1
|
Hasan AU, Serada S, Sato S, Obara M, Hirata S, Nagase Y, Kondo Y, Taira E. KDM4B Histone Demethylase Inhibition Attenuates Tumorigenicity of Malignant Melanoma Cells by Overriding the p53-Mediated Tumor Suppressor Pathway. J Cell Biochem 2025; 126:e30643. [PMID: 39358852 DOI: 10.1002/jcb.30643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024]
Abstract
Despite significant advances in the treatment of cutaneous melanoma (hereafter melanoma), the prognosis remains less favorable due to therapeutic resistance, which is presumably linked to epigenetic dysregulation. We hypothesized that the histone lysine demethylase KDM4B could play a pivotal role in controlling therapy-resistant melanoma. To validate our hypothesis, we retrieved RNA sequencing data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) program and observed upregulation of KDM4B in both primary and metastatic melanoma, which was associated with poor survival. To explore its role, we used murine B16, human SK-MEL-5, and G-361 melanoma cells as in vitro models of melanoma. We found that KDM4B inhibition using NCGC00244536 increased global levels of H3K9me3 and downregulated the expressions of cell cycle progression-related genes Cdk1, Cdk4, Ccnb1, and Ccnd1. Moreover, genetic ablation of KDM4B or its chemical inhibition using NCGC00244536 reduced p53 production by upregulating MDM2, which enhances the proteolytic degradation of p53. Interestingly, despite the reduction of p53, these interventions augmented apoptosis and senescence-induced cell death by activating pathways downstream of p53, as evidenced by reduced levels of pro-survival Bcl-2 and Bcl-xL proteins and increased production of pro-apoptotic cleaved caspase-3, caspase-7, Bax, and the senescence inducer Cdkn1a. Compared to the FDA-approved anti-melanoma agent dacarbazine, NCGC00244536 exhibited more pronounced cytotoxic and antiproliferative effects in melanoma cells. Importantly, NCGC00244536 demonstrated minimal cytotoxicity to low Kdm4b-expressing mouse embryonic fibroblasts. In conclusion, our findings suggest that KDM4B inhibition can override the antitumor effect of p53, and potentially serve as a therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Arif Ul Hasan
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Satoshi Serada
- Department of Molecular Pathophysiology, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Sachiko Sato
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Mami Obara
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Sho Hirata
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yukako Nagase
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yukiko Kondo
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Eiichi Taira
- Department of Pharmacology, School of Medicine, Iwate Medical University, Iwate, Japan
| |
Collapse
|
2
|
Bera A, Radhakrishnan S, Puthillathu N, Subramanian M, Gana N, Russ E, Pollard HB, Srivastava M. Role of Annexin 7 (ANXA7) as a Tumor Suppressor and a Regulator of Drug Resistance in Thyroid Cancer. Int J Mol Sci 2024; 25:13217. [PMID: 39684934 DOI: 10.3390/ijms252313217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Thyroid cancer is the most common endocrine malignancy in the United States, with an overall favorable prognosis. However, some patients experience poor outcomes due to the development of resistance to conventional therapies. Genetic alterations, including mutations in BRAF, Met, and p53, play critical roles in thyroid cancer progression, with the BRAF V600E mutation detected in over 60% of cases. This study investigates the tumor-suppressive role of Annexin A7 (ANXA7) in thyroid cancer, focusing on its potential impact on tumor behavior and therapeutic response. Our analysis, which included RNA sequencing and protein profiling, revealed reduced ANXA7 expression in thyroid cancer cells, particularly in those harboring the BRAF V600E mutation. Upon treatment with inhibitors targeting BRAF and MEK, ANXA7 expression increased, leading to reduced phosphorylation of ERK and activation of apoptotic pathways. Additionally, we identified the cyclin-dependent kinase inhibitor p21 as a key player in modulating resistance to BRAF inhibitors. Combination therapies aimed at concurrently increasing p21 and ANXA7 levels resulted in a marked enhancement of apoptosis. These findings suggest a previously uncharacterized regulatory network involving the ANXA7/p21/BRAF/MAPK/p53 axis, which may contribute to drug resistance in thyroid cancer. This study provides new insights into overcoming resistance to BRAF and MAPK inhibitors, with implications for treating thyroid cancer and potentially other BRAF-mutant tumors. Future efforts will focus on high-throughput screening approaches to explore ANXA7-targeted therapeutic strategies for thyroid cancer.
Collapse
Affiliation(s)
- Alakesh Bera
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Surya Radhakrishnan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Narayanan Puthillathu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Madhan Subramanian
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Nahbuma Gana
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Eric Russ
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Karras F, Kunz M. Patient-derived melanoma models. Pathol Res Pract 2024; 259:155231. [PMID: 38508996 DOI: 10.1016/j.prp.2024.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is a very aggressive, rapidly metastasizing tumor that has been studied intensively in the past regarding the underlying genetic and molecular mechanisms. More recently developed treatment modalities have improved response rates and overall survival of patients. However, the majority of patients suffer from secondary treatment resistance, which requires in depth analyses of the underlying mechanisms. Here, melanoma models based on patients-derived material may play an important role. Consequently, a plethora of different experimental techniques have been developed in the past years. Among these are 3D and 4D culture techniques, organotypic skin reconstructs, melanoma-on-chip models and patient-derived xenografts, Every technique has its own strengths but also weaknesses regarding throughput, reproducibility, and reflection of the human situation. Here, we provide a comprehensive overview of currently used techniques and discuss their use in different experimental settings.
