1
|
Li X, Li S, Zhao F, Fu R, Cui L, Chen S, Yang D, Yuan H, Yan X. Impacts of neonicotinoid compounds on the structure and function of Apis mellifera OBP14: Insights from SPR, ITC, multispectroscopy, and molecular modeling. Colloids Surf B Biointerfaces 2025; 250:114551. [PMID: 39951948 DOI: 10.1016/j.colsurfb.2025.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Honeybees are vital for biodiversity and agricultural productivity, yet their populations are declining globally, partly due to exposure to neonicotinoid pesticides. Odorant-binding protein 14 (OBP14) plays an important role in honeybee chemosensation, but its involvement in neonicotinoid toxicity remains underexplored due to limitations in traditional fluorescence spectroscopy techniques. This gap hampers our understanding of neonicotinoid risks to honeybee health. Here, we explored the molecular interactions between OBP14 from Apis mellifera and three widely used neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) using molecular modeling, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and multispectroscopy. SPR and ITC characterized the binding affinity, specificity, and thermodynamic parameters of AmelOBP14 interacting with three neonicotinoid compounds, revealing that the binding process is spontaneous and primarily driven by hydrophobic and electrostatic interactions. Molecular modeling highlighted that phenylalanine residue Phe54, near the binding site, plays a critical role in these interactions. UV-vis absorption spectroscopy and synchronous fluorescence spectroscopy (SFS) support slight changes in the microenvironment around the aromatic amino acids of OBP14. Fourier Transform Infrared Spectroscopy (FTIR) and circular dichroism spectroscopy (CD) indicate a decrease in the α-helix content of OBP14, suggesting a change in its secondary structure, while three-dimensional (3D) fluorescence spectroscopy confirms the non-fluorescent nature of the OBP14 polypeptide backbone. The study results revealed its potential as a biomarker for pesticide risk assessment, providing important insights into the molecular mechanisms by which neonicotinoids may impair bee chemosensory function, and offering guidance for the design of safer pesticides to minimize harm to these important pollinators.
Collapse
Affiliation(s)
- Xiangshuai Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fangkui Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruohan Fu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Li Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuning Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daibin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huizhu Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiaojing Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Ghosh P, Kundu A, Ganguly D. From experimental studies to computational approaches: recent trends in designing novel therapeutics for amyloidogenesis. J Mater Chem B 2025; 13:858-881. [PMID: 39664012 DOI: 10.1039/d4tb01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloidosis is a condition marked by misfolded proteins that build up in tissues and eventually destroy organs. It has been connected to a number of fatal illnesses, including non-neuropathic and neurodegenerative conditions, which in turn have a significant influence on the worldwide health sector. The inability to identify the underlying etiology of amyloidosis has hampered efforts to find a treatment for the condition. Despite the identification of a multitude of putative pathogenic variables that may operate independently or in combination, the molecular mechanisms responsible for the development and progression of the disease remain unclear. A thorough investigation into protein aggregation and the impacts of toxic aggregated species will help to clarify the cytotoxicity of aggregation-mediated cellular apoptosis and lay the groundwork for future studies aimed at creating effective treatments and medications. This review article provides a thorough summary of the combination of various experimental and computational approaches to modulate amyloid aggregation. Further, an overview of the latest developments of novel therapeutic agents is given, along with a discussion of the possible obstacles and viewpoints on this developing field. We believe that the information provided by this review will help scientists create innovative treatment strategies that affect the way proteins aggregate.
