1
|
Simon LR, Scott AJ, Figueroa Rios L, Zembles J, Masters KS. Cellular-scale sex differences in extracellular matrix remodeling by valvular interstitial cells. Heart Vessels 2023; 38:122-130. [PMID: 36070095 PMCID: PMC10120251 DOI: 10.1007/s00380-022-02164-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 08/24/2022] [Indexed: 01/06/2023]
Abstract
Males acquire calcific aortic valve disease (CAVD) twice as often as females, yet stenotic valves from females display significantly higher levels of fibrosis compared to males with similar extent of disease. Fibrosis occurs as an imbalance between the production and degradation of the extracellular matrix (ECM), specifically type I collagen. This work characterizes ECM production and remodeling by male and female valvular interstitial cells (VICs) to better understand the fibrocalcific divergence between sexes evident in CAVD. Male and female VICs were assessed for gene and protein expression of myofibroblastic markers, ECM components, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) via qRT-PCR and western blot. Overall metabolic activity was also measured. Activity assays for collagenase and gelatinase were performed to examine degradation behavior. Male VICs produced greater levels of myofibroblastic markers while female VICs showed greater metabolic activity and collagen production. In general, females displayed a greater level of MMP expression and production than males, but no sex differences were observed in TIMP production. Male VICs also displayed a greater level of collagenase and gelatinase activity than female VICs. This work displays sex differences in ECM remodeling by VICs that could be related to the sexual dimorphism in ECM structure seen in clinical CAVD.
Collapse
Affiliation(s)
- LaTonya R Simon
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 8531, Madison, WI, 53705, USA
| | - Ashley J Scott
- Cellular and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lysmarie Figueroa Rios
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 8531, Madison, WI, 53705, USA
| | - Joshua Zembles
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 8531, Madison, WI, 53705, USA
| | - Kristyn S Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 8531, Madison, WI, 53705, USA.
- Cellular and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA.
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Cluzel GL, Ryan PM, Herisson FM, Caplice NM. High-fidelity porcine models of metabolic syndrome: a contemporary synthesis. Am J Physiol Endocrinol Metab 2022; 322:E366-E381. [PMID: 35224983 DOI: 10.1152/ajpendo.00413.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review aims to describe and compare porcine models of metabolic syndrome. This syndrome and its associated secondary comorbidities are set to become the greatest challenge to healthcare providers and policy makers in the coming century. However, an incomplete understanding of the pathogenesis has left significant knowledge gaps in terms of efficacious therapeutics. To further our comprehension and, in turn, management of metabolic syndrome, appropriate high-fidelity models of the disease complex are of great importance. In this context, our review aims to assess the most promising porcine models of metabolic syndrome currently available for their similarity to the human phenotype. In addition, we aim to highlight the strengths and shortcomings of each model in an attempt to identify the most appropriate application of each. Although no porcine model perfectly recapitulates the human metabolic syndrome, several pose satisfactory approximations. The Ossabaw miniature swine in particular represents a highly translatable model that develops each of the core parameters of the syndrome with many of the associated secondary comorbidities. Future high-fidelity porcine models of metabolic syndrome need to focus on secondary sequelae replication, which may require extended induction period to reveal.
Collapse
Affiliation(s)
- Gaston L Cluzel
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paul M Ryan
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Florence M Herisson
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Noel M Caplice
- Centre for Research in Vascular Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Karnibad M, Sharabi M, Lavon K, Morany A, Hamdan A, Haj-Ali R. The effect of the fibrocalcific pathological process on aortic valve stenosis in female patients: a finite element study. Biomed Phys Eng Express 2022; 8. [PMID: 35120335 DOI: 10.1088/2057-1976/ac5223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 11/11/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valvular disease in the developed world. Most of the relevant research has been sex-blind, ignoring sex-related biological variables and thus under-appreciate sex differences. However, females present pronounced fibrosis for the same aortic stenosis (AS) severity compared with males, who exhibit more calcification. Herein, we present a computational model of fibrocalcific AV, aiming to investigate its effect on AS development. A parametric study was conducted to explore the influence of the total collagen fiber volume and its architecture on the aortic valve area (AVA). Towards that goal, computational models were generated for three females with stenotic AVs and different volumes of calcium. We have tested the influence of fibrosis on various parameters as fiber architecture, fibrosis location, and transvalvular pressure. We found that increased fiber volume with a low calcium volume could actively contribute to AS and reduce the AVA similarly to high calcium volume. Thus, the computed AVAs for our fibrocalcific models were 0.94 and 0.84 cm2and the clinical (Echo) AVAs were 0.82 and 0.8 cm2. For the heavily calcified model, the computed AVA was 0.8 cm2and the clinical AVA was 0.73 cm2. The proposed models demonstrated how collagen thickening influence the fibrocalcific-AS process in female patients. These models can assist in the clinical decision-making process and treatment development in valve therapy for female patients.
