1
|
Wang YT, Wang XL, Wang ZZ, Lei L, Hu D, Zhang Y. Antidepressant effects of the traditional Chinese herbal formula Xiao-Yao-San and its bioactive ingredients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154558. [PMID: 36610123 DOI: 10.1016/j.phymed.2022.154558] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Depression is one of the most debilitating and severe psychiatric disorders and a serious public health concern. Currently, many treatments are indicated for depression, including traditional Chinese medicinal formulae such as Xiao-Yao-San (XYS), which has effective antidepressant effects in clinical and animal studies. PURPOSE To summarize current evidence of XYS in terms of the preclinical and clinical studies and to identify the multi-level, multi-approach, and multi-target potential antidepressant mechanisms of XYS and active components of XYS by a comprehensive search of the related electronic databases. METHODS The following electronic databases were searched from the beginning to April 2022: PubMed, MEDLINE, Web of Science, Google Scholar, and China National Knowledge Infrastructure. RESULTS This review summarizes the antidepressant mechanisms of XYS and its active ingredients, which are reportedly correlated with monoamine neurotransmitter regulation, synaptic plasticity, and hypothalamic-pituitary-adrenal axis, etc. CONCLUSION: XYS plays a critical role in the treatment of depression by the regulation of several factors, including the monoaminergic systems, hypothalamic-pituitary-adrenal axis, synaptic plasticity, inflammation, brain-derived neurotrophic factor levels, brain-gut axis, and other pathways. However, more clinical and animal studies should be conducted to further investigate the antidepressant function of XYS and provide more evidence and recommendations for its clinical application. Our review provides an overview of XYS and guidance for future research direction.
Collapse
Affiliation(s)
- Ya-Ting Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiao-Le Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lan Lei
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Die Hu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
From spreading depolarization to epilepsy with neuroinflammation: The role of CGRP in cortex. Exp Neurol 2022; 356:114152. [PMID: 35760098 DOI: 10.1016/j.expneurol.2022.114152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
CGRP release plays a major role in migraine pain by activating the trigeminal pain pathways. Here we explored putative additional effects of CGRP on cortical circuits and investigated whether CGRP affects cortical excitability, cortical spreading depolarization (CSD), a phenomenon associated with migraine aura, blood-brain-barrier (BBB) and microglial morphology. We used immunohistochemistry to localize CGRP and the CGRP receptor (CGRP-R) in native cortex and evaluated morphology of microglia and integrity of the BBB after exposure to CGRP. In anesthetized rats we applied CGRP and the CGRP-R antagonist BIBN4096BS locally to the exposed cortex and monitored the spontaneous electrocorticogram and CSDs evoked by remote KCl pressure microinjection. In mouse brain slices CGRP effects on neuronal activity were explored by multielectrode array. CGRP immunoreactivity was detectable in intracortical vessels, and all cortical neurons showed CGRP-R immunoreactivity. In rat cortex in vivo, topical CGRP induced periods of epileptiform discharges, however, also dose-dependently reduced CSD amplitudes and propagation velocity. BIBN4096BS prevented these effects. CGRP evoked synchronized bursting activity in mouse cortical but not in cerebellar slices. Topical application of CGRP to rat cortex induced plasma extravasation and this was associated with reduced ramification of microglial cells. From these findings we conclude that CGRP induces a pathophysiological state in the cortex, consisting in neuronal hyperexcitability and neuroinflammation Thus, CGRP may have a pronounced impact on brain functions during migraine episodes supporting the benefit of CGRP antagonists for clinical use. However, increased cortical CGRP may end the CSD-induced aura phase of migraine.
Collapse
|
3
|
An YC, Tsai CL, Liang CS, Lin YK, Lin GY, Tsai CK, Liu Y, Chen SJ, Tsai SH, Hung KS, Yang FC. Identification of Novel Genetic Variants Associated with Insomnia and Migraine Comorbidity. Nat Sci Sleep 2022; 14:1075-1087. [PMID: 35698589 PMCID: PMC9188338 DOI: 10.2147/nss.s365988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Although insomnia and migraine are often comorbid, the genetic association between insomnia and migraine remains unclear. This study aimed to identify susceptibility loci associated with insomnia and migraine comorbidity. Patients and Methods We performed a genome-wide association study (GWAS) involving 1063 clinical outpatients at a tertiary hospital in Taiwan. Migraineurs with and without insomnia were genotyped using the Affymetrix Axiom Genome-Wide TWB 2.0. We performed association analyses for the entire cohort and stratified patients into the following subgroups: episodic migraine (EM), chronic migraine (CM), migraine with aura (MA), and migraine without aura (MoA). Potential correlations between SNPs and clinical indices in migraine patients with insomnia were examined using multivariate regression analysis. Results The SNP rs1178326 in the gene HDAC9 was significantly associated with insomnia. In the EM, CM, MA, and MoA subgroups, we identified 30 additional susceptibility loci. Multivariate regression analysis showed that SNP rs1178326 also correlated with higher migraine frequency and the Migraine Disability Assessment (MIDAS) questionnaire score. Finally, two SNPs that had been previously reported in a major insomnia GWAS were also significant in our migraineurs, showing a concordant effect. Conclusion In this GWAS, we identified several novel loci associated with insomnia in migraineurs in a Han Chinese population in Taiwan. These results provide insights into the possible genetic basis of insomnia and migraine comorbidity.