Collapse
Affiliation(s)
- Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| | - Agnibin Kundu
- Department of Medicine, District Hospital Howrah, 10, Biplabi Haren Ghosh Sarani Lane, Howrah 711101, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science & Technology, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| |
Collapse
|
3
|
Coskuner-Weber O. Structures prediction and replica exchange molecular dynamics simulations of α-synuclein: A case study for intrinsically disordered proteins. Int J Biol Macromol 2024; 276:133813. [PMID: 38996889 DOI: 10.1016/j.ijbiomac.2024.133813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
In recent years, a variety of three-dimensional structure prediction tools, including AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold, have been employed in the investigation of intrinsically disordered proteins. However, a comprehensive validation of these tools specifically for intrinsically disordered proteins has yet to be conducted. In this study, we utilize AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold to predict the structure of a model intrinsically disordered α-synuclein protein. Additionally, extensive replica exchange molecular dynamics simulations of the intrinsically disordered protein are conducted. The resulting structures from both structure prediction tools and replica exchange molecular dynamics simulations are analyzed for radius of gyration, secondary and tertiary structure properties, as well as Cα and Hα chemical shift values. A comparison of the obtained results with experimental data reveals that replica exchange molecular dynamics simulations provide results in excellent agreement with experimental observations. However, none of the structure prediction tools utilized in this study can fully capture the structural characteristics of the model intrinsically disordered protein. This study shows that a cluster of ensembles are required for intrinsically disordered proteins. Artificial-intelligence based structure prediction tools such as AlphaFold3 and C-I-TASSER could benefit from stochastic sampling or Monte Carlo simulations for generating an ensemble of structures for intrinsically disordered proteins.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Turkish-German University, Molecular Biotechnology, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey.
| |
Collapse
|
4
|
Martins G, Galamba N. Wild-Type α-Synuclein Structure and Aggregation: A Comprehensive Coarse-Grained and All-Atom Molecular Dynamics Study. J Chem Inf Model 2024; 64:6115-6131. [PMID: 39046235 PMCID: PMC11323248 DOI: 10.1021/acs.jcim.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
α-Synuclein (α-syn) is a 140 amino acid intrinsically disordered protein (IDP) and the primary component of cytotoxic oligomers implicated in the etiology of Parkinson's disease (PD). While IDPs lack a stable three-dimensional structure, they sample a heterogeneous ensemble of conformations that can, in principle, be assessed through molecular dynamics simulations. However, describing the structure and aggregation of large IDPs is challenging due to force field (FF) accuracy and sampling limitations. To cope with the latter, coarse-grained (CG) FFs emerge as a potential alternative at the expense of atomic detail loss. Whereas CG models can accurately describe the structure of the monomer, less is known about aggregation. The latter is key for assessing aggregation pathways and designing aggregation inhibitor drugs. Herein, we investigate the structure and dynamics of α-syn using different resolution CG (Martini3 and Sirah2) and all-atom (Amber99sb and Charmm36m) FFs to gain insight into the differences and resemblances between these models. The dependence of the magnitude of protein-water interactions and the putative need for enhanced sampling (replica exchange) methods in CG simulations are analyzed to distinguish between force field accuracy and sampling limitations. The stability of the CG models of an α-syn fibril was also investigated. Additionally, α-syn aggregation was studied through umbrella sampling for the CG models and CG/all-atom models for an 11-mer peptide (NACore) from an amyloidogenic domain of α-syn. Our results show that despite the α-syn structures of Martini3 and Sirah2 with enhanced protein-water interactions being similar, major differences exist concerning aggregation. The Martini3 fibril is not stable, and the binding free energy of α-syn and NACore is positive, opposite to Sirah2. Sirah2 peptides in a zwitterionic form, in turn, display termini interactions that are too strong, resulting in end-to-end orientation. Sirah2, with enhanced protein-water interactions and neutral termini, provides, however, a peptide aggregation free energy profile similar to that found with all-atom models. Overall, we find that Sirah2 with enhanced protein-water interactions is suitable for studying protein-protein and protein-drug aggregation.
Collapse
Affiliation(s)
- Gabriel
F. Martins
- BioISI—Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nuno Galamba
- BioISI—Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
5
|
Khorsand FR, Uversky VN. Liquid-liquid phase separation as triggering factor of fibril formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:143-182. [PMID: 38811080 DOI: 10.1016/bs.pmbts.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Liquid-liquid phase separation (LLPS) refers to the phenomenon, where a homogeneous solution spontaneously undergoes a transition into two or more immiscible phases. Through transient weak multivalent macromolecular interactions, a homogeneous solution can spontaneously separate into two phases: one rich in biomolecules and the other poor in biomolecules. Phase separation is believed to serve as the physicochemical foundation for the formation of membrane-less organelles (MLOs) and bio-molecular condensates within cells. Moreover, numerous biological processes depend on LLPS, such as transcription, immunological response, chromatin architecture, DNA damage response, stress granule formation, viral infection, etc. Abnormalities in phase separation can lead to diseases, such as cancer, neurodegeneration, and metabolic disorders. LLPS is regulated by various factors, such as concentration of molecules undergoing LLPS, salt concentration, pH, temperature, post-translational modifications, and molecular chaperones. Recent research on LLPS of biomolecules has progressed rapidly and led to the development of databases containing information pertaining to various aspects of the biomolecule separation analysis. However, more comprehensive research is still required to fully comprehend the specific molecular mechanisms and biological effects of LLPS.
