1
|
Sepahvand T, Nazari N, Qin T, Rajani V, Yuan Q. Olfactory threat extinction in the piriform cortex: An age-dependent employment of NMDA receptor-dependent long-term depression. Proc Natl Acad Sci U S A 2023; 120:e2309986120. [PMID: 37878718 PMCID: PMC10622944 DOI: 10.1073/pnas.2309986120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
Extinction of threat memory is a measure of behavioral flexibility. In the absence of additional reinforcement, the extinction of learned behaviors allows animals and humans to adapt to their changing environment. Extinction mechanisms and their therapeutic implications for maladaptive learning have been extensively studied. However, how aging affects extinction learning is much less understood. Using a rat model of olfactory threat extinction, we show that the extinction of olfactory threat memory is impaired in aged Sprague-Darley rats. Following extinction training, long-term depression (LTD) in the piriform cortex (PC) was inducible ex vivo in aged rats and was NMDA receptor (NMDAR)-independent. On the other hand, adult rats acquired successful olfactory threat extinction, and LTD was not inducible following extinction training. Neuronal cFos activation in the posterior PC correlated with learning and extinction performance in rats. NMDAR blockade either systemically or locally in the PC during extinction training prevented successful extinction in adult rats, following which NMDAR-dependent LTD became inducible ex vivo. This suggests that extinction learning employs NMDAR-dependent LTD mechanisms in the PC of adult rats, thus occluding further LTD induction ex vivo. The rescue of olfactory threat extinction in aged rats by D-cycloserine, a partial NMDAR agonist, suggests that the impairment in olfactory threat extinction of aged animals may relate to NMDAR hypofunctioning and a lack of NMDAR-dependent LTD. These findings are consistent with an age-related switch from NMDAR-dependent to NMDAR-independent LTD in the PC. Optimizing NMDAR function in sensory cortices may improve learning and flexible behavior in the aged population.
Collapse
Affiliation(s)
- Tayebeh Sepahvand
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Negar Nazari
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Tian Qin
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Vishaal Rajani
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NLA1B 3V6, Canada
| |
Collapse
|
2
|
Olfactory Evaluation in Alzheimer’s Disease Model Mice. Brain Sci 2022; 12:brainsci12050607. [PMID: 35624994 PMCID: PMC9139301 DOI: 10.3390/brainsci12050607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Olfactory dysfunction is considered a pre-cognitive biomarker of Alzheimer’s disease (AD). Because the olfactory system is highly conserved across species, mouse models corresponding to various AD etiologies have been bred and used in numerous studies on olfactory disorders. The olfactory behavior test is a method required for early olfactory dysfunction detection in AD model mice. Here, we review the olfactory evaluation of AD model mice, focusing on traditional olfactory detection methods, olfactory behavior involving the olfactory cortex, and the results of olfactory behavior in AD model mice, aiming to provide some inspiration for further development of olfactory detection methods in AD model mice.
Collapse
|
3
|
Prior NH, Bentz EJ, Ophir AG. Reciprocal processes of sensory perception and social bonding: an integrated social-sensory framework of social behavior. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12781. [PMID: 34905293 PMCID: PMC9744507 DOI: 10.1111/gbb.12781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Organisms filter the complexity of natural stimuli through their individual sensory and perceptual systems. Such perceptual filtering is particularly important for social stimuli. A shared "social umwelt" allows individuals to respond appropriately to the expected diversity of cues and signals during social interactions. In this way, the behavioral and neurobiological mechanisms of sociality and social bonding cannot be disentangled from perceptual mechanisms and sensory processing. While a degree of embeddedness between social and sensory processes is clear, our dominant theoretical frameworks favor treating the social and sensory processes as distinct. An integrated social-sensory framework has the potential to greatly expand our understanding of the mechanisms underlying individual variation in social bonding and sociality more broadly. Here we leverage what is known about sensory processing and pair bonding in two common study systems with significant species differences in their umwelt (rodent chemosensation and avian acoustic communication). We primarily highlight that (1) communication is essential for pair bond formation and maintenance, (2) the neural circuits underlying perception, communication and social bonding are integrated, and (3) candidate neuromodulatory mechanisms that regulate pair bonding also impact communication and perception. Finally, we propose approaches and frameworks that more fully integrate sensory processing, communication, and social bonding across levels of analysis: behavioral, neurobiological, and genomic. This perspective raises two key questions: (1) how is social bonding shaped by differences in sensory processing?, and (2) to what extent is sensory processing and the saliency of signals shaped by social interactions and emerging relationships?