Collapse
Affiliation(s)
- Franziska Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, Leipzig 04103, Germany
| |
Collapse
|
4
|
Zitzmann FD, Schmidt S, Frank R, Weigel W, Meier M, Jahnke HG. Microcavity well-plate for automated parallel bioelectronic analysis of 3D cell cultures. Biosens Bioelectron 2024; 250:116042. [PMID: 38266619 DOI: 10.1016/j.bios.2024.116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Three-dimensional (3D) in vitro cell culture models serve as valuable tools for accurately replicating cellular microenvironments found in vivo. While cell culture technologies are rapidly advancing, the availability of non-invasive, real-time, and label-free analysis methods for 3D cultures remains limited. To meet the demand for higher-throughput drug screening, there is a demanding need for analytical methods that can operate in parallel. Microelectrode systems in combination with microcavity arrays (MCAs), offer the capability of spatially resolved electrochemical impedance analysis and field potential monitoring of 3D cultures. However, the fabrication and handling of small-scale MCAs have been labour-intensive, limiting their broader application. To overcome this challenge, we have established a process for creating MCAs in a standard 96-well plate format using high-precision selective laser etching. In addition, to automate and ensure the accurate placement of 3D cultures on the MCA, we have designed and characterized a plug-in tool using SLA-3D-printing. To characterize our new 96-well plate MCA-based platform, we conducted parallel analyses of human melanoma 3D cultures and monitored the effect of cisplatin in real-time by impedance spectroscopy. In the following we demonstrate the capabilities of the MCA approach by analysing contraction rates of human pluripotent stem cell-derived cardiomyocyte aggregates in response to cardioactive compounds. In summary, our MCA system significantly expands the possibilities for label-free analysis of 3D cell and tissue cultures, offering an order of magnitude higher parallelization capacity than previous devices. This advancement greatly enhances its applicability in real-world settings, such as drug development or clinical diagnostics.
Collapse
Affiliation(s)
- Franziska D Zitzmann
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany; b-ACT Matter, Research and Transfer Centre for bioactive Matter, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Sabine Schmidt
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Winnie Weigel
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany
| | - Matthias Meier
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany; Helmholtz Pioneer Campus, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Deutscher Platz 5, D-04103, Leipzig, Germany.
| |
Collapse
|
5
|
Schaff DL, Fasse AJ, White PE, Vander Velde RJ, Shaffer SM. Clonal differences underlie variable responses to sequential and prolonged treatment. Cell Syst 2024; 15:213-226.e9. [PMID: 38401539 PMCID: PMC11003565 DOI: 10.1016/j.cels.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Cancer cells exhibit dramatic differences in gene expression at the single-cell level, which can predict whether they become resistant to treatment. Treatment perpetuates this heterogeneity, resulting in a diversity of cell states among resistant clones. However, it remains unclear whether these differences lead to distinct responses when another treatment is applied or the same treatment is continued. In this study, we combined single-cell RNA sequencing with barcoding to track resistant clones through prolonged and sequential treatments. We found that cells within the same clone have similar gene expression states after multiple rounds of treatment. Moreover, we demonstrated that individual clones have distinct and differing fates, including growth, survival, or death, when subjected to a second treatment or when the first treatment is continued. By identifying gene expression states that predict clone survival, this work provides a foundation for selecting optimal therapies that target the most aggressive resistant clones within a tumor. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Dylan L Schaff
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Aria J Fasse
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Phoebe E White
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Robert J Vander Velde
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA
| | - Sydney M Shaffer
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19146, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146, USA.
| |
Collapse
|
6
|
Cheng W, Liu J, Jackson B. Quantifying plasma dacarbazine levels in advanced melanoma patients: a liquid chromatography-tandem mass spectrometry performance analysis. Scand J Clin Lab Invest 2023; 83:614-619. [PMID: 38145313 DOI: 10.1080/00365513.2023.2297356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
The aim of this study was to develop a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying dacarbazine levels in the plasma of advanced melanoma patients, followed by an assessment of its analytical capabilities. The research encompassed the design of a high-performance liquid chromatography (HPLC) system, with the quantitative analysis performed using the multiple reaction monitoring (MRM) techniques and specific ion transition: 181.0 > 152.5 for dacarbazine and 187.1 > 158.6 for the internal standard (IS), dacarbazine-D6. The validation of the method involved an evaluation of parameters including linearity, detection limit, precision, and accuracy. Notably, the linear range extended from 10 to 1,000 µg/L for dacarbazine, and the method exhibited a detection limit of 10 µg/L. The method's precision, indicated by within-run and between-run coefficients of variation (CV), both being ≤4.2% and ≤8.3%, respectively. Furthermore, the accuracy of measurements, ranging from 86.1% to 99.4%, underscored the method's reliability. In clinical application, the dacarbazine levels of healthy control (n = 20) were 0.6 ± 0.02 μg/L; 770.9 ± 203.2 μg/mL in early-stage-melanoma patients (n = 22), and 588.7 ± 153.2 μg/mL in advanced melanoma patients (n = 25). The results serve as clinical evidence showing that long-term dacarbazine treatment affects the metabolism of dacarbazine.