Collapse
Affiliation(s)
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
6
|
Yoon HR, Park GJ, Balupuri A, Kang NS. TWN-FS method: A novel fragment screening method for drug discovery. Comput Struct Biotechnol J 2023; 21:4683-4696. [PMID: 37841326 PMCID: PMC10568351 DOI: 10.1016/j.csbj.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
Fragment-based drug discovery (FBDD) is a well-established and effective method for generating diverse and novel hits in drug design. Kinases are suitable targets for FBDD due to their well-defined structure. Water molecules contribute to structure and function of proteins and also influence the environment within the binding pocket. Water molecules form a variety of hydrogen-bonded cyclic water-ring networks, collectively known as topological water networks (TWNs). Analyzing the TWNs in protein binding sites can provide valuable insights into potential locations and shapes for fragments within the binding site. Here, we introduce TWN-based fragment screening (TWN-FS) method, a novel screening method that suggests fragments through grouped TWN analysis within the protein binding site. We used this method to screen known CDK2, CHK1, IGF1R and ERBB4 inhibitors. Our findings suggest that TWN-FS method has the potential to effectively screen fragments. The TWN-FS method package is available on GitHub at https://github.com/pkj0421/TWN-FS.
Collapse
Affiliation(s)
- Hye Ree Yoon
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Gyoung Jin Park
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Anand Balupuri
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| |
Collapse
|
7
|
Saurabh A, Prabhu NP. Concerted enhanced-sampling simulations to elucidate the helix-fibril transition pathway of intrinsically disordered α-Synuclein. Int J Biol Macromol 2022; 223:1024-1041. [PMID: 36379279 DOI: 10.1016/j.ijbiomac.2022.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Fibril formation of α-synuclein is linked with Parkinson's disease. The intrinsically disordered nature of α-syn provides extensive conformational plasticity and becomes difficult to characterize its transition pathway from native monomeric to disease-associated fibril form. We implemented different simulation methods such as steered dynamics-umbrella sampling, and replica-exchange and conventional MD simulations to access various conformational states of α-syn. Nineteen distinct intermediate structures were identified by free energy landscape and cluster analysis. They were then sorted based on secondary structure and solvent exposure of fibril-core residues to illustrate the fibril dissociation pathway. The analysis showed that following the initial dissociation of the polypeptide chain from the fibril, α-syn might form either compact-conformations by long-range interactions or extended-conformations stabilized by local interactions. This leads α-syn to adapt two different pathways. The secondary structure, solvation, contact distance, interaction energies and backbone dihedrals of thirty-two selected residues were analyzed for all the 19 intermediates. The results suggested that formation of β-turns, reorganization of salt bridges, and dihedral changes in the hydrophobic regions are the major driving forces for helix-fibril transition. Structural features of the intermediates also correlated with the earlier experimental and computational studies. The study provides critical information on the fibrillation pathway of α-syn.
Collapse
Affiliation(s)
- Archi Saurabh
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India.
| |
Collapse
|
8
|
TWN-RENCOD: A novel method for protein binding site comparison. Comput Struct Biotechnol J 2022; 21:425-431. [PMID: 36618985 PMCID: PMC9798139 DOI: 10.1016/j.csbj.2022.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Several diverse proteins possess similar binding sites. Protein binding site comparison provides valuable insights for the drug discovery and development. Binding site similarities are useful in understanding polypharmacology, identifying potential off-targets and repurposing of known drugs. Many binding site analysis and comparison methods are available today, however, these methods may not be adequate to explain variation in the activity of a drug or a small molecule against a number of similar proteins. Water molecules surrounding the protein surface contribute to structure and function of proteins. Water molecules form diverse types of hydrogen-bonded cyclic water-ring networks known as topological water networks (TWNs). Analysis of TWNs in binding site of proteins may improve understanding of the characteristics of binding sites. We propose TWN-based residue encoding (TWN-RENCOD), a novel binding site comparison method which compares the aqueous environment in binding sites of similar proteins. As compared to other existing methods, results obtained using our method correlated better with differences in wide range of activity of a known drug (Sunitinib) against nine different protein kinases (KIT, PDGFRA, VEGFR2, PHKG2, ITK, HPK1, MST3, PAK6 and CDK2).