Collapse
Affiliation(s)
- Nora H. Prior
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | - Ehren J. Bentz
- Department of PsychologyCornell UniversityIthacaNew YorkUSA
| | | |
Collapse
|
4
|
Shao YF, Wang C, Rao XP, Wang HD, Ren YL, Li J, Dong CY, Xie JF, Yang XW, Xu FQ, Hou YP. Neuropeptide S Attenuates the Alarm Pheromone-Evoked Defensive and Risk Assessment Behaviors Through Activation of Cognate Receptor-Expressing Neurons in the Posterior Medial Amygdala. Front Mol Neurosci 2022; 14:752516. [PMID: 35002616 PMCID: PMC8739225 DOI: 10.3389/fnmol.2021.752516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
Neuropeptide S (NPS) acts by activating its cognate receptor (NPSR). High level expression of NPSR in the posterior medial amygdala suggests that NPS-NPSR system should be involved in regulation of social behaviors induced by social pheromones. The present study was undertaken to investigate the effects of central administration of NPS or with NPSR antagonist on the alarm pheromone (AP)-evoked defensive and risk assessment behaviors in mice. Furthermore, H129-H8, a novel high-brightness anterograde multiple trans-synaptic virus, c-Fos and NPSR immunostaining were employed to reveal the involved neurocircuits and targets of NPS action. The mice exposed to AP displayed an enhancement in defensive and risk assessment behaviors. NPS (0.1–1 nmol) intracerebroventricular (i.c.v.) injection significantly attenuated the AP-evoked defensive and risk assessment behaviors. NPSR antagonist [D-Val5]NPS at the dose of 40 nmol completely blocked the effect of 0.5 nmol of NPS which showed the best effective among dose range. The H129-H8-labeled neurons were observed in the bilateral posterodorsal medial amygdala (MePD) and posteroventral medial amygdala (MePV) 72 h after the virus injection into the unilateral olfactory bulb (OB), suggesting that the MePD and MePV receive olfactory information inputs from the OB. The percentage of H129-H8-labeled neurons that also express NPSR were 90.27 ± 3.56% and 91.67 ± 2.46% in the MePD and MePV, respectively. NPS (0.5 nmol, i.c.v.) remarkably increased the number of Fos immunoreactive (-ir) neurons in the MePD and MePV, and the majority of NPS-induced Fos-ir neurons also expressed NPSR. The behavior characteristic of NPS or with [D-Val5]NPS can be better replicated in MePD/MePV local injection within lower dose. The present findings demonstrated that NPS, via selective activation of the neurons bearing NPSR in the posterior medial amygdala, attenuates the AP-evoked defensive and risk assessment behaviors in mice.
Collapse
Affiliation(s)
- Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
| | - Can Wang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Ping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Hua-Dong Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Yan-Li Ren
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Li
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chao-Yu Dong
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xing-Wen Yang
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fu-Qiang Xu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Puścian A, Bryksa A, Kondrakiewicz L, Kostecki M, Winiarski M, Knapska E. Ability to share emotions of others as a foundation of social learning. Neurosci Biobehav Rev 2021; 132:23-36. [PMID: 34838526 DOI: 10.1016/j.neubiorev.2021.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/25/2023]
Abstract
The natural habitats of most species are far from static, forcing animals to adapt to continuously changing conditions. Perhaps the most efficient strategy addressing this challenge consists of obtaining and acting upon pertinent information from others through social learning. We discuss how animals transfer information via social channels and what are the benefits of such exchanges, playing out on different levels, from theperception of socially delivered information to emotional sharing, manifesting themselves across different taxa of increasing biological complexity. We also discuss how social learning is influenced by different factors including pertinence of information for survival, the complexity of the environment, sex, genetic relatedness, and most notably, the relationship between interacting partners. The results appear to form a consistent picture once we shift our focus from emotional contagion as a prerequisite for empathy onto the role of shared emotions in providing vital information about the environment. From this point of view, we can propose approaches that are the most promising for further investigation of complex social phenomena, including learning from others.