Collapse
Affiliation(s)
- Wenhan Cheng
- Clinical Chemistry Department, The University of Scranton, Scranton, PA, USA
| | - John Liu
- Geisinger Medical Center - Laboratory Medicine, Danville, PA, USA
| | - Bryan Jackson
- Geisinger Medical Center - Laboratory Medicine, Danville, PA, USA
| |
Collapse
|
7
|
Peng J, Lin Z, Chen W, Ruan J, Deng F, Yao L, Rao M, Xiong X, Xu S, Zhang X, Liu X, Sun X. Vemurafenib induces a noncanonical senescence-associated secretory phenotype in melanoma cells which promotes vemurafenib resistance. Heliyon 2023; 9:e17714. [PMID: 37456058 PMCID: PMC10345356 DOI: 10.1016/j.heliyon.2023.e17714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
More than one half melanoma patients have BRAF gene mutation. BRAF inhibitor vemurafenib is an effective medication for these patients. However, acquired resistance is generally inevitable, the mechanisms of which are not fully understood. Cell senescence and senescence-associated secretory phenotype (SASP) are involved in extensive biological functions. This study was designed to explore the possible role of senescent cells in vemurafenib resistance. The results showed that vemurafenib treatment induced BRAF-mutant but not wild-type melanoma cells into senescence, as manifested by positive β-galactosidase staining, cell cycle arrest, enlarged cellular morphology, and cyclin D1/p-Rb pathway inhibition. However, the senescent cells induced by vemurafenib (SenV) did not display DNA damage response, p53/p21 pathway activation, reactive oxygen species accumulation, decline of mitochondrial membrane potential, or secretion of canonical SASP cytokines. Instead, SenV released other cytokines, including CCL2, TIMP2, and NGFR, to protect normal melanoma cells from growth inhibition upon vemurafenib treatment. Xenograft experiments further confirmed that vemurafenib induced melanoma cells into senescence in vivo. The results suggest that vemurafenib can induce robust senescence in BRAFV600E melanoma cells, leading to the release of resistance-conferring cytokines. Both the senescent cells and the resistant cytokines could be potential targets for tackling vemurafenib resistance.
Collapse
Affiliation(s)
- Jianyu Peng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Zijun Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Jie Ruan
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Minla Rao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xingdong Xiong
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xiangning Zhang
- Department of Pathophysiology, Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| | - Xuerong Sun
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523000, China
- Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Dongguan, 523000, China
| |
Collapse
|
8
|
Schaff DL, Fasse AJ, White PE, Vander Velde RJ, Shaffer SM. Clonal differences underlie variable responses to sequential and prolonged treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534152. [PMID: 36993721 PMCID: PMC10055379 DOI: 10.1101/2023.03.24.534152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cancer cells exhibit dramatic differences in gene expression at the single-cell level which can predict whether they become resistant to treatment. Treatment perpetuates this heterogeneity, resulting in a diversity of cell states among resistant clones. However, it remains unclear whether these differences lead to distinct responses when another treatment is applied or the same treatment is continued. In this study, we combined single-cell RNA-sequencing with barcoding to track resistant clones through prolonged and sequential treatments. We found that cells within the same clone have similar gene expression states after multiple rounds of treatment. Moreover, we demonstrated that individual clones have distinct and differing fates, including growth, survival, or death, when subjected to a second treatment or when the first treatment is continued. By identifying gene expression states that predict clone survival, this work provides a foundation for selecting optimal therapies that target the most aggressive resistant clones within a tumor.
Collapse
|
9
|
Characterization of Vemurafenib-Resistant Melanoma Cell Lines Reveals Novel Hallmarks of Targeted Therapy Resistance. Int J Mol Sci 2022; 23:ijms23179910. [PMID: 36077308 PMCID: PMC9455970 DOI: 10.3390/ijms23179910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Regardless of the significant improvements in treatment of melanoma, the majority of patients develop resistance whose mechanisms are still not completely understood. Hence, we generated and characterized two melanoma-derived cell lines, primary WM793B and metastatic A375M, with acquired resistance to the RAF inhibitor vemurafenib. The morphology of the resistant primary WM793B melanoma cells showed EMT-like features and exhibited a hybrid phenotype with both epithelial and mesenchymal characteristics. Surprisingly, the vemurafenib-resistant melanoma cells showed a decreased migration ability but also displayed a tendency to collective migration. Signaling pathway analysis revealed the reactivation of MAPK and the activation of the PI3K/AKT pathway depending on the vemurafenib-resistant cell line. The acquired resistance to vemurafenib caused resistance to chemotherapy in primary WM793B melanoma cells. Furthermore, the cell-cycle analysis and altered levels of cell-cycle regulators revealed that resistant cells likely transiently enter into cell cycle arrest at the G0/G1 phase and gain slow-cycling cell features. A decreased level of NME1 and NME2 metastasis suppressor proteins were found in WM793B-resistant primary melanoma, which is possibly the result of vemurafenib-acquired resistance and is one of the causes of increased PI3K/AKT signaling. Further studies are needed to reveal the vemurafenib-dependent negative regulators of NME proteins, their role in PI3K/AKT signaling, and their influence on vemurafenib-resistant melanoma cell characteristics.
