1
|
Yun Y, An J, Kim HJ, Choi HK, Cho HY. Recent advances in functional lipid-based nanomedicines as drug carriers for organ-specific delivery. NANOSCALE 2025; 17:7617-7638. [PMID: 40026004 DOI: 10.1039/d4nr04778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Lipid-based nanoparticles have emerged as promising drug delivery systems for a wide range of therapeutic agents, including plasmids, mRNA, and proteins. However, these nanoparticles still encounter various challenges in drug delivery, including drug leakage, poor solubility, and inadequate target specificity. In this comprehensive review, we present an in-depth investigation of four distinct drug delivery methods: liposomes, lipid nanoparticle formulations, solid lipid nanoparticles, and nanoemulsions. Moreover, we explore recent advances in lipid-based nanomedicines (LBNs) for organ-specific delivery, employing ligand-functionalized particles that specifically target receptors in desired organs. Through this strategy, LBNs enable direct and efficient drug delivery to the intended organs, leading to superior DNA or mRNA expression outcomes compared to conventional approaches. Importantly, the development of novel ligands and their judicious combination holds promise for minimizing the side effects associated with nonspecific drug delivery. By leveraging the unique properties of lipid-based nanoparticles and optimizing their design, researchers can overcome the limitations associated with current drug delivery systems. In this review, we aim to provide valuable insights into the advancements, challenges, and future directions of lipid-based nanoparticles in the field of drug delivery, paving the way for enhanced therapeutic strategies with improved efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Jeongmin An
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hyun Joong Kim
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
2
|
Rouatbi N, Walters AA, Costa PM, Qin Y, Liam-Or R, Grant V, Pollard SM, Wang JTW, Al-Jamal KT. RNA lipid nanoparticles as efficient in vivo CRISPR-Cas9 gene editing tool for therapeutic target validation in glioblastoma cancer stem cells. J Control Release 2024; 375:776-787. [PMID: 39284526 DOI: 10.1016/j.jconrel.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
In vitro and ex-vivo target identification strategies often fail to predict in vivo efficacy, particularly for glioblastoma (GBM), a highly heterogenous tumor rich in resistant cancer stem cells (GSCs). An in vivo screening tool can improve prediction of therapeutic efficacy by considering the complex tumor microenvironment and the dynamic plasticity of GSCs driving therapy resistance and recurrence. This study proposes lipid nanoparticles (LNPs) as an efficient in vivo CRISPR-Cas9 gene editing tool for target validation in mesenchymal GSCs. LNPs co-delivering mRNA (mCas9) and single-guide RNA (sgRNA) were successfully formulated and optimized facilitating both in vitro and in vivo gene editing. In vitro, LNPs achieved up to 67 % reduction in green fluorescent protein (GFP) expression, used as a model target, outperforming a commercial transfection reagent. Intratumoral administration of LNPs in GSCs resulted in ∼80 % GFP gene knock-out and a 2-fold reduction in GFP signal by day 14. This study showcases the applicability of CRISPR-Cas9 LNPs as a potential in vivo screening tool in GSCs, currently lacking effective treatment. By replacing GFP with a pool of potential targets, the proposed platform presents an exciting prospect for therapeutic target validation in orthotopic GSCs, bridging the gap between preclinical and clinical research.
Collapse
Affiliation(s)
- Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Adam A Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Pedro M Costa
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Yue Qin
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Vivien Grant
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair & Cancer Research UK Scotland Centre, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK; Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
3
|
Tang M, Zhang Z, Wang P, Zhao F, Miao L, Wang Y, Li Y, Li Y, Gao Z. Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells. Acta Pharm Sin B 2024; 14:3457-3475. [PMID: 39220884 PMCID: PMC11365446 DOI: 10.1016/j.apsb.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.
Collapse
Affiliation(s)
- Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Chu R, Wang Y, Kong J, Pan T, Yang Y, He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J Mater Chem B 2024; 12:4759-4784. [PMID: 38682294 DOI: 10.1039/d3tb02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Yi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Jianglong Kong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| |
Collapse
|
5
|
Wu L, Li X, Qian X, Wang S, Liu J, Yan J. Lipid Nanoparticle (LNP) Delivery Carrier-Assisted Targeted Controlled Release mRNA Vaccines in Tumor Immunity. Vaccines (Basel) 2024; 12:186. [PMID: 38400169 PMCID: PMC10891594 DOI: 10.3390/vaccines12020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have attracted extensive attention in tumor immunotherapy. Targeting immune cells in cancer therapy has become a strategy of great research interest. mRNA vaccines are a potential choice for tumor immunotherapy, due to their ability to directly encode antigen proteins and stimulate a strong immune response. However, the mode of delivery and lack of stability of mRNA are key issues limiting its application. LNPs are an excellent mRNA delivery carrier, and their structural stability and biocompatibility make them an effective means for delivering mRNA to specific targets. This study summarizes the research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity. The role of LNPs in improving mRNA stability, immunogenicity, and targeting is discussed. This review aims to systematically summarize the latest research progress in LNP delivery carrier-assisted targeted controlled release mRNA vaccines in tumor immunity to provide new ideas and strategies for tumor immunotherapy, as well as to provide more effective treatment plans for patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| | - Jixian Liu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China; (L.W.); (X.Q.); (S.W.)