Collapse
Affiliation(s)
- A Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Bryksa
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - L Kondrakiewicz
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Kostecki
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Winiarski
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - E Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
6
|
Prior stress experience modulates social preference for stressed conspecifics in male rats. Neurosci Lett 2021; 765:136253. [PMID: 34537315 DOI: 10.1016/j.neulet.2021.136253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022]
Abstract
Adult male rats tend to avoid adult conspecifics in distress. In this study, we asked whether prior stress experience would modulate social preference for a stressed conspecific using a social affective preference (SAP) test. Male Long-Evans adult rats were assigned to the shocked and non-shocked groups. In the shocked group, rats were acutely subjected to foot shocks (1.0 mA, 5 s duration × 2) 24 h before the SAP test. During the SAP test, the experimental rats were placed in an arena where two adult conspecific stimuli, one of which received the foot shocks immediately before the SAP test, were presented at both ends and allowed to explore freely for 5 min. We measured sniffing behavior toward each conspecific as an index of social preference. Non-shocked adult rats avoided, while shocked rats approached, the stressed conspecifics more than the non-stressed ones. These results suggest that prior stress promotes social preference for a stressed conspecific in adult male rats.
Collapse
|
7
|
Ghosh A, Massaeli F, Power KD, Omoluabi T, Torraville SE, Pritchett JB, Sepahvand T, Strong VD, Reinhardt C, Chen X, Martin GM, Harley CW, Yuan Q. Locus Coeruleus Activation Patterns Differentially Modulate Odor Discrimination Learning and Odor Valence in Rats. Cereb Cortex Commun 2021; 2:tgab026. [PMID: 34296171 PMCID: PMC8152946 DOI: 10.1093/texcom/tgab026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/04/2022] Open
Abstract
The locus coeruleus (LC) produces phasic and tonic firing patterns that are theorized to have distinct functional consequences. However, how different firing modes affect learning and valence encoding of sensory information are unknown. Here, we show bilateral optogenetic activation of rat LC neurons using 10-Hz phasic trains of either 300 ms or 10 s accelerated acquisition of a similar odor discrimination. Similar odor discrimination learning was impaired by noradrenergic blockade in the piriform cortex (PC). However, 10-Hz phasic light-mediated learning facilitation was prevented by a dopaminergic antagonist in the PC, or by ventral tegmental area (VTA) silencing with lidocaine, suggesting a LC–VTA–PC dopamine circuitry involvement. Ten-hertz tonic stimulation did not alter odor discrimination acquisition, and was ineffective in activating VTA DA neurons. For valence encoding, tonic stimulation at 25 Hz induced conditioned odor aversion, whereas 10-Hz phasic stimulations produced an odor preference. Both conditionings were prevented by noradrenergic blockade in the basolateral amygdala (BLA). Cholera Toxin B retro-labeling showed larger engagement of nucleus accumbens-projecting neurons in the BLA with 10-Hz phasic activation, and larger engagement of central amygdala projecting cells with 25-Hz tonic light. These outcomes argue that the LC activation patterns differentially influence both target networks and behavior.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Faghihe Massaeli
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Kyron D Power
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Julia B Pritchett
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.,Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Tayebeh Sepahvand
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Vanessa D Strong
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Camila Reinhardt
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Xihua Chen
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Gerard M Martin
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Carolyn W Harley
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
8
|
How to Control Behavioral Studies for Rodents-Don't Project Human Thoughts onto Them. eNeuro 2021; 8:ENEURO.0456-20.2021. [PMID: 33468539 PMCID: PMC7877469 DOI: 10.1523/eneuro.0456-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
In neuroscience research, we often use behavior as an easy tool and assume a straightforward relationship between memory and behavior. However, many factors are often not accounted for and need to be considered when interpreting a behavioral outcome. This opinion article will discuss factors in rodent studies such as handling and how the animal views the world, that will affect whether memory leads to a certain behavior.