Collapse
|
10
|
Loria R, Vici P, Di Lisa FS, Soddu S, Maugeri-Saccà M, Bon G. Cross-Resistance Among Sequential Cancer Therapeutics: An Emerging Issue. Front Oncol 2022; 12:877380. [PMID: 35814399 PMCID: PMC9259985 DOI: 10.3389/fonc.2022.877380] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades, cancer treatment has benefited from having a significant increase in the number of targeted drugs approved by the United States Food and Drug Administration. With the introduction of targeted therapy, a great shift towards a new era has taken place that is characterized by reduced cytotoxicity and improved clinical outcomes compared to traditional chemotherapeutic drugs. At present, targeted therapies and other systemic anti-cancer therapies available (immunotherapy, cytotoxic, endocrine therapies and others) are used alone or in combination in different settings (neoadjuvant, adjuvant, and metastatic). As a result, it is not uncommon for patients affected by an advanced malignancy to receive subsequent anti-cancer therapies. In this challenging complexity of cancer treatment, the clinical pathways of real-life patients are often not as direct as predicted by standard guidelines and clinical trials, and cross-resistance among sequential anti-cancer therapies represents an emerging issue. In this review, we summarize the main cross-resistance events described in the diverse tumor types and provide insight into the molecular mechanisms involved in this process. We also discuss the current challenges and provide perspectives for the research and development of strategies to overcome cross-resistance and proceed towards a personalized approach.
Collapse
Affiliation(s)
- Rossella Loria
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizia Vici
- Unit of Phase IV Trials, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Sofia Di Lisa
- Unit of Phase IV Trials, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Medical Oncology A, Department of Radiological, Oncological, and Anatomo-Pathological Sciences, Umberto I University Hospital, University Sapienza, Rome, Italy
| | - Silvia Soddu
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Bon
- Cellular Network and Molecular Therapeutic Target Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Giulia Bon,
| |
Collapse
|
11
|
Tyumentseva A, Averchuk A, Palkina N, Zinchenko I, Moshev A, Savchenko A, Ruksha T. Transcriptomic Profiling Revealed Plexin A2 Downregulation With Migration and Invasion Alteration in Dacarbazine-Treated Primary Melanoma Cells. Front Oncol 2021; 11:732501. [PMID: 34926249 PMCID: PMC8677675 DOI: 10.3389/fonc.2021.732501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Melanoma is highly heterogeneous type of malignant neoplasm that is responsible for the majority of deaths among other types of skin cancer. In the present study, we screened a list of differentially expressed genes in two primary, drug-naïve melanoma cell lines derived from patients with melanoma following treatment of the cells with the chemotherapeutic agent dacarbazine. The aim was to determine the transcriptomic profiles and associated alterations in the cell phenotype. We found the vascular endothelial growth factor A/vascular endothelial growth factor receptor 2, phosphoinositide 3-kinase/protein kinase B and focal adhesion signaling pathways to be top altered after dacarbazine treatment. In addition, we observed the expression levels of genes associated with tumor dissemination, integrin β8 and matrix metalloproteinase-1, to be diminished in both cell lines studied, the results of which were confirmed by reverse transcription-quantitative polymerase chain reaction. By contrast, plexin A2 expression was found to be upregulated in K2303 cells, where reduced migration and invasion were also observed, following dacarbazine treatment. Plexin A2 downregulation was associated with the promotion of migrative and invasive capacities in B0404 melanoma cells. Since plexin A2 is semaphorin co-receptor that is involved in focal adhesion and cell migration regulation, the present study suggested that plexin A2 may be implicated in the dacarbazine-mediated phenotypic shift of melanoma cells. We propose that the signature of cancer cell invasiveness can be revealed by using a combination of transcriptomic and functional approaches, which should be applied in the development of personalized therapeutic strategies for each patient with melanoma.