| |
Collapse
|
6
|
Leung J, Strong C, Badior KE, Robertson M, Wu X, Meledeo MA, Kang E, Paul M, Sato Y, Harashima H, Cap AP, Devine DV, Jan E, Cullis PR, Kastrup CJ. Genetically engineered transfusable platelets using mRNA lipid nanoparticles. SCIENCE ADVANCES 2023; 9:eadi0508. [PMID: 38039367 PMCID: PMC10691771 DOI: 10.1126/sciadv.adi0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Platelet transfusions are essential for managing bleeding and hemostatic dysfunction and could be expanded as a cell therapy due to the multifunctional role of platelets in various diseases. Creating these cell therapies will require modifying transfusable donor platelets to express therapeutic proteins. However, there are currently no appropriate methods for genetically modifying platelets collected from blood donors. Here, we describe an approach using platelet-optimized lipid nanoparticles containing mRNA (mRNA-LNP) to enable exogenous protein expression in human and rat platelets. Within the library of mRNA-LNP tested, exogenous protein expression did not require nor correlate with platelet activation. Transfected platelets retained hemostatic function and accumulated in regions of vascular damage after transfusion into rats with hemorrhagic shock. We expect this technology will expand the therapeutic potential of platelets.
Collapse
Affiliation(s)
- Jerry Leung
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoMedicines Research Group, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Colton Strong
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | | | - Madelaine Robertson
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoMedicines Research Group, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Xiaowu Wu
- Blood and Shock Resuscitation Program, United States Army Institute of Surgical Research, JBSA-FT Sam Houston, San Antonio, TX 78234, USA
| | - Michael A. Meledeo
- Blood and Shock Resuscitation Program, United States Army Institute of Surgical Research, JBSA-FT Sam Houston, San Antonio, TX 78234, USA
| | - Emma Kang
- Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, Canada
| | - Manoj Paul
- Blood Research Institute, Versiti, Milwaukee,WI 53226, USA
| | - Yusuke Sato
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido, 060-0812, Japan
| | - Andrew P. Cap
- Blood and Shock Resuscitation Program, United States Army Institute of Surgical Research, JBSA-FT Sam Houston, San Antonio, TX 78234, USA
| | - Dana V. Devine
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, Canada
- Centre for Innovation, Canadian Blood Services, Vancouver, V6T 1Z3, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- NanoMedicines Research Group, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Christian J. Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, V6T 1Z3, Canada
- Blood Research Institute, Versiti, Milwaukee,WI 53226, USA
- Departments of Surgery, Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Zeng Y, Shen M, Pattipeiluhu R, Zhou X, Zhang Y, Bakkum T, Sharp TH, Boyle AL, Kros A. Efficient mRNA delivery using lipid nanoparticles modified with fusogenic coiled-coil peptides. NANOSCALE 2023; 15:15206-15218. [PMID: 37671560 DOI: 10.1039/d3nr02175k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Gene delivery has great potential in modulating protein expression in specific cells to treat diseases. Such therapeutic gene delivery demands sufficient cellular internalization and endosomal escape. Of various nonviral nucleic acid delivery systems, lipid nanoparticles (LNPs) are the most advanced, but still, are very inefficient as the majority are unable to escape from endosomes/lysosomes. Here, we develop a highly efficient gene delivery system using fusogenic coiled-coil peptides. We modified LNPs, carrying EGFP-mRNA, and cells with complementary coiled-coil lipopeptides. Coiled-coil formation between these lipopeptides induced fast nucleic acid uptake and enhanced GFP expression. The cellular uptake of coiled-coil modified LNPs is likely driven by membrane fusion thereby omitting typical endocytosis pathways. This direct cytosolic delivery circumvents the problems commonly observed with the limited endosomal escape of mRNA. Therefore fusogenic coiled-coil peptide modification of existing LNP formulations to enhance nucleic acid delivery efficiency could be beneficial for several gene therapy applications.