Collapse
|
9
|
Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. Neuromodulatory pathways in learning and memory: Lessons from invertebrates. J Neuroendocrinol 2021; 33:e12911. [PMID: 33350018 DOI: 10.1111/jne.12911] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
In an ever-changing environment, animals have to continuously adapt their behaviour. The ability to learn from experience is crucial for animals to increase their chances of survival. It is therefore not surprising that learning and memory evolved early in evolution and are mediated by conserved molecular mechanisms. A broad range of neuromodulators, in particular monoamines and neuropeptides, have been found to influence learning and memory, although our knowledge on their modulatory functions in learning circuits remains fragmentary. Many neuromodulatory systems are evolutionarily ancient and well-conserved between vertebrates and invertebrates. Here, we highlight general principles and mechanistic insights concerning the actions of monoamines and neuropeptides in learning circuits that have emerged from invertebrate studies. Diverse neuromodulators have been shown to influence learning and memory in invertebrates, which can have divergent or convergent actions at different spatiotemporal scales. In addition, neuromodulators can regulate learning dependent on internal and external states, such as food and social context. The strong conservation of neuromodulatory systems, the extensive toolkit and the compact learning circuits in invertebrate models make these powerful systems to further deepen our understanding of neuromodulatory pathways involved in learning and memory.
Collapse
Affiliation(s)
- Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Katleen Peymen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Perry RE, Braren SH, Opendak M, Brandes-Aitken A, Chopra D, Woo J, Sullivan R, Blair C. Elevated infant cortisol is necessary but not sufficient for transmission of environmental risk to infant social development: Cross-species evidence of mother-infant physiological social transmission. Dev Psychopathol 2020; 32:1696-1714. [PMID: 33427190 PMCID: PMC8951448 DOI: 10.1017/s0954579420001455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Environmental adversity increases child susceptibility to disrupted developmental outcomes, but the mechanisms by which adversity can shape development remain unclear. A translational cross-species approach was used to examine stress-mediated pathways by which poverty-related adversity can influence infant social development. Findings from a longitudinal sample of low-income mother-infant dyads indicated that infant cortisol (CORT) on its own did not mediate relations between early-life scarcity-adversity exposure and later infant behavior in a mother-child interaction task. However, maternal CORT through infant CORT served as a mediating pathway, even when controlling for parenting behavior. Findings using a rodent "scarcity-adversity" model indicated that pharmacologically blocking pup corticosterone (CORT, rodent equivalent to cortisol) in the presence of a stressed mother causally prevented social transmission of scarcity-adversity effects on pup social behavior. Furthermore, pharmacologically increasing pup CORT without the mother present was not sufficient to disrupt pup social behavior. Integration of our cross-species results suggests that elevated infant CORT may be necessary, but without elevated caregiver CORT, may not be sufficient in mediating the effects of environmental adversity on development. These findings underscore the importance of considering infant stress physiology in relation to the broader social context, including caregiver stress physiology, in research and interventional efforts.