Collapse
Affiliation(s)
- Yu-Chin An
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Lin Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yu-Kai Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Guan-Yu Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yi Liu
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
4
|
Abstract
Current experimental stroke research has evolved to focus on detailed understanding of the brain’s self-protective and restorative mechanisms, and harness this knowledge for development of new therapies. In this context, the role of peptidases and neuropeptides is of growing interest. In this focused review, peptidase neurolysin (Nln) and its extracellular peptide substrates are briefly discussed in relation to pathophysiology of ischemic stroke. Upregulation of Nln following stroke is viewed as a compensatory cerebroprotective mechanism in the acute phase of stroke, because the main neuropeptides inactivated by Nln are neuro/cerebrotoxic (bradykinin, substance P, neurotensin, angiotensin II, hemopressin), whereas the peptides generated by Nln are neuro/cerebroprotective (angiotensin-(1–7), Leu-/Met-enkephalins). This notion is confirmed by experimental studies documenting aggravation of stroke outcomes in mice after inhibition of Nln following stroke, and dramatic improvement of stroke outcomes in mice overexpressing Nln in the brain. The role of Nln in the (sub)chronic phase of stroke is less clear and it is likely, that this peptidase does not have a major role in neural repair mechanisms. This is because, the substrates of Nln are less uniform in modulating neurorestorative mechanisms in one direction, some appearing to have neural repair enhancing/stimulating potential, whereas others doing the opposite. Future studies focusing on the role of Nln in pathophysiology of stroke should determine its potential as a cerebroprotective target for stroke therapy, because its unique ability to modulate multiple neuropeptide systems critically involved in brain injury mechanisms is likely advantageous over modulation of one pathogenic pathway for stroke pharmacotherapy.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
5
|
Raut S, Singh U, Sarmah D, Datta A, Baidya F, Shah B, Bohra M, Jagtap P, Sarkar A, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Migraine and Ischemic Stroke: Deciphering the Bidirectional Pathway. ACS Chem Neurosci 2020; 11:1525-1538. [PMID: 32348103 DOI: 10.1021/acschemneuro.0c00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Migraine and stroke are common, disabling neurological conditions with several theories being proposed to explain this bidirectional relationship. Migraine is considered as a benign neurological disorder, but research has revealed a connection between migraine and stroke, predominantly those having migraine with aura (MA). Among migraineurs, females with MA are more susceptible to ischemic stroke and may have a migrainous infarction. Migrainous infarction mostly occurs in the posterior circulation of young women. Although there are several theories about the potential relationship between MA and stroke, the precise pathological process of migrainous infarction is not clear. It is assumed that cortical spreading depression (CSD) might be one of the essential factors for migrainous infarction. Other factors that may contribute to migrainous infarction may be genetic, hormonal fluctuation, hypercoagulation, and right to left cardiac shunts. Antimigraine drugs, such as ergot alkaloids and triptans, are widely used in migraine care. Still, they have been found to cause severe vasoconstriction, which may result in the development of ischemia. It is reported that patients with stroke develop migraines during the recovery phase. Both experimental and clinical data suggest that cerebral microembolism can act as a potential trigger for MA. Further studies are warranted for the treatment of migraine, which may lead to a decline in migraine-related stroke. In this present article, we have outlined various potential pathways that link migraine and stroke.