Collapse
|
9
|
Prosswimmer T, Daggett V. The role of α-sheet structure in amyloidogenesis: characterization and implications. Open Biol 2022; 12:220261. [PMID: 36416010 PMCID: PMC9682440 DOI: 10.1098/rsob.220261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Amyloid diseases are linked to protein misfolding whereby the amyloidogenic protein undergoes a conformational change, aggregates and eventually forms amyloid fibrils. While the amyloid fibrils and plaques are hallmarks of these diseases, they typically form late in the disease process and do not correlate with disease. Instead, there is growing evidence that smaller, soluble toxic oligomers form prior and appear to be early triggers of the molecular pathology underlying these diseases. Nearly 20 years ago, we proposed the α-sheet hypothesis after discovering that the early conformational changes observed during atomistic molecular dynamics simulations involve the formation of a non-standard protein structure, α-sheet. Furthermore, we proposed that toxic oligomers contain α-sheet structure and that preferentially targeting this structure could neutralize the toxicity, prevent further aggregation and serve as the basis for early detection of disease. Here, we present the origin of the α-sheet hypothesis and describe α-sheet structure and the corresponding mechanisms of conversion. We discuss experimental studies demonstrating that both mammalian and bacterial amyloid systems form α-sheet oligomers before converting to conventional β-sheet fibrils. Furthermore, we show that the process can be inhibited with de novo designed α-sheet peptides complementary to the structure in the toxic oligomers.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA 98195-5013, USA
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA 98195-5013, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| |
Collapse
|
10
|
Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. MOLECULAR BIOMEDICINE 2022; 3:13. [PMID: 35543798 PMCID: PMC9092326 DOI: 10.1186/s43556-022-00075-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) has received significant attention in recent biological studies. It refers to a phenomenon that biomolecule exceeds the solubility, condensates and separates itself from solution in liquid like droplets formation. Our understanding of it has also changed from memebraneless organelles to compartmentalization, muti-functional crucibles, and reaction regulators. Although this phenomenon has been employed for a variety of biological processes, recent studies mainly focus on its physiological significance, and the comprehensive research of the underlying physical mechanism is limited. The characteristics of side chains of amino acids and the interaction tendency of proteins function importantly in regulating LLPS thus should be pay more attention on. In addition, the importance of post-translational modifications (PTMs) has been underestimated, despite their abundance and crucial functions in maintaining the electrostatic balance. In this review, we first introduce the driving forces and protein secondary structures involved in LLPS and their different physical functions in cell life processes. Subsequently, we summarize the existing reports on PTM regulation related to LLPS and analyze the underlying basic principles, hoping to find some common relations between LLPS and PTM. Finally, we speculate several unreported PTMs that may have a significant impact on phase separation basing on the findings.
Collapse
Affiliation(s)
- Jingxian Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mengdi Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China
| | - Weirui Ma
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bing Yang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Huasong Lu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, 215123, P. R. China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Mondal S, Ghanta KP, Bandyopadhyay S. Dynamic Heterogeneity at the Interface of an Intrinsically Disordered Peptide. J Chem Inf Model 2022; 62:1942-1955. [PMID: 35384652 DOI: 10.1021/acs.jcim.2c00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is believed that water around an intrinsically disordered protein or peptide (IDP) in an aqueous environment plays an important role in guiding its conformational properties and aggregation behavior. However, despite its importance, only a handful of studies exploring the correlation between the conformational motions of an IDP and the microscopic properties of water at its surface are reported. Attempts have been made in this work to study the dynamic properties of water present in the vicinity of α-synuclein, an IDP associated with Parkinson's disease (PD). Room temperature molecular dynamics (MD) simulations of eight α-synuclein1-95 peptides with a wide range of initial conformations have been carried out in aqueous media. The calculations revealed that due to solid-like caging motions, the translational and rotational mobility of water molecules near the surfaces of the peptide repeat unit segments R1 to R7 are significantly restricted. A small degree of dynamic heterogeneity in the hydration environment around the repeat units has been observed with water near the hydrophobic R6 unit exhibiting relatively more restricted diffusivity. The time scales involving the overall structural relaxations of peptide-water and water-water hydrogen bonds near the peptide have been found to be correlated with the time scale of diffusion of the interfacial water molecules. We believe that the relatively more hindered dynamic environment near R6 can help create water-mediated contacts centered around R6 between peptide monomers at a higher concentration, thereby enhancing the early stages of peptide aggregation.