Collapse
Affiliation(s)
- Ye Zeng
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Mengjie Shen
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Roy Pattipeiluhu
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Xuequan Zhou
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Yun Zhang
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Thomas Bakkum
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Aimee L Boyle
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
8
|
Zeng Y, Shen M, Singhal A, Sevink GJA, Crone N, Boyle AL, Kros A. Enhanced Liposomal Drug Delivery Via Membrane Fusion Triggered by Dimeric Coiled-Coil Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301133. [PMID: 37199140 DOI: 10.1002/smll.202301133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Indexed: 05/19/2023]
Abstract
An ideal nanomedicine system improves the therapeutic efficacy of drugs. However, most nanomedicines enter cells via endosomal/lysosomal pathways and only a small fraction of the cargo enters the cytosol inducing therapeutic effects. To circumvent this inefficiency, alternative approaches are desired. Inspired by fusion machinery found in nature, synthetic lipidated peptide pair E4/K4 is used to induce membrane fusion previously. Peptide K4 interacts specifically with E4, and it has a lipid membrane affinity and resulting in membrane remodeling. To design efficient fusogens with multiple interactions, dimeric K4 variants are synthesized to improve fusion with E4-modified liposomes and cells. The secondary structure and self-assembly of dimers are studied; the parallel PK4 dimer forms temperature-dependent higher-order assemblies, while linear K4 dimers form tetramer-like homodimers. The structures and membrane interactions of PK4 are supported by molecular dynamics simulations. Upon addition of E4, PK4 induced the strongest coiled-coil interaction resulting in a higher liposomal delivery compared to linear dimers and monomer. Using a wide spectrum of endocytosis inhibitors, membrane fusion is found to be the main cellular uptake pathway. Doxorubicin delivery results in efficient cellular uptake and concomitant antitumor efficacy. These findings aid the development of efficient delivery systems of drugs into cells using liposome-cell fusion strategies.
Collapse
Affiliation(s)
- Ye Zeng
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Mengjie Shen
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Ankush Singhal
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Geert Jan Agur Sevink
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Niek Crone
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Aimee L Boyle
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Alexander Kros
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
9
|
Dai C, Wang J, Tu L, Pan Z, Yang J, Zhou S, Luo Q, Zhu L, Ye Y. Genetically-encoded degraders as versatile modulators of intracellular therapeutic targets. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
10
|
Kong L, Yang C, Zhang Z. Organism-Generated Biological Vesicles In Situ: An Emerging Drug Delivery Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204178. [PMID: 36424135 PMCID: PMC9839880 DOI: 10.1002/advs.202204178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Biological vesicles, containing genetic materials and proteins of the original cells, are usually used for local or systemic communications among cells. Currently, studies on biological vesicles as therapeutic strategies or drug delivery carriers mainly focus on exogenously generated biological vesicles. However, the limitations of yield and purity caused by the complex purification process still hinder their clinical transformation. Recently, it has been reported that living organisms, including cells and bacteria, can produce functional/therapeutic biological vesicles within body automatically. Therefore, using organisms to produce endogenous biological vesicles in body as drug/bio-information delivery carriers has become a potential therapeutic strategy. In this review, the current development status and application prospects of in situ organism-produced biological vesicles are introduced. The advantages and effects of this endogenous biological vesicles-based strategy in drug delivery and disease treatments are analyzed. According to the type of endogenous biological vesicles, they are divided into four categories: exosomes, platelet-derived microparticles, apoptotic bodies, and bacteria-released outer membrane vesicles. And finally, the shortcomings of current research and future development are analyzed. This review is believed to open up the application of endogenous biological vesicles in the field of biomedicine and shed light on current research.