Collapse
Affiliation(s)
- Rosemarie E. Perry
- Department of Applied Psychology, New York University, New York, NY, USA
| | - Stephen H. Braren
- Department of Applied Psychology, New York University, New York, NY, USA
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | - Divija Chopra
- Department of Applied Psychology, New York University, New York, NY, USA
| | - Joyce Woo
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Regina Sullivan
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Clancy Blair
- Department of Applied Psychology, New York University, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
11
|
Murmu MS, Hanoune J, Choi A, Bureau V, Renou M, Dacher M, Deisig N. Modulatory effects of pheromone on olfactory learning and memory in moths. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104159. [PMID: 33127358 DOI: 10.1016/j.jinsphys.2020.104159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/28/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Pheromones are chemical communication signals known to elicit stereotyped behaviours and/or physiological processes in individuals of the same species, generally in relation to a specific function (e.g. mate finding in moths). However, recent research suggests that pheromones can modulate behaviours, which are not directly related to their usual function and thus potentially affect behavioural plasticity. To test this hypothesis, we studied the possible modulatory effects of pheromones on olfactory learning and memory in Agrotis ipsilon moths, which are well-established models to study sex-pheromones. To achieve this, sexually mature male moths were trained to associate an odour with either a reward (appetitive learning) or punishment (aversive learning) and olfactory memory was tested at medium- and long-term (1 h or 1.5 h, and 24 h). Our results show that male moths can learn to associate an odour with a sucrose reward, as well as a mild electric shock, and that olfactory memory persists over medium- and long-term range. Pheromones facilitated both appetitive and aversive olfactory learning: exposure to the conspecific sex-pheromone before conditioning enhanced appetitive but not aversive learning, while exposure to a sex-pheromone component of a heterospecific species (repellent) facilitated aversive but not appetitive learning. However, this effect was short-term, as medium- and long-term memory were not improved. Thus, in moths, pheromones can modulate olfactory learning and memory, indicating that they contribute to behavioural plasticity allowing optimization of the animal's behaviour under natural conditions. This might occur through an alteration of sensitization.
Collapse
Affiliation(s)
- Meena Sriti Murmu
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France; Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
| | - Jeremy Hanoune
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France
| | - Abraham Choi
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France
| | - Valentin Bureau
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France
| | - Michel Renou
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France
| | - Matthieu Dacher
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France.
| | - Nina Deisig
- Sorbonne Université, Université Paris Est Créteil, INRAE, CNRS, IRD - Institute for Ecology and Environmental Sciences of Paris, iEES Paris, 75252 Paris, France; Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Rossi N, Pereyra M, Moauro MA, Giurfa M, d'Ettorre P, Josens R. Trail pheromone modulates subjective reward evaluation in Argentine ants. J Exp Biol 2020; 223:jeb230532. [PMID: 32680904 DOI: 10.1242/jeb.230532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022]
Abstract
The Argentine ant, Linepithema humile, is native to South America but has become one of the most invasive species in the world. These ants heavily rely on trail pheromones for foraging, and previous studies have focused on such signals to develop a strategy for chemical control. Here, we studied the effects of pre-exposure to the trail pheromone on sugar acceptance and olfactory learning in Argentine ants. We used the synthetic trail pheromone component (Z)-9-hexadecenal, which triggers the same attraction and trail-following behavior as the natural trail pheromone. We found that pre-exposure to (Z)-9-hexadecenal increases the acceptance of sucrose solutions of different concentrations, thus changing the ants' subjective evaluation of a food reward. However, although ants learned to associate an odor with a sucrose reward, pheromone pre-exposure affected neither the learning nor the mid-term memory of the odor-reward association. Taking into account the importance of the Argentine ant as a pest and invasive organism, our results highlight the importance of pheromonal cues in resource evaluation, a fact that could be useful in control strategies implemented for this species.