Collapse
Affiliation(s)
- Anna Tyumentseva
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
- Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Anton Averchuk
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Nadezhda Palkina
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Ivan Zinchenko
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Anton Moshev
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Andrey Savchenko
- Laboratory of Cell Molecular Physiology and Pathology, Federal Research Center, Krasnoyarsk Science Center of The Siberian Branch of The Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Tatiana Ruksha
- Department of Pathophysiology, Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| |
Collapse
|
12
|
Mangin MA, Boespflug A, Maucort Boulch D, Vacheron CH, Carpentier I, Thomas L, Dalle S. Decreased survival in patients treated by chemotherapy after targeted therapy compared to immunotherapy in metastatic melanoma. Cancer Med 2021; 10:3155-3164. [PMID: 33932099 PMCID: PMC8124115 DOI: 10.1002/cam4.3760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022] Open
Abstract
Background Cytotoxic chemotherapy (CC) is currently used in metastatic melanoma after patients have developed resistance to immune checkpoint inhibitors (ICI) and/or Mitogen‐Activated Protein Kinase inhibitors (MAPKi). We sought to evaluate if a previous treatment by ICI or MAPKi influences clinical outcomes in patients treated by CC in metastatic melanoma. Methods Eighty‐eight patients with a metastatic melanoma, treated by CC after a previous treatment by ICI or MAPKi between January 2009 and October 2019, were retrospectively analyzed. Progression‐Free‐Survival (PFS), Overall Survival (OS), Overall Response Rate (ORR), and Disease Control Rate (DCR) were evaluated in patients treated by CC according to their prior treatment by ICI or MAPKi. Results Patients treated by CC after ICI tended to have a better median PFS (2.81 months (2.39–5.30) versus 2.40 months (0.91–2.75), p = 0.023), median OS (6.03 months (3.54–11.54) versus 4.44 months (1.54–8.59), p = 0.27), DCR (26.0% vs. 10.5%, p = 0.121) and ORR (22.0% vs. 7.9% p = 0.134) than those previously treated by MAPKi. Conclusions A prior treatment by an MAPKi may be associated with a worse response to CC than ICI, and further investigations should be performed to confirm if there is a clinical benefit to propose CC in this setting.
Collapse
Affiliation(s)
- Marie-Alix Mangin
- Dermatology Unit, Lyon Sud University Hospital, Pierre Bénite, France
| | - Amélie Boespflug
- Dermatology Unit, Lyon Sud University Hospital, Pierre Bénite, France.,Cancer Research Center of Lyon, Claude Bernard Lyon-1 University, INSERM1052, CNRS 5286, Centre Leon Berard, Lyon, France
| | - Delphine Maucort Boulch
- Biostatistics-Bioinformatics Department, Public Health Pole, Hospices Civils de Lyon, Evolutive biology and biometry laboratory, Université Lyon 1, CNRS UMR 5558, Villeurbanne, France
| | - Charles-Hervé Vacheron
- Biostatistics-Bioinformatics Department, Public Health Pole, Hospices Civils de Lyon, Evolutive biology and biometry laboratory, Université Lyon 1, CNRS UMR 5558, Villeurbanne, France.,Department of Anesthesia and Resuscitation, Lyon Sud University Hospital, Pierre Bénite, France
| | | | - Luc Thomas
- Dermatology Unit, Lyon Sud University Hospital, Pierre Bénite, France.,Cancer Research Center of Lyon, Claude Bernard Lyon-1 University, INSERM1052, CNRS 5286, Centre Leon Berard, Lyon, France
| | - Stéphane Dalle
- Dermatology Unit, Lyon Sud University Hospital, Pierre Bénite, France.,Cancer Research Center of Lyon, Claude Bernard Lyon-1 University, INSERM1052, CNRS 5286, Centre Leon Berard, Lyon, France
| |
Collapse
|
13
|
Huang H, Yi J, Park S, Zhang H, Kim E, Park S, Kwon W, Jang S, Zhang X, Chen H, Choi SK, Kim SH, Liu K, Dong Z, Lee MH, Ryoo Z, Kim MO. Costunolide suppresses melanoma growth via the AKT/mTOR pathway in vitro and in vivo. Am J Cancer Res 2021; 11:1410-1427. [PMID: 33948365 PMCID: PMC8085867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023] Open
Abstract
Melanoma is the most common type of skin cancer and its incidence is rapidly increasing. AKT, and its related signaling pathways, are highly activated in many cancers including lung, colon, and esophageal cancers. Costunolide (CTD) is a sesquiterpene lactone that has been reported to possess neuroprotective, anti-inflammatory, and anti-cancer properties. However, the target and mechanism underlying its efficacy in melanoma have not been identified. In this study, we elucidated the mechanism behind the anti-cancer effect of CTD in melanoma in vitro and in vivo by identifying CTD as an AKT inhibitor. We first verified that p-AKT and AKT are highly expressed in melanoma patient tissues and cell lines. CTD significantly inhibited the proliferation, migration, and invasion of melanoma cells including SK-MEL-5, SK-MEL-28, and A375 that are overexpressed p-AKT and AKT proteins. We investigated the mechanism of CTD using a computational docking modeling, pull-down, and site directed mutagenesis assay. CTD directly bound to AKT thereby arresting cell cycle at the G1 phase, and inducing the apoptosis of melanoma cells. In addition, CTD regulated the G1 phase and apoptosis biomarkers, and inhibited the expression of AKT/mTOR/GSK3b/p70S6K/4EBP cascade proteins. After reducing AKT expression in melanoma cells, cell growth was significantly decreased and CTD did not showed further inhibitory effects. Furthermore, CTD administration suppressed tumor growth and weight in cell-derived xenograft mice models in vivo without body weight loss and inhibited the expression of Ki-67, p-AKT, and p70S6K in tumor tissues. In summary, our study implied that CTD inhibited melanoma progression in vitro and in vivo. In this study, we reported that CTD could affect melanoma growth by targeting AKT. Therefore, CTD has considerable potential as a drug for melanoma therapy.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National UniversitySangju-si, Gyeongsang buk-do 37224, Republic of Korea