Collapse
Affiliation(s)
- Li Kong
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Conglian Yang
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
| | - Zhiping Zhang
- Tongji School of PharmacyHuazhong University of Science and TechnologyWuhan430030P. R. China
- Hubei Engineering Research Center for Novel Drug Delivery SystemHuazhong University of Science and TechnologyWuhan430030P. R. China
- National Engineering Research Center for NanomedicineHuazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
11
|
Chang SC, Gopal P, Lim S, Wei X, Chandramohan A, Mangadu R, Smith J, Ng S, Gindy M, Phan U, Henry B, Partridge AW. Targeted degradation of PCNA outperforms stoichiometric inhibition to result in programed cell death. Cell Chem Biol 2022; 29:1601-1615.e7. [PMID: 36318925 DOI: 10.1016/j.chembiol.2022.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/16/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Biodegraders are targeted protein degradation constructs composed of mini-proteins/peptides linked to E3 ligase receptors. We gained deeper insights into their utility by studying Con1-SPOP, a biodegrader against proliferating cell nuclear antigen (PCNA), an oncology target. Con1-SPOP proved pharmacologically superior to its stoichiometric (non-degrading) inhibitor equivalent (Con1-SPOPmut) as it had more potent anti-proliferative effects and uniquely induced DNA damage, cell apoptosis, and necrosis. Proteomics showed that PCNA degradation gave impaired mitotic division and mitochondria dysfunction, effects not seen with the stoichiometric inhibitor. We further showed that doxycycline-induced Con1-SPOP achieved complete tumor growth inhibition in vivo. Intracellular delivery of mRNA encoding Con1-SPOP via lipid nanoparticles (LNPs) depleted endogenous PCNA within hours of application with nanomolar potency. Our results demonstrate the utility of biodegraders as biological tools and highlight target degradation as a more efficacious approach versus stoichiometric inhibition. Once in vivo delivery is optimized, biodegraders may be leveraged as an exciting therapeutic modality.
Collapse
Affiliation(s)
| | - Pooja Gopal
- Quantitative Biosciences, MSD, Singapore 119077, Singapore
| | - Shuhui Lim
- Quantitative Biosciences, MSD, Singapore 119077, Singapore
| | - Xiaona Wei
- Scientific Informatics, MSD, Singapore 119077, Singapore
| | | | - Ruban Mangadu
- Discovery Oncology, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jeffrey Smith
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Simon Ng
- Quantitative Biosciences, MSD, Singapore 119077, Singapore
| | - Marian Gindy
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Uyen Phan
- Discovery Oncology, Merck & Co., Inc., South San Francisco, CA, USA
| | - Brian Henry
- Quantitative Biosciences, MSD, Singapore 119077, Singapore
| | | |
Collapse
|
12
|
Higuchi A, Sung TC, Wang T, Ling QD, Kumar SS, Hsu ST, Umezawa A. Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Akon Higuchi
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
- Department of Reproduction, National Center for Child Health and Development, Okura, Tokyo, Japan
| | - Tzu-Cheng Sung
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ting Wang
- School of Biomedical Engineering, The Eye Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan
| | - S. Suresh Kumar
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Taiwan Landseed Hospital, Pingjen City, Taiwan Taoyuan
| | - Akihiro Umezawa
- Department of Reproduction, National Center for Child Health and Development, Okura, Tokyo, Japan
| |
Collapse
|
13
|
Morris K, Schnoor B, Papa AL. Platelet cancer cell interplay as a new therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188770. [DOI: 10.1016/j.bbcan.2022.188770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
14
|
Delnoy B, Haskovic M, Vanoevelen J, Steinbusch LKM, Vos EN, Knoops K, Zimmermann LJI, Noga M, Lefeber DJ, Martini PGV, Coelho AI, Rubio‐Gozalbo ME. Novel mRNA therapy restores GALT protein and enzyme activity in a zebrafish model of classic galactosemia. J Inherit Metab Dis 2022; 45:748-758. [PMID: 35527402 PMCID: PMC9541528 DOI: 10.1002/jimd.12512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
Messenger RNA (mRNA) has emerged as a novel therapeutic approach for inborn errors of metabolism. Classic galactosemia (CG) is an inborn error of galactose metabolism caused by a severe deficiency of galactose-1-phosphate:uridylyltransferase (GALT) activity leading to neonatal illness and chronic impairments affecting the brain and female gonads. In this proof of concept study, we used our zebrafish model for CG to evaluate the potential of human GALT mRNA (hGALT mRNA) packaged in two different lipid nanoparticles to restore GALT expression and activity at early stages of development. Both one cell-stage and intravenous single-dose injections resulted in hGALT protein expression and enzyme activity in the CG zebrafish (galt knockout) at 5 days post fertilization (dpf). Moreover, the levels of galactose-1-phosphate (Gal-1-P) and galactonate, metabolites that accumulate because of the deficiency, showed a decreasing trend. LNP-packaged mRNA was effectively translated and processed in the CG zebrafish without signs of toxicity. This study shows that mRNA therapy restores GALT protein and enzyme activity in the CG zebrafish model, and that the zebrafish is a suitable system to test this approach. Further studies are warranted to assess whether repeated injections safely mitigate the chronic impairments of this disease.