Collapse
Affiliation(s)
- Natacha Rossi
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, F-31062 Toulouse Cedex 09, France
| | - Muriel Pereyra
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
| | - Mariel A Moauro
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, F-31062 Toulouse Cedex 09, France
- Institut Universitaire de France (IUF), Paris, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, UR4443, University Sorbonne Paris Nord, Villetaneuse, France
- Institut Universitaire de France (IUF), Paris, France
| | - Roxana Josens
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE, CONICET, Ciudad Universitaria Pab. II. (C1428 EHA), Buenos Aires, Argentina
| |
Collapse
|
13
|
Baracchi D, Cabirol A, Devaud JM, Haase A, d'Ettorre P, Giurfa M. Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Commun Biol 2020; 3:447. [PMID: 32807870 PMCID: PMC7431541 DOI: 10.1038/s42003-020-01183-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 01/11/2023] Open
Abstract
Since their discovery in insects, pheromones are considered as ubiquitous and stereotyped chemical messengers acting in intraspecific animal communication. Here we studied the effect of pheromones in a different context as we investigated their capacity to induce persistent modulations of associative learning and memory. We used honey bees, Apis mellifera, and combined olfactory conditioning and pheromone preexposure with disruption of neural activity and two-photon imaging of olfactory brain circuits, to characterize the effect of pheromones on olfactory learning and memory. Geraniol, an attractive pheromone component, and 2-heptanone, an aversive pheromone, improved and impaired, respectively, olfactory learning and memory via a durable modulation of appetitive motivation, which left odor processing unaffected. Consistently, interfering with aminergic circuits mediating appetitive motivation rescued or diminished the cognitive effects induced by pheromone components. We thus show that these chemical messengers act as important modulators of motivational processes and influence thereby animal cognition.
Collapse
Affiliation(s)
- David Baracchi
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France.
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019, Sesto Fiorentino, Italy.
| | - Amélie Cabirol
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, Italy
| | - Jean-Marc Devaud
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
| | - Albrecht Haase
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, Italy
- Department of Physics, University of Trento, Via Sommarive 14, I-38123, Povo, Italy
| | - Patrizia d'Ettorre
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, F-93430, Sorbonne Paris Cité, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France.
- Institut Universitaire de France (IUF), Toulouse, France.
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
Kordestani-Moghadam P, Nasehi M, Vaseghi S, Khodagholi F, Zarrindast MR. The role of sleep disturbances in depressive-like behavior with emphasis on α-ketoglutarate dehydrogenase activity in rats. Physiol Behav 2020; 224:113023. [PMID: 32574661 DOI: 10.1016/j.physbeh.2020.113023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Sleep disorders may induce anxiety- and depressive-like behaviors. Furthermore, sleep disorders can alter the function of α-KGDH (α-ketoglutarate dehydrogenase), which is involved in the citric acid cycle. In this study, we evaluated the effect of two models of sleep deprivation (SD) including total SD (TSD) and partial SD (PSD), and two models of napping combined with each models of SD on rats' performance in Forced Swim Test (FST) and α-KGDH activity in both hemispheres of the amygdala. 64 male Wistar rats were used in this study. A modified water box was also used to induce SD. The results showed that, immobility was increased in 48-hour PSD group, indicating a possible depressive-like behavior. Swimming time was also increased following 48-hour TSD. However, climbing time was decreased in 48-hour PSD/TSD groups. Additionally, α-KGDH activity was increased in the left amygdala in 48-hour TSD and PSD groups. In conclusion, PSD may increase depressive-like behavior. TSD and PSD can decrease swimming time but increase climbing time, and these effects may be related to serotonergic and noradrenergic transmissions, respectively. Increase in α-KGDH activity in the left amygdala may be related to the brain's need for more energy during prolonged wakefulness. α-KGDH activity in the right amygdala was unaffected probably due to a decrease in alertness following SD.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Carew SJ, Ghosh A. Shared Pheromonal Communication of Specific Fear Between Adult Sprague Dawley Rats. Bio Protoc 2020; 10:e3564. [PMID: 33659535 DOI: 10.21769/bioprotoc.3564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 11/02/2022] Open
Abstract
Rats are highly social animals, and mainly communicate with one another in two ways: through ultrasonic vocalizations and pheromones. Most research on pheromones has been dedicated those regarding sexual behavior, but more recently pheromones which signal danger to conspecifics have been identified in rodents. In fact, rats are capable of communicating information regarding a specific fear to a companion with which they share a cage. If a rat is trained to associate a previously neutral odor with a foot shock and then pair housed with another rat, the companion will also display a fear response specific to the trained odor, despite never being shocked itself. This communication relies on pheromones; presenting soiled bedding from a shocked rat to an individually housed naïve rat produces the same fear response in the naïve rat. The current protocol describes how to produce this phenomenon in adult Sprague Dawley rats. It is simple and easily reproduced, requires minimal equipment, and may be completed within one week.