Collapse
Affiliation(s)
- Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Krishna Prasad Ghanta
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
12
|
Shillcock JC, Hastings J, Riguet N, Lashuel HA. Non-monotonic fibril surface occlusion by GFP tags from coarse-grained molecular simulations. Comput Struct Biotechnol J 2021; 20:309-321. [PMID: 35070162 PMCID: PMC8753129 DOI: 10.1016/j.csbj.2021.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/23/2022] Open
Abstract
The pathological growth of amyloid fibrils in neurons underlies the progression of neurodegenerative diseases including Alzheimer's and Parkinson's disease. Fibrils form when soluble monomers oligomerise in the cytoplasm. Their subsequent growth occurs via nucleated polymerization mechanisms involving the free ends of the fibrils augmented by secondary nucleation of new oligomers at their surface. Amyloid fibrils possess a complex interactome with diffusing cytoplasmic proteins that regulates many aspects of their growth, seeding capacity, biochemical activity and transition to pathological inclusions in diseased brains. Changes to their surface are also expected to modify their interactome, pathogenicity and spreading in the brain. Many assays visualise fibril formation, growth and inclusion formation by decorating monomeric proteins with fluorescent tags such as GFP. Recent studies from our group suggest that tags with sizes comparable to the fibril radius may modify the fibril surface accessibility and thus their PTM pattern, interactome and ability to form inclusions. Using coarse-grained molecular simulations of a single alpha synuclein fibril tagged with GFP we find that thermal fluctuations of the tags create a non-monotonic, size-dependent sieve around the fibril that perturbs its interactome with diffusing species. Our results indicate that experiments using tagged and untagged monomers to study the growth and interactome of fibrils should be compared with caution, and the confounding effects of the tags are more complex than a reduction in surface accessibility. The prevalence of fluorescent tags in amyloid fibril growth experiments suggests this has implications beyond the specific alpha synuclein fibrils we model here.
Collapse
Affiliation(s)
- Julian C. Shillcock
- Blue Brain Project, Ecole polytechnique fédérale de Lausanne, CH-1202 Geneva, Switzerland
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Janna Hastings
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathan Riguet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Mondal S, Mondal S, Bandyopadhyay S. Importance of Solvent in Guiding the Conformational Properties of an Intrinsically Disordered Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14429-14442. [PMID: 34817184 DOI: 10.1021/acs.langmuir.1c02401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aggregated form of α-synuclein in the brain has been found to be the major component of Lewy bodies that are hallmarks of Parkinson's disease (PD), the second most devastating neurodegenerative disorder. We have carried out room-temperature all-atom molecular dynamics (MD) simulations of an ensemble of widely different α-synuclein1-95 peptide monomer conformations in aqueous solution. Attempts have been made to obtain a generic understanding of the local conformational motions of different repeat unit segments, namely R1-R7, of the peptide and the correlated properties of the solvent at the interface. The analyses revealed relatively greater rigidity of the hydrophobic R6 unit as compared to the other repeat units of the peptide. Besides, water molecules around R6 have been found to be less structured and weakly interacting with the peptide. These are important observations as the R6 unit with reduced conformational motions can act as the nucleation site for the aggregation process, while less structured weakly interacting water around it can become displaced easily, thereby facilitating the hydrophobic collapse of the peptide monomers and their association during the nucleation phase at higher concentrations. In addition, we demonstrated presence of doubly coordinated highly ordered as well as triply coordinated relatively disordered water molecules at the interface. We believe that while the ordered water molecules can favor water-mediated interactions between different peptide monomers, the randomly ordered ones on the other hand are likely to be expelled easily from the interface, thereby facilitating direct peptide-peptide interactions during the aggregation process.