Collapse
Affiliation(s)
- Britt Delnoy
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
- GROW, Maastricht UniversityMaastrichtthe Netherlands
| | - Minela Haskovic
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
- GROW, Maastricht UniversityMaastrichtthe Netherlands
| | - Jo Vanoevelen
- GROW, Maastricht UniversityMaastrichtthe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+Maastrichtthe Netherlands
| | - Laura K. M. Steinbusch
- Department of Clinical GeneticsMaastricht University Medical Center+Maastrichtthe Netherlands
| | - Esther Naomi Vos
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
| | - Kèvin Knoops
- Microscopy CORE LaboratoryMaastricht UniversityMaastrichtthe Netherlands
| | - Luc J. I. Zimmermann
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
- GROW, Maastricht UniversityMaastrichtthe Netherlands
| | - Marek Noga
- Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenthe Netherlands
| | - Dirk J. Lefeber
- Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenthe Netherlands
- Department of NeurologyDonders Institute for Brain, Cognition and Behavior, Radboud University Medical CenterNijmegenthe Netherlands
| | | | - Ana I. Coelho
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
| | - Maria Estela Rubio‐Gozalbo
- Department of PediatricsMaastricht University Medical Center+Maastrichtthe Netherlands
- GROW, Maastricht UniversityMaastrichtthe Netherlands
- Department of Clinical GeneticsMaastricht University Medical Center+Maastrichtthe Netherlands
| |
Collapse
|
15
|
Costa B, Boueri B, Oliveira C, Silveira I, Ribeiro AJ. Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opin Drug Deliv 2022; 19:577-594. [DOI: 10.1080/17425247.2022.2075846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Bruno Costa
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Beatriz Boueri
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Claudia Oliveira
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Isabel Silveira
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Antonio J. Ribeiro
- University of Coimbra, Faculty of Pharmacy, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| |
Collapse
|
16
|
Szebeni J, Storm G, Ljubimova JY, Castells M, Phillips EJ, Turjeman K, Barenholz Y, Crommelin DJA, Dobrovolskaia MA. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. NATURE NANOTECHNOLOGY 2022; 17:337-346. [PMID: 35393599 DOI: 10.1038/s41565-022-01071-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 01/04/2022] [Indexed: 05/24/2023]
Abstract
After over a billion of vaccinations with messenger RNA-lipid nanoparticle (mRNA-LNP) based SARS-CoV-2 vaccines, anaphylaxis and other manifestations of hypersensitivity can be considered as very rare adverse events. Although current recommendations include avoiding a second dose in those with first-dose anaphylaxis, the underlying mechanisms are unknown; therefore, the risk of a future reaction cannot be predicted. Given how important new mRNA constructs will be to address the emergence of new viral variants and viruses, there is an urgent need for clinical approaches that would allow a safe repeated immunization of high-risk individuals and for reliable predictive tools of adverse reactions to mRNA vaccines. In many aspects, anaphylaxis symptoms experienced by the affected vaccine recipients resemble those of infusion reactions to nanomedicines. Here we share lessons learned over a decade of nanomedicine research and discuss the current knowledge about several factors that individually or collectively contribute to infusion reactions to nanomedicines. We aim to use this knowledge to inform the SARS-CoV-2 lipid-nanoparticle-based mRNA vaccine field.
Collapse
Affiliation(s)
- Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Department of Biomaterials Science and Technology, University of Twente, Enschede, the Netherlands
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Mariana Castells
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keren Turjeman
- Laboratory of Membrane and Liposome Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
17
|
Paramasivam P, Franke C, Stöter M, Höijer A, Bartesaghi S, Sabirsh A, Lindfors L, Arteta MY, Dahlén A, Bak A, Andersson S, Kalaidzidis Y, Bickle M, Zerial M. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J Cell Biol 2022; 221:e202110137. [PMID: 34882187 PMCID: PMC8666849 DOI: 10.1083/jcb.202110137] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/09/2023] Open
Abstract
Delivery of exogenous mRNA using lipid nanoparticles (LNPs) is a promising strategy for therapeutics. However, a bottleneck remains in the poor understanding of the parameters that correlate with endosomal escape versus cytotoxicity. To address this problem, we compared the endosomal distribution of six LNP-mRNA formulations of diverse chemical composition and efficacy, similar to those used in mRNA-based vaccines, in primary human adipocytes, fibroblasts, and HeLa cells. Surprisingly, we found that total uptake is not a sufficient predictor of delivery, and different LNPs vary considerably in endosomal distributions. Prolonged uptake impaired endosomal acidification, a sign of cytotoxicity, and caused mRNA to accumulate in compartments defective in cargo transport and unproductive for delivery. In contrast, early endocytic/recycling compartments have the highest probability for mRNA escape. By using super-resolution microscopy, we could resolve a single LNP-mRNA within subendosomal compartments and capture events of mRNA escape from endosomal recycling tubules. Our results change the view of the mechanisms of endosomal escape and define quantitative parameters to guide the development of mRNA formulations toward higher efficacy and lower cytotoxicity.