| | - Junkoo Yi
- Gyeongbuk Livestock Research InstituteYeongju 36052, South Korea
| | - Song Park
- Core Protein Resources Center, DGISTDaegu, Republic of Korea
- Department of Brian and Cognitive Sciences, DGISTDaegu, Republic of Korea
| | - Haibo Zhang
- Department of Animal Science and Biotechnology, Kyungpook National UniversitySangju-si, Gyeongsang buk-do 37224, Republic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Kyungpook National UniversitySangju-si, Gyeongsang buk-do 37224, Republic of Korea
| | - Sijun Park
- Shool of Life Science, Kyungpook National UniversityDaegu, Republic of Korea
| | - Wookbong Kwon
- Shool of Life Science, Kyungpook National UniversityDaegu, Republic of Korea
- Core Protein Resources Center, DGISTDaegu, Republic of Korea
| | - Soyoung Jang
- Shool of Life Science, Kyungpook National UniversityDaegu, Republic of Korea
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan UniversityShanghai 200040, China
| | - Hanyong Chen
- The Hormel Institute, University of MinnesotaAustin, Minnesota, USA
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGISTDaegu, Republic of Korea
- Division of Biotechnology, DGISTDaegu, Republic of Korea
| | - Sung-hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic CollegeChungnam, Korea
| | - Kangddong Liu
- Basic Medical College, Zhengzhou University ZhengzhouZhengzhou, Henan, China
| | - Zigang Dong
- Basic Medical College, Zhengzhou University ZhengzhouZhengzhou, Henan, China
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin UniversityNaju, Jeollanamdo 58245, Republic of Korea
| | - Zaeyoung Ryoo
- Shool of Life Science, Kyungpook National UniversityDaegu, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National UniversitySangju-si, Gyeongsang buk-do 37224, Republic of Korea
| |
Collapse
|
14
|
Wu K, Wang Q, Liu YL, Xiang Z, Wang QQ, Yin L, Liu SL. LncRNA POU3F3 Contributes to Dacarbazine Resistance of Human Melanoma Through the MiR-650/MGMT Axis. Front Oncol 2021; 11:643613. [PMID: 33816296 PMCID: PMC8010678 DOI: 10.3389/fonc.2021.643613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Alkylating agents are critical therapeutic options for melanoma, while dacarbazine (DTIC)-based chemotherapy showed poor sensitivity in clinical trials. Long non-coding RNAs (lncRNAs) were highlighted in the progression of malignant tumors in recent years, whereas little was known about their involvement in melanoma. Methods: The functional role and molecular mechanism of lncRNA POU3F3 were evaluated on DTIC-resistant melanoma cells. Further studies analyzed its clinical role in the disease progression of melanoma. Results: We observed elevated the expression of lncRNA POU3F3 in the DTIC-resistant melanoma cells. Gain-of-function assays showed that the overexpression of lncRNA POU3F3 maintained cell survival with DTIC treatment, while the knockdown of lncRNA POU3F3 restored cell sensitivity to DTIC. A positive correlation of the expression O6-methylguanine-DNA-methyltransferase (MGMT) was observed with lncRNA POU3F3 in vitro and in vivo. Bioinformatic analyses predicted that miR-650 was involved in the lncRNA POU3F3-regulated MGMT expression. Molecular analysis indicated that lncRNA POU3F3 worked as a competitive endogenous RNA to regulate the levels of miR-650, and the lncRNA POU3F3/miR-650 axis determined the transcription of MGMT in melanoma cells to a greater extent. Further clinical studies supported that lncRNA POU3F3 was a risk factor for the disease progression of melanoma. Conclusion: LncRNA POU3F3 upregulated the expression of MGMT by sponging miR-650, which is a crucial way for DTIC resistance in melanoma. Our results indicated that lncRNA POU3F3 was a valuable biomarker for the disease progression of melanoma.
Collapse
Affiliation(s)
- Kai Wu
- Department of Burns and Plastic Surgery, People's Liberation Army (PLA) 960 Hospital, Jinan, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China.,Clinical Laboratory, Navy 971 Hospital of PLA, Qingdao, China
| | - Yu-Lin Liu
- Clinical Laboratory, Navy 971 Hospital of PLA, Qingdao, China
| | - Zhuo Xiang
- Pharmacy Department, Navy 971 Hospital of PLA, Qingdao, China
| | - Qing-Qing Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Li Yin
- Oncology Department, Shandong Second Provincial General Hospital, Jinan, China
| | - Shun-Li Liu
- Department of Burns and Plastic Surgery, People's Liberation Army (PLA) 960 Hospital, Jinan, China
| |
Collapse
|
15
|
Abstract
HSP90 (heat shock protein 90) is an ATP-dependent molecular chaperone involved in a proper folding and maturation of hundreds of proteins. HSP90 is abundantly expressed in cancer, including melanoma. HSP90 client proteins are the key oncoproteins of several signaling pathways controlling melanoma development, progression and response to therapy. A number of natural and synthetic compounds of different chemical structures and binding sites within HSP90 have been identified as selective HSP90 inhibitors. The majority of HSP90-targeting agents affect N-terminal ATPase activity of HSP90. In contrast to N-terminal inhibitors, agents interacting with the middle and C-terminal domains of HSP90 do not induce HSP70-dependent cytoprotective response. Several inhibitors of HSP90 were tested against melanoma in pre-clinical studies and clinical trials, providing evidence that these agents can be considered either as single or complementary therapeutic strategy. This review summarizes current knowledge on the role of HSP90 protein in cancer with focus on melanoma, and provides an overview of structurally different HSP90 inhibitors that are considered as potential therapeutics for melanoma treatment.
