1
|
Zeng W, Shen D, Wu W, Zhang S, Li Z, Zhang D. Involvement of a catalase gene in lignin catalysis and immune defense against pathogenic fungus in Coptotermes formosanus: a potential new target for termite control. PEST MANAGEMENT SCIENCE 2024; 80:3258-3268. [PMID: 38358092 DOI: 10.1002/ps.8029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Detoxifying enzymes are likely involved in lignin feeding and immune defense mechanisms within termites, rendering them potential targets for biological control. However, investigations into the dual functionality of termite detoxification enzymes in vivo have not been documented. RESULTS In this study, the complete cDNA of the catalase gene (Cfcat) derived from Coptotermes formosanus Shiraki was amplified. CFCAT comprises an open reading frame spanning 1527 bp, encoding a 508-amino acid sequence. The highest expression was observed in the epidermal tissues (including the fat body and hemolymph) followed by the foregut/salivary gland. Furthermore, we confirmed the catalase activity of the recombinant Cfcat protein. Using RNA interference (RNAi) technology, the importance of Cfcat in the lignin-feeding of C. formosanus was demonstrated, and the role of Cfcat in innate immunity was investigated. Survival assays showed that Cfcat RNAi significantly increased the susceptibility of C. formosanus to Metarhizium anisopliae. Irrespective of the infection status, Cfcat inhibition had a significant impact on multiple factors of humoral and intestinal immunity in C. formosanus. Notably, Cfcat RNAi exhibited a more pronounced immunosuppressive effect on humoral immunity than on intestinal immunity. CONCLUSION Cfcat plays an important role in the regulation of innate immunity and lignin feeding in C. formosanus. Cfcat RNAi can weaken the immune response of termites against M. anisopliae, which may aid the biocontrol efficiency of M. anisopliae against C. formosanus. This study provides a theoretical basis and technical reference for the development of a novel biocontrol strategy targeting detoxifying enzymes of termites. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Danni Shen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjing Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shijun Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dandan Zhang
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Jang S, Matsuura Y, Ishigami K, Mergaert P, Kikuchi Y. Symbiont coordinates stem cell proliferation, apoptosis, and morphogenesis of gut symbiotic organ in the stinkbug- Caballeronia symbiosis. Front Physiol 2023; 13:1071987. [PMID: 36685208 PMCID: PMC9846216 DOI: 10.3389/fphys.2022.1071987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
The bean bug Riptortus pedestris obtains a specific bacterial symbiont, Caballeronia insecticola (Burkholderia insecticola), from the environmental soil and harbors it in the posterior midgut region that is composed of hundreds of crypts. While newly hatched aposymbiotic insects possess primordial midgut crypts with little or no lumen, colonization of C. insecticola triggers swift development of the symbiotic organ, forming enlarged and opened crypts, and the symbiont subsequently fills the luminal cavities of those mature crypts. The cellular processes of crypt development triggered by C. insecticola colonization are poorly understood. Here we identified a fundamental mechanism of the symbiont-mediated midgut development by investigating cell cycles of intestinal epithelial cells. Intestinal stem cells of the bean bug are located and proliferate at the crypt base. Differentiated enterocytes migrate upward along the epithelial cell layer of the crypt as the midgut develops, induction of apoptosis in enterocytes primarily occurred on the tip side of the crypts, and apoptotic cells then eventually were shed from the crypts into the hemolymph. The proliferation rate of the stem cells at the base of the crypts was low while a high apoptotic rate was observed at the crypt tip in aposymbiotic insects, resulting in undeveloped short crypts. On the contrary, the gut-colonizing C. insecticola promoted the proliferation of the stem cells at the base of crypts and simultaneously inhibited apoptosis at the tip of crypts, resulting in a net growth of the crypts and the generation of a crypt lumen that becomes colonized by the bacterial symbiont. These results demonstrated that the Caballeronia symbiont colonization induces the development of the midgut crypts via finely regulating the enterocyte cell cycles, enabling it to stably and abundantly colonize the generated spacious crypts of the bean bug host.
Collapse
Affiliation(s)
- Seonghan Jang
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo, Japan
- Division of Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Kota Ishigami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Peter Mergaert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, Sapporo, Japan
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Franco Cairo JPL, Mandelli F, Tramontina R, Cannella D, Paradisi A, Ciano L, Ferreira MR, Liberato MV, Brenelli LB, Gonçalves TA, Rodrigues GN, Alvarez TM, Mofatto LS, Carazzolle MF, Pradella JGC, Paes Leme AF, Costa-Leonardo AM, Oliveira-Neto M, Damasio A, Davies GJ, Felby C, Walton PH, Squina FM. Oxidative cleavage of polysaccharides by a termite-derived superoxide dismutase boosts the degradation of biomass by glycoside hydrolases. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:4845-4858. [PMID: 35813357 PMCID: PMC9208272 DOI: 10.1039/d1gc04519a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/07/2022] [Indexed: 05/31/2023]
Abstract
Wood-feeding termites effectively degrade plant biomass through enzymatic degradation. Despite their high efficiencies, however, individual glycoside hydrolases isolated from termites and their symbionts exhibit anomalously low effectiveness in lignocellulose degradation, suggesting hereto unknown enzymatic activities in their digestome. Herein, we demonstrate that an ancient redox-active enzyme encoded by the lower termite Coptotermes gestroi, a Cu/Zn superoxide dismutase (CgSOD-1), plays a previously unknown role in plant biomass degradation. We show that CgSOD-1 transcripts and peptides are up-regulated in response to an increased level of lignocellulose recalcitrance and that CgSOD-1 localizes in the lumen of the fore- and midguts of C. gestroi together with termite main cellulase, CgEG-1-GH9. CgSOD-1 boosts the saccharification of polysaccharides by CgEG-1-GH9. We show that the boosting effect of CgSOD-1 involves an oxidative mechanism of action in which CgSOD-1 generates reactive oxygen species that subsequently cleave the polysaccharide. SOD-type enzymes constitute a new addition to the growing family of oxidases, ones which are up-regulated when exposed to recalcitrant polysaccharides, and that are used by Nature for biomass degradation.