Collapse
Affiliation(s)
- Samantha J Carew
- BioMedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| | - Abhinaba Ghosh
- BioMedical Sciences, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
16
|
Quintana P, Nolet K, Baus O, Bouchard S. The Effect of Exposure to Fear-Related Body Odorants on Anxiety and Interpersonal Trust Toward a Virtual Character. Chem Senses 2019; 44:683-692. [DOI: 10.1093/chemse/bjz063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
A growing body of literature documents how exposure to another person's fear-related body odorants can increase one's own anxiety and interfere with processing of social information, such as facial expression and impression formation. Building on these results, we aimed to 1) test the hypothesis that exposure to fear-related odorant would affect impression formation through fear contagion and 2) verify whether these effects can be observed in an ecologically valid (i.e., virtual) environment. We proposed that exposure to fear-related odorant would cause receivers to feel more anxious, which in turn would lead them to report less trust toward an unknown virtual character. This study had 2 distinct phases. First, we collected perspiration odorants from the armpits of 12 male senders (i.e., the source of the odorant) during the viewing of either fear or joy inducing film clips. In the second phase, 53 women receivers were exposed to either a fear, joy, or neutral odorant (i.e., between-subjects design) by breathing through a gauze attached to a disposable respirator mask while immersed in a virtual bar. As expected, receivers exposed to fear odorants felt significantly more stressed. Mediation analysis also revealed an indirect effect of exposure on trust through anxiety. More specifically, the more anxious the receiver felt, the less she trusted the virtual character. Our results show for the first time that the impact of exposure to fear-related body odorants on negative interpersonal impression formation is mediated by the anxiety induced in the receiver.
Collapse
Affiliation(s)
- Pamela Quintana
- Département de psychoéducation et de psychologie, University of Quebec in Outaouais (UQO), Gatineau, Quebec, Canada
| | - Kévin Nolet
- Département de psychoéducation et de psychologie, University of Quebec in Outaouais (UQO), Gatineau, Quebec, Canada
| | - Oliver Baus
- School of psychology, University of Ottawa, Ontario, Canada
| | - Stéphane Bouchard
- Département de psychoéducation et de psychologie, University of Quebec in Outaouais (UQO), Gatineau, Quebec, Canada
| |
Collapse
|
17
|
Chan J, Stout D, Pittenger ST, Picciotto MR, Lewis AS. Induction of reversible bidirectional social approach bias by olfactory conditioning in male mice. Soc Neurosci 2019; 15:25-35. [PMID: 31303111 DOI: 10.1080/17470919.2019.1644370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Social avoidance is a common component of neuropsychiatric disorders that confers substantial functional impairment. An unbiased approach to identify brain regions and neuronal circuits that regulate social avoidance might enable development of novel therapeutics. However, most paradigms that alter social avoidance are irreversible and accompanied by multiple behavioral confounds. Here we report a straightforward behavioral paradigm in male mice enabling the reversible induction of social avoidance or approach with temporal control. C57BL/6J mice repeatedly participated in both negative and positive social experiences. Negative social experience was induced by brief social defeat by an aggressive male CD-1 mouse, while positive social experience was induced by exposure to a female mouse, each conducted daily for five days. Each social experience valence was conducted in a specific odorant context (i.e. negative experience in odorant A, positive experience in odorant B). Odorants were equally preferred pre-conditioning. However, after conditioning, mice sniffed positive experience-paired odorants more than negative experience-paired odorants. Furthermore, positive- or negative-conditioned odorant contexts increased or decreased, respectively, the approach behavior of conditioned mice toward conspecifics. Because individual mice undergo both positive and negative conditioning, this paradigm may be useful to examine neural representations of social approach or avoidance within the same subject.
Collapse
Affiliation(s)
- Justin Chan
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dawson Stout
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,The Avielle Foundation, Newtown, CT, USA
| | | | | | - Alan S Lewis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Departments of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|