Collapse
Affiliation(s)
- Swapnil Raut
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Upasna Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Falguni Baidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Birva Shah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Mariya Bohra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Priya Jagtap
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Ankan Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
6
|
Multiple pharmacological and toxicological investigations on Tanacetum parthenium and Salix alba extracts: Focus on potential application as anti-migraine agents. Food Chem Toxicol 2019; 133:110783. [PMID: 31491430 DOI: 10.1016/j.fct.2019.110783] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/11/2019] [Accepted: 08/21/2019] [Indexed: 01/06/2023]
Abstract
Migraine is one of the most common neurological disorder, which has long been related to brain serotonin (5-HT) depletion and neuro-inflammation. Despite many treatment options are available, the frequent occurrence of unacceptable adverse effects further supports the research toward nutraceuticals and herbal preparations, among which Tanacetum parthenium and Salix alba showed promising anti-inflammatory and neuro-modulatory activities. The impact of extract treatment on astrocyte viability, spontaneous migration and apoptosis was evaluated. Anti-inflammatory/anti-oxidant effects were investigated on isolated rat cortexes exposed to a neurotoxic stimulus. The lactate dehydrogenase (LDH) release, nitrite levels and 5-HT turnover were evaluated, as well. A proteomic analysis was focused on specific neuronal proteins and a fingerprint analysis was carried out on selected phenolic compounds. Both extracts appeared able to exert in vitro anti-oxidant and anti-apoptotic effects. S. alba and T. parthenium extracts reduced LDH release, nitrite levels and 5-HT turnover induced by neurotoxic stimulus. The downregulation of selected proteins suggest a neurotoxicity, which could be ascribed to an elevated content of gallic acid in both S. alba and T. parthenium extracts. Concluding, both extracts exert neuroprotective effects, although the downregulation of key proteins involved in neuron physiology suggest caution in their use as food supplements.
Collapse
|
7
|
Comprehensive Chemical Profiling and Multidirectional Biological Investigation of Two Wild Anthemis Species ( Anthemis tinctoria var. Pallida and A. cretica subsp. tenuiloba): Focus on Neuroprotective Effects. Molecules 2019; 24:molecules24142582. [PMID: 31315236 PMCID: PMC6680454 DOI: 10.3390/molecules24142582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
Ethyl acetate (EA), methanol (MeOH), and aqueous extracts of aerial parts of Anthemis tinctoria var. pallida (ATP) and A. cretica subsp. tenuiloba (ACT) were investigated for their phenol and flavonoid content, antioxidant, and key enzyme inhibitory potentials. All extracts displayed antiradical effects, with MeOH and aqueous extracts being a superior source of antioxidants. On the other hand, EA and MeOH extracts were potent against AChE and BChE. Enzyme inhibitory effects against tyrosinase and α-glucosidase were observed, as well. We also studied Anthemis extracts in an ex vivo experimental neurotoxicity paradigm. We assayed extract influence on oxidative stress and neurotransmission biomarkers, including lactate dehydrogenase (LDH) and serotonin (5-HT), in isolated rat cortex challenged with K+ 60 mM Krebs-Ringer buffer (excitotoxicity stimulus). An untargeted proteomic analysis was finally performed in order to explore the putative mechanism in the brain. The pharmacological study highlighted the capability of ACT water extract to blunt K+ 60 mM increase in LDH level and 5-HT turnover, and restore physiological activity of specific proteins involved in neuron morphology and neurotransmission, including NEFMs, VAMP-2, and PKCγ, thus further supporting the neuroprotective role of ACT water extract.
Collapse
|
8
|
Karamyan VT. Peptidase neurolysin is an endogenous cerebroprotective mechanism in acute neurodegenerative disorders. Med Hypotheses 2019; 131:109309. [PMID: 31443781 DOI: 10.1016/j.mehy.2019.109309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/06/2019] [Accepted: 07/12/2019] [Indexed: 12/28/2022]
Abstract
Stroke and traumatic brain injury (TBI) are significant clinical problems characterized by high rate of mortality and long-lasting disabilities, and an unmet need for new treatments. Current experimental stroke and TBI research are evolving to focus more on understanding the brain's self-protective mechanisms to meet the critical need of developing new therapies for these disorders. In this hypothesis-based manuscript, I provide several lines of evidence that peptidase neurolysin (Nln) is one of the brain's potent, self-protective mechanisms promoting preservation and recovery of the brain after acute injury. Based on published experimental observations and ongoing studies in our laboratory, I posit that Nln is a compensatory and cerebroprotective mechanism in the post-stroke/TBI brain that functions to process a diverse group of extracellular neuropeptides and by that to reduce excitotoxicity, oxidative stress, edema formation, blood brain barrier hyper-permeability, and neuroinflammation. If this hypothesis is correct, Nln could potentially serve as a single therapeutic target to modulate the function of multiple targets, the involved neuropeptide systems, critically involved in various mechanisms of brain injury and cerebroprotection/restoration. Such multi-pathway target would be highly desired for pharmacotherapy of stroke and TBI, because targeting one pathophysiological pathway has proven to be ineffective for such complex disorders.
Collapse
Affiliation(s)
- Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, United States.
| |
Collapse
|