Collapse
Affiliation(s)
- Souvik Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sandip Mondal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
14
|
Can ionic effects induce α-sheet conformation of Peptides? Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Chen J, Zaer S, Drori P, Zamel J, Joron K, Kalisman N, Lerner E, Dokholyan NV. The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds. Structure 2021; 29:1048-1064.e6. [PMID: 34015255 PMCID: PMC8419013 DOI: 10.1016/j.str.2021.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 11/22/2022]
Abstract
α-Synuclein plays an important role in synaptic functions by interacting with synaptic vesicle membrane, while its oligomers and fibrils are associated with several neurodegenerative diseases. The specific monomer structures that promote its membrane binding and self-association remain elusive due to its transient nature as an intrinsically disordered protein. Here, we use inter-dye distance distributions from bulk time-resolved Förster resonance energy transfer as restraints in discrete molecular dynamics simulations to map the conformational space of the α-synuclein monomer. We further confirm the generated conformational ensemble in orthogonal experiments utilizing far-UV circular dichroism and cross-linking mass spectrometry. Single-molecule protein-induced fluorescence enhancement measurements show that within this conformational ensemble, some of the conformations of α-synuclein are surprisingly stable, exhibiting conformational transitions slower than milliseconds. Our comprehensive analysis of the conformational ensemble reveals essential structural properties and potential conformations that promote its various functions in membrane interaction or oligomer and fibril formation.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Sofia Zaer
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Joanna Zamel
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Nir Kalisman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Chemistry and Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
16
|
Sharma R, Srivastava T, Pandey AR, Mishra T, Gupta B, Reddy SS, Singh SP, Narender T, Tripathi A, Chandramouli B, Sashidhara KV, Priya S, Kumar N. Identification of Natural Products as Potential Pharmacological Chaperones for Protein Misfolding Diseases. ChemMedChem 2021; 16:2146-2156. [PMID: 33760394 DOI: 10.1002/cmdc.202100147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/12/2023]
Abstract
Defective protein folding and accumulation of misfolded proteins is associated with neurodegenerative, cardiovascular, secretory, and metabolic disorders. Efforts are being made to identify small-molecule modulators or structural-correctors for conformationally destabilized proteins implicated in various protein aggregation diseases. Using a metastable-reporter-based primary screen, we evaluated pharmacological chaperone activity of a diverse class of natural products. We found that a flavonoid glycoside (C-10, chrysoeriol-7-O-β-D-glucopyranoside) stabilizes metastable proteins, prevents its aggregation, and remodels the oligomers into protease-sensitive species. Data was corroborated with additional secondary screen with disease-specific pathogenic protein. In vitro and cell-based experiments showed that C-10 inhibits α-synuclein aggregation which is implicated in synucleinopathies-related neurodegeneration. C-10 interferes in its structural transition into β-sheeted fibrils and mitigates α-synuclein aggregation-associated cytotoxic effects. Computational modeling suggests that C-10 binds to unique sites in α-synuclein which may interfere in its aggregation amplification. These findings open an avenue for comprehensive SAR development for flavonoid glycosides as pharmacological chaperones for metastable and aggregation-prone proteins implicated in protein conformational diseases.