Collapse
Affiliation(s)
- Maya Karnibad
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Mirit Sharabi
- Ariel University, Department of Mechanical engineering and Mechatronics, Ariel, 407000, ISRAEL
| | - Karin Lavon
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Adi Morany
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Ashraf Hamdan
- Tel Aviv University, Department of Cardiology, Rabin Medical Center, Tel Aviv, 69978, ISRAEL
| | - Rami Haj-Ali
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| |
Collapse
|
4
|
Chang HH, Lin IC, Wu CW, Hung CY, Liu WC, Wu CY, Cheng CL, Wu KLH. High fructose induced osteogenic differentiation of human valve interstitial cells via activating PI3K/AKT/mitochondria signaling. Biomed J 2021; 45:491-503. [PMID: 34229104 PMCID: PMC9421924 DOI: 10.1016/j.bj.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Background Aortic valve stenosis (AS) is a common, lethal cardiovascular disease. There is no cure except the valve replacement at last stage. Therefore, an understanding of the detail mechanism is imperative to prevent and intervene AS. Metabolic syndrome (MetS) is one of the major risk factors of AS whereas fructose overconsuming tops the list of MetS risk factors. However, whether the fructose under physiological level induces AS is currently unknown. Methods The human valve interstitial cells (hVICs), a crucial source to develop calcification, were co-incubated with fructose at 2 or 20 mM to mimic the serum fructose at fasting or post-fructose consumption, respectively, for 24 h. The cell proliferation was evaluated by WST-1 assays. The expressions of osteogenic and fibrotic proteins, PI3K/AKT signaling, insulin receptor substrate 1 and mitochondrial dynamic proteins were detected by Western blot analyses. The mitochondrial oxidative phosphorylation (OXPHOS) was examined by Seahorse analyzer. Results hVICs proliferation was significantly suppressed by 20 mM fructose. The expressions of alkaline phosphatase (ALP) and osteocalcin were enhanced concurrent with the upregulated PI3K p85, AKT, phospho(p)S473-AKT, and pS636-insulin receptor substrate 1 (p-IRS-1) by high fructose. Moreover, ATP production capacity and maximal respiratory capacity were enhanced in the high fructose groups. Synchronically, the expressions of mitochondrial fission 1 and optic atrophy type 1 were increased. Conclusions These results suggested that high fructose stimulated the osteogenic differentiation of hVICs via the activation of PI3K/AKT/mitochondria signaling at the early stage. These results implied that high fructose at physiological level might have a direct, hazard effect on the progression of AS.
Collapse
Affiliation(s)
- Hsiao-Huang Chang
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; Department of Accounting and Information System, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan; Department of Counseling, National Chiayi University, Chiayi, Taiwan
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Wen-Chung Liu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cai-Yi Wu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Li Cheng
- Department of Nursing, National Tainan Institute of Nursing, Tainan, Taiwan.
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan.
| |
Collapse
|
5
|
Mourino-Alvarez L, Corbacho-Alonso N, Sastre-Oliva T, Corros-Vicente C, Solis J, Tejerina T, Padial LR, Barderas MG. Diabetes Mellitus and Its Implications in Aortic Stenosis Patients. Int J Mol Sci 2021; 22:ijms22126212. [PMID: 34207517 PMCID: PMC8227301 DOI: 10.3390/ijms22126212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022] Open
Abstract
Aortic stenosis (AS) and diabetes mellitus (DM) are both progressive diseases that if left untreated, result in significant morbidity and mortality. Several studies revealed that the prevalence of DM is substantially higher in patients with AS and, thus, the progression from mild to severe AS is greater in those patients with DM. DM and common comorbidities associated with both diseases, DM and AS, increase patient management complexity and make aortic valve replacement the only effective treatment. For that reason, a better understanding of the pathogenesis underlying both these diseases and the relationships between them is necessary to design more appropriate preventive and therapeutic approaches. In this review, we provided an overview of the main aspects of the relationship between AS and DM, including common comorbidities and risk factors. We also discuss the established treatments/therapies in patients with AS and DM.
Collapse
Affiliation(s)
- Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
| | - Cecilia Corros-Vicente
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
| | - Jorge Solis
- Department of Cardiology, Hospital Universitario 12 de Octubre and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Atria Clinic, 28009 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.S.); or (M.G.B.); Fax: +34-925247745 (M.G.B.)
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain;
| | - Luis R. Padial
- Department of Cardiology, Hospital Virgen de la Salud, SESCAM, 45004 Toledo, Spain;
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos (HNP), SESCAM, 45071 Toledo, Spain; (L.M.-A.); (N.C.-A.); (T.S.-O.); (C.C.-V.)