Collapse
Affiliation(s)
- Prasath Paramasivam
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Christian Franke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Stöter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andreas Höijer
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Stefano Bartesaghi
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Marianna Yanez Arteta
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Science Research and Development, AstraZeneca, Boston, MA
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
18
|
Jo JI, Emi T, Tabata Y. Design of a Platelet-Mediated Delivery System for Drug-Incorporated Nanospheres to Enhance Anti-Tumor Therapeutic Effect. Pharmaceutics 2021; 13:pharmaceutics13101724. [PMID: 34684017 PMCID: PMC8540062 DOI: 10.3390/pharmaceutics13101724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/25/2023] Open
Abstract
The objective of this study is to construct a platelet-mediated delivery system for drug-incorporated nanospheres. Nanospheres of poly(lactic-co-glycolic acid) (PLGA-NS) with different sizes and surface properties were prepared by changing the preparation parameters, such as the type of polymer surfactant, the concentration of polymer surfactant and PLGA, and the stirring rate. When incubated with platelets, PLGA-NS prepared with poly(vinyl alcohol) suppressed the platelet activation. Scanning electron microscopic and flow cytometry examinations revealed that platelets associated with PLGA-NS (platelet hybrids, PH) had a similar appearance and biological properties to those of the original platelets. In addition, the PH with PLGA-NS specifically adhered onto the substrate pre-coated with fibrin to a significantly great extent compared with PLGA-NS alone. When applied in an in vitro model of tumor tissue which was composed of an upper chamber pre-coated with fibrin and a lower chamber culturing tumor cells, the PH with PLGA-NS incorporating an anti-tumor drug were delivered to the tumor cells through the specific adhesion onto the upper chamber and, consequently, drug release from the upper chamber took place, resulting in the growth suppression of tumor cells. It is concluded that the drug delivery system based on PH is promising for tumor treatment.
Collapse
|
19
|
Leung J, Cau MF, Kastrup CJ. Emerging gene therapies for enhancing the hemostatic potential of platelets. Transfusion 2021; 61 Suppl 1:S275-S285. [PMID: 34269451 DOI: 10.1111/trf.16519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023]
Abstract
Platelet transfusions are an integral component of balanced hemostatic resuscitation protocols used to manage severe hemorrhage following trauma. Enhancing the hemostatic potential of platelets could lead to further increases in the efficacy of transfusions, particularly for non-compressible torso hemorrhage or severe hemorrhage with coagulopathy, by decreasing blood loss and improving overall patient outcomes. Advances in gene therapies, including RNA therapies, are leading to new strategies to enhance platelets for better control of hemorrhage. This review will highlight three approaches for creating modified platelets using gene therapies: (i) direct transfection of transfusable platelets ex vivo, (ii) in vitro production of engineered platelets from platelet-precursor cells, and (iii) modifying the bone marrow for in vivo production of modified platelets. In summary, modifying platelets to enhance their hemostatic potential is an exciting new frontier in transfusion medicine, but more preclinical development as well as studies testing the safety and efficacy of these agents are needed.
Collapse
Affiliation(s)
- Jerry Leung
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Cau MF, Strilchuk AW, Kastrup CJ. Nanomedicines for hemorrhage control. J Thromb Haemost 2021; 19:887-891. [PMID: 33694243 DOI: 10.1111/jth.15211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Amy W Strilchuk
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Delnoy B, Coelho AI, Rubio-Gozalbo ME. Current and Future Treatments for Classic Galactosemia. J Pers Med 2021; 11:jpm11020075. [PMID: 33525536 PMCID: PMC7911353 DOI: 10.3390/jpm11020075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Type I (classic) galactosemia, galactose 1-phosphate uridylyltransferase (GALT)-deficiency is a hereditary disorder of galactose metabolism. The current therapeutic standard of care, a galactose-restricted diet, is effective in treating neonatal complications but is inadequate in preventing burdensome complications. The development of several animal models of classic galactosemia that (partly) mimic the biochemical and clinical phenotypes and the resolution of the crystal structure of GALT have provided important insights; however, precise pathophysiology remains to be elucidated. Novel therapeutic approaches currently being explored focus on several of the pathogenic factors that have been described, aiming to (i) restore GALT activity, (ii) influence the cascade of events and (iii) address the clinical picture. This review attempts to provide an overview on the latest advancements in therapy approaches.