Collapse
Affiliation(s)
- Richa Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tulika Srivastava
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Alka Raj Pandey
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Tripti Mishra
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Bhagyashri Gupta
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Suriya P Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tadigoppula Narender
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Aradhya Tripathi
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Koneni V Sashidhara
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Smriti Priya
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
17
|
Hayward S, Milner-White EJ. Determination of amino acids that favour the α L region using Ramachandran propensity plots. Implications for α-sheet as the possible amyloid intermediate. J Struct Biol 2021; 213:107738. [PMID: 33838226 DOI: 10.1016/j.jsb.2021.107738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/28/2022]
Abstract
In amyloid diseases an insoluble amyloid fibril forms via a soluble oligomeric intermediate. It is this intermediate that mediates toxicity and it has been suggested, somewhat controversially, that it has the α-sheet structure. Nests and α-strands are similar peptide motifs in that alternate residues lie in the αR and γL regions of the Ramachandran plot for nests, or αR and αL regions for α-strands. In nests a concavity is formed by the main chain NH atoms whereas in α-strands the main chain is almost straight. Using "Ramachandran propensity plots" to focus on the αL/γL region, it is shown that glycine favours γL (82% of amino acids are glycine), but disfavours αL (3% are glycine). Most charged and polar amino acids favour αL with asparagine having by far the highest propensity. Thus, glycine favours nests but, contrary to common expectation, should not favour α-sheet. By contrast most charged or polar amino acids should favour α-sheet by their propensity for the αL conformation, which is more discriminating amongst amino acids than the αR conformation. Thus, these results suggest the composition of sequences that favour α-sheet formation and point towards effective prediction of α-sheet from sequence.
Collapse
Affiliation(s)
- Steven Hayward
- Computational Biology Laboratory, School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - E James Milner-White
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
18
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
19
|
Camino JD, Gracia P, Cremades N. The role of water in the primary nucleation of protein amyloid aggregation. Biophys Chem 2021; 269:106520. [PMID: 33341693 DOI: 10.1016/j.bpc.2020.106520] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
The understanding of the complex conformational landscape of amyloid aggregation and its modulation by relevant physicochemical and cellular factors is a prerequisite for elucidating some of the molecular basis of pathology in amyloid related diseases, and for developing and evaluating effective disease-specific therapeutics to reduce or eliminate the underlying sources of toxicity in these diseases. Interactions of proteins with solvating water have been long considered to be fundamental in mediating their function and folding; however, the relevance of water in the process of protein amyloid aggregation has been largely overlooked. Here, we provide a perspective on the role water plays in triggering primary amyloid nucleation of intrinsically disordered proteins (IDPs) based on recent experimental evidences. The initiation of amyloid aggregation likely results from the synergistic effect between both protein intermolecular interactions and the properties of the water hydration layer of the protein surface. While the self-assembly of both hydrophobic and hydrophilic IDPs would be thermodynamically favoured due to large water entropy contributions, large desolvation energy barriers are expected, particularly for the nucleation of hydrophilic IDPs. Under highly hydrating conditions, primary nucleation is slow, being facilitated by the presence of nucleation-active surfaces (heterogeneous nucleation). Under conditions of poor water activity, such as those found in the interior of protein droplets generated by liquid-liquid phase separation, however, the desolvation energy barrier is significantly reduced, and nucleation can occur very rapidly in the bulk of the solution (homogeneous nucleation), giving rise to structurally distinct amyloid polymorphs. Water, therefore, plays a key role in modulating the transition free energy of amyloid nucleation, thus governing the initiation of the process, and dictating the type of preferred primary nucleation and the type of amyloid polymorph generated, which could vary depending on the particular microenvironment that the protein molecules encounter in the cell.
Collapse
Affiliation(s)
- José D Camino
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Pablo Gracia
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Nunilo Cremades
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit BIFI-IQFR(CSIC), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
20
|
Jain K, Ghribi O, Delhommelle J. Folding Free-Energy Landscape of α-Synuclein (35-97) Via Replica Exchange Molecular Dynamics. J Chem Inf Model 2020; 61:432-443. [PMID: 33350818 DOI: 10.1021/acs.jcim.0c01278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The misfolding and aggregation of α-synuclein (α-syn) in Lewy bodies are implicated in the pathogenesis of various neurodegenerative disorders, such as Parkinson's disease and dementia. The formation of α-syn fibrils is a complex process, involving various intermediates and oligomeric forms. These intermediates establish at an early stage of aggregation and subsequently lead to fibrillation. Determining which conformations are accessible to monomeric α-syn and especially, as shown in a recent work, to the central amino acids from residue 35 to residue 97 (63 residues) is thus crucial to understand the formation of these oligomers. Here, we carry out extensive replica exchange molecular dynamics (total time-18 μs) with an all-atom model and explicit solvent to characterize the free-energy landscape of human α-syn (residue 35 to residue 97). The simulation results lead us to identify two free-energy basins. Clustering analysis for the deepest free-energy minimum reveals a compact structure, with a secondary structure predominantly α-helix, while the shallower minimum corresponds to an elongated conformation, also predominantly α-helix. Furthermore, at physiological temperature, we find that conformational rearrangements happen via helix breaks due to the presence of glycine. We also show that the most likely conformations are characterized by the α-helix structure rather than the β-hairpin structure (for residue 38 to residue 53), in contrast with prior simulation studies using coarse-grained models or an implicit solvent. For higher temperatures, we observe a shift in secondary structure with a decrease in the population of α-helix in favor of random coils, β-bend, and β-turns.