Collapse
Affiliation(s)
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
16
|
Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020; 8:biomedicines8090327. [PMID: 32899183 PMCID: PMC7555584 DOI: 10.3390/biomedicines8090327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody–drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.
Collapse
|
17
|
Hou S, Guo M, Xi H, Zhang L, Zhao A, Hou H, Fang W. MicroRNA-153-3p sensitizes melanoma cells to dacarbazine by suppressing ATG5-mediated autophagy and apoptosis. Transl Cancer Res 2020; 9:5626-5636. [PMID: 35117926 PMCID: PMC8798736 DOI: 10.21037/tcr-20-2660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Dacarbazine is one of the most commonly used chemotherapeutic agents for the treatment of melanoma; however, only 5-10% of patients benefit from this treatment. MicroRNA-153-3p (miR-153-3p) has a tumor-suppressive effect in melanoma. In the present study, we found that miR-153-3p was downregulated in melanoma cell lines (A357 and M14). METHODS The target relationship between miR-153-3p and Autophagy-related gene 5 (ATG5) was confirmed by Dual-Luciferase Reporter Assay. Cell Counting Kit-8, flow cytometry, immunofluorescence, and Western blot were used to examine cell viability, apoptosis, and autophagy, respectively. RESULTS miR-153-3p overexpression decreased the half-maximal inhibitory concentration value of dacarbazine, while increasing the apoptotic rate in both A357 and M14 cells. Moreover, miR-153-3p enhanced dacarbazine-induced autophagy in melanoma cells. Our bioinformatics study revealed that ATG5 is one of the potential targets of miR-153-3p. The overexpression of ATG5 decreased dacarbazine sensitivity and promoted proliferation, as well as inhibited apoptosis and autophagy in melanoma cells. miR-153-3p exhibited suppressive effects via directly binding and downregulating ATG5 expression, which subsequently increased sensitivity to dacarbazine and inhibited proliferation, and enhanced apoptosis and autophagy in melanoma cells. CONCLUSIONS The results of the present study showed that miR-153-3p sensitizes melanoma cells to dacarbazine by suppressing ATG5-mediated autophagy and apoptosis, and provided a basis to explore the functions of miRNAs on drug resistance in the treatment of melanoma.
Collapse
Affiliation(s)
- Shaowei Hou
- Medical College of Shanxi Datong University, Datong, China
| | - Minfang Guo
- Medical College of Shanxi Datong University, Datong, China
| | - Haiying Xi
- Department of Dermatological, The Fifth People’s Hospital of Datong, Datong, China
| | - Lianqing Zhang
- Department of Dermatological, The Fifth People’s Hospital of Datong, Datong, China
| | - Ailing Zhao
- Department of Neurology, The Fifth People’s Hospital of Datong, Datong, China
| | - Heng Hou
- Medical College of Shanxi Datong University, Datong, China
| | - Wuning Fang
- Department of Dermatology, Xi’an International Medical Center Hospital, Xi’an, China
| |
Collapse
|
18
|
Desensitization of metastatic melanoma cells to therapeutic treatment through repeated exposure to dacarbazine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:111982. [PMID: 32866820 DOI: 10.1016/j.jphotobiol.2020.111982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 06/21/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Aberrant anti-cancer drug efflux mediated by membrane protein ABC transporters (ABCB5 and ABCG2) is thought to characterize melanoma heterogeneous chemoresistant populations, presumed to have unlimited proliferative and self-renewal abilities. Therefore, this study primarily aimed to investigate whether continuous exposure of melanoma cells to dacarbazine (DTIC) chemotherapeutic drug enriches cultures with therapy resistant cells. Thereafter, we sought to determine whether combining the genotoxic activity of DTIC with the oxidative insults of hypericin activated photodynamic therapy (HYP-PDT) could synergized to kill heterogenous chemoresistant melanoma populations. This study revealed that DTIC resistant (UCT Mel-1DTICR2) melanoma cells were less sensitive to all therapies than parental melanoma cells (UCT Mel-1), yet combination therapy was the most efficient. At the exception of DTIC treatment, both HYP-PDT and the combination therapy were effective in significantly reducing the Hoechst non-effluxing dye melanoma main populations (MP) compared to their side population (SP) counterparts. Likewise, HYP-PDT and combination therapy significantly reduced self-renewal capacity, increased expression of ABCB5 and ABCG2 transporters and differentially induced cell cycle arrest and cell death (apoptosis or necrosis) depending on the melanoma MP cell type. Collectively, combination therapy could synergistically reduce melanoma proliferative and clonogenic potential. However, further research is needed to decipher the cellular mechanisms underlying this resistance which would enable combination therapy to reach therapeutic fruition.