Collapse
Affiliation(s)
- Britt Delnoy
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Ana I. Coelho
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
| | - Maria Estela Rubio-Gozalbo
- Department of Pediatrics, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands; (B.D.); (A.I.C.)
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht University, 6229 HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-3872920
| |
Collapse
|
22
|
He H, Adili R, Liu L, Hong K, Holinstat M, Schwendeman A. Synthetic high-density lipoproteins loaded with an antiplatelet drug for efficient inhibition of thrombosis in mice. SCIENCE ADVANCES 2020; 6:6/49/eabd0130. [PMID: 33277254 PMCID: PMC7821904 DOI: 10.1126/sciadv.abd0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/21/2020] [Indexed: 05/12/2023]
Abstract
Antiplatelet agents offer a desirable approach to thrombosis prevention through the reduction of platelet reactivity. However, major bleeding events greatly attenuate the clinical outcomes of most antithrombotic agents. Therefore, the development of safer and more effective strategies to prevent vascular occlusion and avoid bleeding is urgently needed. A reconstituted nanoparticle, synthetic high-density lipoprotein (sHDL), which mimics the native HDL, has been established as clinically safe and is easily manufactured on a large scale. In this study, we propose that the delivery of the antiplatelet drug ML355, a selective inhibitor of 12(S)-lipoxygenase (12-LOX), by sHDL will efficiently inhibit thrombosis by targeting ML355 to the intended site of action, improving the pharmaceutical profile and harnessing the innate antithrombotic efficacy of the sHDL carrier. Our data show that ML355-sHDL exhibits more potent inhibition of thrombus formation in both small arterioles and larger arteries in mice without impairing the normal hemostasis in vivo.
Collapse
Affiliation(s)
- Hongliang He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Reheman Adili
- Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, MI 48109, USA
| | - Lisha Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Kristen Hong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, MI 48109, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Dr., Room 2220D, Medical Sciences Research Building III, Ann Arbor, MI 48109, USA
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, MI 48109, USA.
- Biointerfaces Institute, NCRC, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Singh DD, Han I, Choi EH, Yadav DK. Immunopathology, host-virus genome interactions, and effective vaccine development in SARS-CoV-2. Comput Struct Biotechnol J 2020; 18:3774-3787. [PMID: 33235690 PMCID: PMC7677077 DOI: 10.1016/j.csbj.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are a group of enveloped RNA viruses that are diversely found in humans and now declared a global pandemic by the World Health Organization in March 2020. The population's susceptibility to these highly pathogenic coronaviruses has contributed to large outbreaks, evolved into public health events, and rapidly transmitted globally. Thus, there is an urgent need to develop effective therapies and vaccines against this disease. In the primary stage of severe acute respiratory syndrome coronavirus (SARS-COV-2) infection, the signs and symptoms are nonspecific, and many more cases have been observed than initially expected. Genome sequencing is performed regularly to identify genetic changes to SARS-COV-2, and vaccine development is focused on manufacture, production, and based on specific problems, and very few are available on recent developments in the prevention of outbreaks. The aim of this review article to explore recent updates on SARS-COV-2 in the context of pathogenesis during disease progression, and innate acquired mechanisms of defense, This includes advances in diagnostics, susceptibility, and severity of host-virus genome interactions, modes of transmission, active compounds being used in pre-clinical and clinical trials for the treatment of patients, vaccine developments, and the effectiveness of SARS-COV-2 prevention and control measures. We have summarized the importance of pathophysiology immune response, Diagnostics, vaccine development currently approaches explored for SARS-COV-2.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
24
|
Zhang H, Leal J, Soto MR, Smyth HDC, Ghosh D. Aerosolizable Lipid Nanoparticles for Pulmonary Delivery of mRNA through Design of Experiments. Pharmaceutics 2020; 12:E1042. [PMID: 33143328 PMCID: PMC7692784 DOI: 10.3390/pharmaceutics12111042] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023] Open
Abstract
Messenger RNA is a class of promising nucleic acid therapeutics to treat a variety of diseases, including genetic diseases. The development of a stable and efficacious mRNA pulmonary delivery system would enable high therapeutic concentrations locally in the lungs to improve efficacy and limit potential toxicities. In this study, we employed a Design of Experiments (DOE) strategy to screen a library of lipid nanoparticle compositions to identify formulations possessing high potency both before and after aerosolization. Lipid nanoparticles (LNPs) showed stable physicochemical properties for at least 14 days of storage at 4 °C, and most formulations exhibited high encapsulation efficiencies greater than 80%. Generally, upon nebulization, LNP formulations showed increased particle size and decreased encapsulation efficiencies. An increasing molar ratio of poly-(ethylene) glycol (PEG)-lipid significantly decreased size but also intracellular protein expression of mRNA. We identified four formulations possessing higher intracellular protein expression ability in vitro even after aerosolization which were then assessed in in vivo studies. It was found that luciferase protein was predominately expressed in the mouse lung for the four lead formulations before and after nebulization. This study demonstrated that LNPs hold promise to be applied for aerosolization-mediated pulmonary mRNA delivery.