Collapse
Affiliation(s)
- João Paulo L Franco Cairo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP) Campinas São Paulo Brazil
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen Rolighedsvej 23 DK-1958 Frederiksberg C Denmark
- Department of Chemistry, University of York York YO10 5DD UK
| | - Fernanda Mandelli
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials Campinas São Paulo Brazil
| | - Robson Tramontina
- Programa de Processos Tecnológicos e Ambientais da Universidade de Sorocaba (UNISO) Sorocaba SP Brazil
| | - David Cannella
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen Rolighedsvej 23 DK-1958 Frederiksberg C Denmark
| | | | - Luisa Ciano
- Department of Chemistry, University of York York YO10 5DD UK
| | - Marcel R Ferreira
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP Botucatu São Paulo Brasil
| | - Marcelo V Liberato
- Programa de Processos Tecnológicos e Ambientais da Universidade de Sorocaba (UNISO) Sorocaba SP Brazil
| | - Lívia B Brenelli
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen Rolighedsvej 23 DK-1958 Frederiksberg C Denmark
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials Campinas São Paulo Brazil
| | - Thiago A Gonçalves
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Gisele N Rodrigues
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials Campinas São Paulo Brazil
| | - Thabata M Alvarez
- Programa de Mestrado e Doutorado em Biotecnologia Industrial, Universidade Positivo Curitiba PR Brasil
| | - Luciana S Mofatto
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade de Campinas, UNICAMP Campinas São Paulo Brasil
| | - Marcelo F Carazzolle
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade de Campinas, UNICAMP Campinas São Paulo Brasil
| | - José G C Pradella
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials Campinas São Paulo Brazil
| | - Adriana F Paes Leme
- Laboratório Nacional de Biociências (LNBio) do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) Campinas São Paulo Brasil
| | - Ana M Costa-Leonardo
- Laboratório de Cupins, Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista, UNESP Rio Claro São Paulo Brasil
| | - Mário Oliveira-Neto
- Departamento de Física e Biofísica, Instituto de Biociências, Universidade Estadual Paulista, UNESP Botucatu São Paulo Brasil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Gideon J Davies
- Department of Chemistry, University of York York YO10 5DD UK
| | - Claus Felby
- Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen Rolighedsvej 23 DK-1958 Frederiksberg C Denmark
| | - Paul H Walton
- Department of Chemistry, University of York York YO10 5DD UK
| | - Fabio M Squina
- Programa de Processos Tecnológicos e Ambientais da Universidade de Sorocaba (UNISO) Sorocaba SP Brazil
| |
Collapse
|
4
|
Wu CY, Meng J, Merchant A, Zhang YX, Li MW, Zhou XG, Wang Q. Microbial Response to Fungal Infection in a Fungus-Growing Termite, Odontotermes formosanus (Shiraki). Front Microbiol 2021; 12:723508. [PMID: 34880836 PMCID: PMC8645866 DOI: 10.3389/fmicb.2021.723508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
The crosstalk between gut microbiota and host immunity has emerged as one of the research foci of microbiome studies in recent years. The purpose of this study was to determine how gut microbes respond to fungal infection in termites, given their reliance on gut symbionts for food intake as well as maintaining host health. Here, we used Metarhizium robertsii, an entomopathogenic fungus, to infect Odontotermes formosanus, a fungus-growing termite in the family Termitidae, and documented changes in host gut microbiota via a combination of bacterial 16S rDNA sequencing, metagenomic shotgun sequencing, and transmission electron microscopy. Our analyses found that when challenged with Metarhizium, the termite gut showed reduced microbial diversity within the first 12 h of fungal infection and then recovered and even surpassed pre-infection flora levels. These combined results shed light on the role of gut flora in maintaining homeostasis and immune homeostasis in the host, and the impact of gut flora dysbiosis on host susceptibility to infection.
Collapse
Affiliation(s)
- Chen-Yu Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jing Meng
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Yi-Xiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Wang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xu-Guo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Qian Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Scharf ME. Challenges and physiological implications of wood feeding in termites. CURRENT OPINION IN INSECT SCIENCE 2020; 41:79-85. [PMID: 32823202 DOI: 10.1016/j.cois.2020.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Termites are fascinating insects for a number of reasons, one of which being their specialization on diets of wood lignocellulose. The goal of this review is to consider stress-inducing characteristics of wood and apparent molecular-physiological adaptations in termite guts to overcome these stressors. Defensive factors present in wood include extractive secondary plant metabolites, lignin and related phenolics, crystalline cellulose, and low nitrogen content. Molecular-physiological adaptations of the termite gut to deal with these factors include robust detoxification and antioxidant machinery, the production of a peritrophic matrix and a wide range of cellulases from host and symbiotic sources, and creation of niches available to nitrogen-fixing bacterial symbionts. Considering termite gut physiology and symbioses in the context of stress-response has applied implications. These outcomes can include development of efficient biomass breakdown strategies, protection of microbes during industrial processing applications, and safeguarding wooden structures from termite damage.
Collapse
Affiliation(s)
- Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|