of DNA extracted from archival FFPE samples of breast cancers. We optimized this strategy using 28 pairs of technical replicates. After optimization, the mean similarity between replicates increased 5-fold, reaching 88% (range 0-100%), with a mean of 21.4 SNVs (range 1-68) per sample, representing a markedly superior performance to existing tools. We found that the SNV-identification accuracy declined when there was less than 40 ng of DNA available and that insertion-deletion variant calls are less reliable than single base substitutions. As the first application of the new algorithm, we compared samples of ductal carcinoma in situ of the breast to their adjacent invasive ductal carcinoma samples. We observed an increased number of mutations (paired-samples sign test, P < 0.05), and a higher genetic divergence in the invasive samples (paired-samples sign test, P < 0.01). Our method provides a significant improvement in detecting SNVs in FFPE samples over previous approaches.
Collapse
Affiliation(s)
- Angelo Fortunato
- Arizona Cancer Evolution Center, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ, 85287, USA.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, 727 E. Tyler St., Tempe, AZ 85281 USA.,School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Diego Mallo
- Arizona Cancer Evolution Center, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ, 85287, USA.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, 727 E. Tyler St., Tempe, AZ 85281 USA.,School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - Shawn M Rupp
- Arizona Cancer Evolution Center, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ, 85287, USA.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, 727 E. Tyler St., Tempe, AZ 85281 USA
| | | | | | - Joseph Y Lo
- Department of Radiology, Duke University, Durham, NC, USA
| | - Allison Hall
- Department of Pathology, Duke University, Durham, NC, USA
| | | | | | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ, 85287, USA.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, 727 E. Tyler St., Tempe, AZ 85281 USA.,School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA
| |
Collapse
|
17
|
Nyström EEL, Martinez-Abad B, Arike L, Birchenough GMH, Nonnecke EB, Castillo PA, Svensson F, Bevins CL, Hansson GC, Johansson MEV. An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function. Science 2021; 372:372/6539/eabb1590. [PMID: 33859001 DOI: 10.1126/science.abb1590] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
The intestinal mucus layer, an important element of epithelial protection, is produced by goblet cells. Intestinal goblet cells are assumed to be a homogeneous cell type. In this study, however, we delineated their specific gene and protein expression profiles and identified several distinct goblet cell populations that form two differentiation trajectories. One distinct subtype, the intercrypt goblet cells (icGCs), located at the colonic luminal surface, produced mucus with properties that differed from the mucus secreted by crypt-residing goblet cells. Mice with defective icGCs had increased sensitivity to chemically induced colitis and manifested spontaneous colitis with age. Furthermore, alterations in mucus and reduced numbers of icGCs were observed in patients with both active and remissive ulcerative colitis, which highlights the importance of icGCs in maintaining functional protection of the epithelium.
Collapse
Affiliation(s)
- Elisabeth E L Nyström
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Beatriz Martinez-Abad
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Eric B Nonnecke
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Patricia A Castillo
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Frida Svensson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Gunnar C Hansson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
18
|
Javitt G, Khmelnitsky L, Albert L, Bigman LS, Elad N, Morgenstern D, Ilani T, Levy Y, Diskin R, Fass D. Assembly Mechanism of Mucin and von Willebrand Factor Polymers. Cell 2020; 183:717-729.e16. [PMID: 33031746 PMCID: PMC7599080 DOI: 10.1016/j.cell.2020.09.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/25/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.