Collapse
Affiliation(s)
| | | | | | | | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (H.Z.); (J.L.); (M.R.S.); (H.D.C.S.)
| |
Collapse
|
25
|
Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Many clinical trials for cancer precision medicine have yielded unsatisfactory results due to challenges such as drug resistance and low efficacy. Drug resistance is often caused by the complex compensatory regulation within the biomolecular network in a cancer cell. Recently, systems biological studies have modeled and simulated such complex networks to unravel the hidden mechanisms of drug resistance and identify promising new drug targets or combinatorial or sequential treatments for overcoming resistance to anticancer drugs. However, many of the identified targets or treatments present major difficulties for drug development and clinical application. Nanocarriers represent a path forward for developing therapies with these "undruggable" targets or those that require precise combinatorial or sequential application, for which conventional drug delivery mechanisms are unsuitable. Conversely, a challenge in nanomedicine has been low efficacy due to heterogeneity of cancers in patients. This problem can also be resolved through systems biological approaches by identifying personalized targets for individual patients or promoting the drug responses. Therefore, integration of systems biology and nanomaterial engineering will enable the clinical application of cancer precision medicine to overcome both drug resistance of conventional treatments and low efficacy of nanomedicine due to patient heterogeneity.
Collapse
Affiliation(s)
- Jae Il Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsoo Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong-Hoon Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sea Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
26
|
Rissanou AN, Ouranidis A, Karatasos K. Complexation of single stranded RNA with an ionizable lipid: an all-atom molecular dynamics simulation study. SOFT MATTER 2020; 16:6993-7005. [PMID: 32667026 DOI: 10.1039/d0sm00736f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Complexation of a lipid-based ionizable cationic molecule (referred to as DML: see main text) with RNA in an aqueous medium was examined in detail by means of fully atomistic molecular dynamics simulations. The different stages of the DML-RNA association process were explored, while the structural characteristics of the final complex were described. The self-assembly process of the DML molecules was examined in the absence and in the presence of nucleotide sequences of different lengths. The formed DML clusters were described in detail in terms of their size and composition and were found to share common features in all the examined systems. Different timescales related to their self-assembly and their association with RNA were identified. It was found that beyond a time period of a few tens of ns, a conformationally stable DML-RNA complex was formed, characterized by DML clusters covering the entire contour of RNA. In a system with a 642-nucleotide sequence, the average size of the complex in the longest dimension was found to be close to 40 nm. The DML clusters were characterized by a rather low surface charge, while a propensity for the formation of larger size clusters close to RNA was noted. Apart from hydrophobic and electrostatic interactions, hydrogen bonding was found to play a key-role in the DML-DML and in the DML-RNA association. The information obtained regarding the structural features of the final complex, the timescales and the driving forces associated with the complexation and the self-assembly processes provide new insight towards a rational design of optimized lipid-based ionizable cationic gene delivery vectors.
Collapse
Affiliation(s)
- Anastassia N Rissanou
- Department of Chemical Engineering, University of Thessaloniki, P.O. BOX 420, 54124 Thessaloniki, Greece.
| | | | | |
Collapse
|
27
|
Hachenberger YU, Rosenkranz D, Kriegel FL, Krause B, Matschaß R, Reichardt P, Tentschert J, Laux P, Jakubowski N, Panne U, Luch A. Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1447. [PMID: 32235788 PMCID: PMC7143856 DOI: 10.3390/ma13061447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 11/17/2022]
Abstract
Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers.
Collapse
Affiliation(s)
- Yves U Hachenberger
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Daniel Rosenkranz
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Fabian L Kriegel
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Benjamin Krause
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - René Matschaß
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Philipp Reichardt
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | | | - Ulrich Panne
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Andreas Luch
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|