- Correspondence: (J.S.); or (M.G.B.); Fax: +34-925247745 (M.G.B.)
| |
Collapse
|
6
|
Kindlovits R, Bertoldi JMCRJ, Rocha HNM, Bento-Bernardes T, Gomes JLP, de Oliveira EM, Muniz IC, Pereira JF, Fernandes-Santos C, Rocha NG, Nóbrega ACLD, Medeiros RF. Molecular mechanisms underlying fructose-induced cardiovascular disease: exercise, metabolic pathways and microRNAs. Exp Physiol 2021; 106:1224-1234. [PMID: 33608966 DOI: 10.1113/ep088845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 02/11/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the mechanisms underlying the cardiac protective effect of aerobic training in the progression of a high fructose-induced cardiometabolic disease in Wistar rats? What is the main finding and its importance? At the onset of cardiovascular disease, aerobic training activates the p-p70S6K, ERK and IRβ-PI3K-AKT pathways, without changing the miR-126 and miR-195 levels, thereby providing evidence that aerobic training modulates the insulin signalling pathway. These data contribute to the understanding of the molecular cardiac changes that are associated with physiological left ventricular hypertrophy during the development of a cardiovascular disease. ABSTRACT During the onset of cardiovascular disease (CVD), disturbances in myocardial vascularization, cell proliferation and protein expression are observed. Aerobic training prevents CVD, but the underlying mechanisms behind left ventricle (LV) hypertrophy are not fully elucidated. The aim of this study was to investigate the mechanisms by which aerobic training protects the heart from LV hypertrophy during the onset of fructose-induced cardiometabolic disease. Male Wistar rats were allocated to four groups (n = 8/group): control sedentary (C), control training (CT), fructose sedentary (F) and fructose training (FT). The C and CT groups received drinking water, and the F and FT groups received d-fructose (10% in water). After 2 weeks, the CT and FT rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min/day, 4 days/week). After 10 weeks, LV morphological remodelling, cardiomyocyte apoptosis, microRNAs and the insulin signalling pathway were investigated. The F group had systemic cardiometabolic alterations, which were normalised by aerobic training. The LV weight increased in the FT group, myocardium vascularisation decreased in the F group, and the cardiomyocyte area increased in the CT, F and FT groups. Regarding protein expression, total insulin receptor β-subunit (IRβ) decreased in the F group; phospho (p)-IRβ and phosphoinositide 3-kinase (PI3K) increased in the FT group; total-AKT and p-AKT increased in all of the groups; p-p70S6 kinase (p70S6K) protein was higher in the CT group; and p-extracellular signal-regulated kinase (ERK) increased in the CT and FT groups. MiR-126, miR-195 and cardiomyocyte apoptosis did not differ among the groups. Aerobic training activates p-p70S6K and p-ERK, and during the onset of a CVD, it can activate the IRβ-PI3K-AKT pathway.
Collapse
Affiliation(s)
- Raquel Kindlovits
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Julia Maria Cabral Relvas Jacome Bertoldi
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Helena Naly Miguens Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Thais Bento-Bernardes
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - João Lucas Penteado Gomes
- National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil.,Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Edilamar Menezes de Oliveira
- National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil.,Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Ingrid Cristina Muniz
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Juliana Frota Pereira
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | | | - Natália Galito Rocha
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Antonio Claudio Lucas da Nóbrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil
| | - Renata Frauches Medeiros
- National Institute for Science and Technology - INCT Physical (In)activity and Exercise, CNPq -, Niterói, Rio de Janeiro, Brazil.,Department of Nutrition and Dietetics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Diet-Induced Rabbit Models for the Study of Metabolic Syndrome. Animals (Basel) 2019; 9:ani9070463. [PMID: 31330823 PMCID: PMC6680936 DOI: 10.3390/ani9070463] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Obesity and metabolic syndrome (MetS) have become a growing problem for public health and clinical practice, given their increased prevalence due to the rise of sedentary lifestyles and excessive caloric intake from processed food rich in fat and sugar. There are several definitions of MetS, but most of them describe it as a cluster of cardiovascular and metabolic alterations such as abdominal obesity, reduced high-density lipoprotein (HDL) and elevated low-density lipoprotein (LDL) cholesterol, elevated triglycerides, glucose intolerance, and hypertension. Diagnosis requires three out of these five criteria to be present. Despite the increasing prevalence of MetS, the understanding of its pathophysiology and relationship with disease is still limited. Indeed, the pathological consequences of MetS components have been reported individually, but investigations that have studied the effect of the combination of MeS components on organ pathological remodeling are almost nonexistent. On the other hand, animal models are a powerful tool in understanding the mechanisms that underlie pathological processes such as MetS. In the first part of the review, we will briefly overview the advantages, disadvantages and pathological manifestations of MetS in porcine, canine, rodent, and rabbit diet-induced experimental models. Then, we will focus on the different dietary regimes that have been used in rabbits to induce MetS by means of high-fat, cholesterol, sucrose or fructose-enriched diets and their effects on physiological systems and organ remodeling. Finally, we will discuss the use of dietary regimes in different transgenic strains and special rabbit breeds.
Collapse
|