Collapse
|
19
|
Xing C, Tian H, Zhang Y, Guo K, Tang Y, Wang Q, Lv L, Wang L. DDX39 Overexpression Predicts a Poor Prognosis and Promotes Aggressiveness of Melanoma by Cooperating With SNAIL. Front Oncol 2020; 10:1261. [PMID: 32903487 PMCID: PMC7435017 DOI: 10.3389/fonc.2020.01261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to investigate the prognostic value and molecular mechanism of DDX39 and its effector SNAIL in melanoma. First, overexpression of DDX39 in melanoma, which was identified by database analysis, was further validated in patient tissues. Cell growth, cell cycle, cell migration, and cell invasion assays were then performed to evaluate the effects of downregulated DDX39 on the melanoma cell proliferation and aggressiveness. The same approaches were also used to reveal the cooperation of the transcription factor SNAIL with DDX39 to promote the aggressiveness of melanoma cells. We found that the expression of DDX39 was significantly upregulated in melanoma tissue compared to pigmented nevus tissue, and it was positively correlated with the clinical stage defined by the American Joint Committee on Cancer (AJCC) and the prognosis. Downregulation of DDX39 in melanoma cells was found to significantly inhibit cell proliferation, increase G2/M cell cycle arrest, enhance caspase-mediated cell apoptosis, and suppress cell invasion and migration. In addition, we demonstrated that the overexpression of SNAIL could restore the cell growth and aggressiveness impaired by DDX39 RNA interference. Immunohistochemical staining also showed a positive correlation between DDX39 overexpression and SNAIL overexpression in melanoma tissues, suggesting that SNAIL is one of the effectors activated by DDX39. In summary, the overexpression of DDX39 and SNAIL was positively related to the poor prognosis of melanoma patients and the increased aggressiveness of melanoma cells. Our study provides valuable evidence regarding the prognostic value of DDX39 and SNAIL as well as their potential as novel therapeutic targets for treating melanoma patients.
Collapse
Affiliation(s)
- Chengjuan Xing
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui Tian
- Department of Emergency Medicine, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, China
| | - Yini Zhang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kun Guo
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Tang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qimin Wang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li Lv
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lifen Wang
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
20
|
Im H, Lee J, Ryu KY, Yi JY. Integrin αvβ3-Akt signalling plays a role in radioresistance of melanoma. Exp Dermatol 2020; 29:562-569. [PMID: 32298492 DOI: 10.1111/exd.14102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
Melanoma is a deadly type of skin cancer that is particularly difficult to treat owing to its resistance to radiation therapy. Here, we attempted to determine the key proteins responsible for melanoma radioresistance, with the aim of improving disease response to radiation therapy. Two melanoma cell lines, SK-Mel5 and SK-Mel28, with different radiosensitivities were analysed via RNA-Seq (Quant-Seq) and target proteins with higher abundance in the more radioresistant cell line, SK-Mel28, identified. Among these proteins, integrin αvβ3, a well-known molecule in cell adhesion, was selected for analysis. Treatment of SK-Mel28 cells with cilengitide, an integrin αvβ3 inhibitor, as well as γ-irradiation resulted in more significant cell death than γ-irradiation alone. In addition, Akt, a downstream signal transducer of integrin αvβ3, showed high basic activation in SK-Mel28 and was significantly decreased upon co-treatment with cilengitide and γ-irradiation. MK-2206, an Akt inhibitor, exerted similar effects on the SK-Mel28 cell line following γ-irradiation. Our results collectively demonstrate that the integrin αvβ3-Akt signalling pathway contributes to radioresistance in SK-Mel28 cells, which may be manipulated to improve therapeutic options for melanoma.
Collapse
Affiliation(s)
- Hyuntaik Im
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,Department of Life Science, University of Seoul, Seoul, Korea
| | - Jeeyong Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, Korea
| | - Jae Youn Yi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
21
|
Kim Y, Gil J, Pla I, Sanchez A, Betancourt LH, Lee B, Appelqvist R, Ingvar C, Lundgren L, Olsson H, Baldetorp B, Kwon HJ, Oskolás H, Rezeli M, Doma V, Kárpáti S, Szasz AM, Németh IB, Malm J, Marko-Varga G. Protein Expression in Metastatic Melanoma and the Link to Disease Presentation in a Range of Tumor Phenotypes. Cancers (Basel) 2020; 12:E767. [PMID: 32213878 PMCID: PMC7140007 DOI: 10.3390/cancers12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.
Collapse
Affiliation(s)
- Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Skåne University Hospital Lund, 222 42 Lund, Sweden;
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Henriett Oskolás
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Viktoria Doma
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - A. Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Department of Bioinformatics, Semmelweis University, 1091 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary;
| | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| |
Collapse
|