Collapse
Affiliation(s)
- Gabriel Javitt
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lev Khmelnitsky
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lis Albert
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lavi Shlomo Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Morgenstern
- De Botton Institute for Protein Profiling, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Ilani
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
19
|
Katsumata Y, Fardo DW, Bachstetter AD, Artiushin SC, Wang WX, Wei A, Brzezinski LJ, Nelson BG, Huang Q, Abner EL, Anderson S, Patel I, Shaw BC, Price DA, Niedowicz DM, Wilcock DW, Jicha GA, Neltner JH, Van Eldik LJ, Estus S, Nelson PT. Alzheimer Disease Pathology-Associated Polymorphism in a Complex Variable Number of Tandem Repeat Region Within the MUC6 Gene, Near the AP2A2 Gene. J Neuropathol Exp Neurol 2020; 79:3-21. [PMID: 31748784 PMCID: PMC8204704 DOI: 10.1093/jnen/nlz116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
We found evidence of late-onset Alzheimer disease (LOAD)-associated genetic polymorphism within an exon of Mucin 6 (MUC6) and immediately downstream from another gene: Adaptor Related Protein Complex 2 Subunit Alpha 2 (AP2A2). PCR analyses on genomic DNA samples confirmed that the size of the MUC6 variable number tandem repeat (VNTR) region was highly polymorphic. In a cohort of autopsied subjects with quantitative digital pathology data (n = 119), the size of the polymorphic region was associated with the severity of pTau pathology in neocortex. In a separate replication cohort of autopsied subjects (n = 173), more pTau pathology was again observed in subjects with longer VNTR regions (p = 0.031). Unlike MUC6, AP2A2 is highly expressed in human brain. AP2A2 expression was lower in a subset analysis of brain samples from persons with longer versus shorter VNTR regions (p = 0.014 normalizing with AP2B1 expression). Double-label immunofluorescence studies showed that AP2A2 protein often colocalized with neurofibrillary tangles in LOAD but was not colocalized with pTau proteinopathy in progressive supranuclear palsy, or with TDP-43 proteinopathy. In summary, polymorphism in a repeat-rich region near AP2A2 was associated with neocortical pTau proteinopathy (because of the unique repeats, prior genome-wide association studies were probably unable to detect this association), and AP2A2 was often colocalized with neurofibrillary tangles in LOAD.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - David W Fardo
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Sergey C Artiushin
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Angela Wei
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Lena J Brzezinski
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Bela G Nelson
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Qingwei Huang
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Erin L Abner
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Sonya Anderson
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Indumati Patel
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Benjamin C Shaw
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Douglas A Price
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Dana M Niedowicz
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Donna W Wilcock
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Gregory A Jicha
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Janna H Neltner
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Steven Estus
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| | - Peter T Nelson
- Sanders-Brown Center on Aging (YK, DWF, ADB, SCA, W-XW, AW, LJB, BGN, QH, ELA, SA, IP, DAP, DMN, DWW, GAJ, LJVE, PTN); Department of Biostatistics (YK, DWF); Spinal Cord & Brain Injury Research Center (ADB); Department of Neuroscience (ADB, DWW, LJVE); Department of Epidemiology (ELA); Department of Neurology (DWW, GAJ); Department of Physiology (BCS, SE); and Department of Pathology (W-XW, JHN, PTN), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
20
|
Abstract
Generating the barriers that protect our inner surfaces from bacteria and other challenges requires large glycoproteins called mucins. These come in two types, gel-forming and transmembrane, all characterized by large, highly O-glycosylated mucin domains that are diversely decorated by Golgi glycosyltransferases to become extended rodlike structures. The general functions of mucins on internal epithelial surfaces are to wash away microorganisms and, even more importantly, to build protective barriers. The latter function is most evident in the large intestine, where the inner mucus layer separates the numerous commensal bacteria from the epithelial cells. The host's conversion of MUC2 to the outer mucus layer allows bacteria to degrade the mucin glycans and recover the energy content that is then shared with the host. The molecular nature of the mucins is complex, and how they construct the extracellular complex glycocalyx and mucus is poorly understood and a future biochemical challenge.
Collapse
Affiliation(s)
- Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, SE 405 30 Gothenburg, Sweden;
| |
Collapse
|
21
|
Nelson PT, Fardo DW, Katsumata Y. The MUC6/AP2A2 Locus and Its Relevance to Alzheimer's Disease: A Review. J Neuropathol Exp Neurol 2020; 79:568-584. [PMID: 32357373 PMCID: PMC7241941 DOI: 10.1093/jnen/nlaa024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
We recently reported evidence of Alzheimer's disease (AD)-linked genetic variation within the mucin 6 (MUC6) gene on chromosome 11p, nearby the adaptor-related protein complex 2 subunit alpha 2 (AP2A2) gene. This locus has interesting features related to human genomics and clinical research. MUC6 gene variants have been reported to potentially influence viral-including herpesvirus-immunity and the gut microbiome. Within the MUC6 gene is a unique variable number of tandem repeat (VNTR) region. We discovered an association between MUC6 VNTR repeat expansion and AD pathologic severity, particularly tau proteinopathy. Here, we review the relevant literature. The AD-linked VNTR polymorphism may also influence AP2A2 gene expression. AP2A2 encodes a polypeptide component of the adaptor protein complex, AP-2, which is involved in clathrin-coated vesicle function and was previously implicated in AD pathogenesis. To provide background information, we describe some key knowledge gaps in AD genetics research. The "missing/hidden heritability problem" of AD is highlighted. Extensive portions of the human genome, including the MUC6 VNTR, have not been thoroughly evaluated due to limitations of existing high-throughput sequencing technology. We present and discuss additional data, along with cautionary considerations, relevant to the hypothesis that MUC6 repeat expansion influences AD pathogenesis.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Pathology, University of Kentucky, Lexington, Kentucky
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| |
Collapse
|