Collapse
Affiliation(s)
- Karnesh Jain
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Othman Ghribi
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
21
|
Ramis R, Ortega-Castro J, Vilanova B, Adrover M, Frau J. Unraveling the NaCl Concentration Effect on the First Stages of α-Synuclein Aggregation. Biomacromolecules 2020; 21:5200-5212. [PMID: 33140640 DOI: 10.1021/acs.biomac.0c01292] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intraneuronal aggregation of the intrinsically disordered protein α-synuclein is at the core of Parkinson's disease and related neurodegenerative disorders. Several reports show that the concentration of salts in the medium heavily affects its aggregation rate and fibril morphology, but a characterization of the individual monomeric conformations underlying these effects is still lacking. In this work, we have applied our α-synuclein-optimized coarse-grained molecular dynamics approach to decipher the structural features of the protein monomer under a range of NaCl concentrations (0.0-1.0 M). The results show that key intramolecular contacts between the terminal domains are lost at intermediate concentrations (leading to extended conformations likely to fibrillate), but recovered at high concentrations (leading to compact conformations likely to evolve toward amorphous aggregates). The pattern of direct interactions of the terminal α-synuclein domains with Na+ and Cl- ions plays a key role in explaining this effect. Our results are consistent with a recent study reporting a fibrillation enhancement at moderate NaCl concentrations but an inhibition at higher concentrations. The present work will contribute to improving our understanding of the structural features of monomeric α-synuclein, determining its NaCl-induced fibrillation propensity and the molecular basis of synucleinopathies, necessary for the future development of disease-halting therapies.
Collapse
Affiliation(s)
- Rafael Ramis
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), 07020 Palma de Mallorca, Spain
| |
Collapse
|
22
|
Fast kinetics of environmentally induced α-synuclein aggregation mediated by structural alteration in NAC region and result in structure dependent cytotoxicity. Sci Rep 2020; 10:18412. [PMID: 33110167 PMCID: PMC7591854 DOI: 10.1038/s41598-020-75361-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Aggregation of α-synuclein (α-syn) is associated with the manifestation of various pathogenic synucleinopathies, including Parkinson’s disease attributed to both genetic and environmental stress factors. The initial events triggering α-syn aggregation and disease initiation due to environmental stress factors are still largely unknown. Here, to understand the mechanism of misfolding and aggregation initiation, we induced α-syn aggregation with rotenone, an established chemical inducer of PD like symptoms. We found that rotenone accelerates the formation of structurally distinct oligomers and fibrils that act as templates and increase the formation of conformers capable of spreading to the neighboring neuronal cells. Molecular dynamics simulations and NMR studies revealed the involvement of NAC region and formation of helical conformations resulting in structural variations in oligomers and fibrils. These structural variations affect the cytotoxic potential of oligomers and fibrils, where, the beta sheet rich oligomers and fibrils alter the membrane potential of neuronal cells and lead to early apoptosis. Our results describe the initial mechanistic events in pathogenic protein aggregation, where initial structural alterations in response to external stress factors dictate the toxicity of resulting conformers. This information will further provide insights in the understanding of protein aggregation, disease progression and pathogenesis.
Collapse
|
23
|
Eymsh B, Drobny A, Heyn TR, Xiang W, Lucius R, Schwarz K, Keppler JK, Zunke F, Arnold P. Toxic Metamorphosis-How Changes from Lysosomal to Cytosolic pH Modify the Alpha-Synuclein Aggregation Pattern. Biomacromolecules 2020; 21:4673-4684. [PMID: 32986422 DOI: 10.1021/acs.biomac.0c00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alpha-synuclein (aSyn) is a cytosolic, aggregation-prone protein that is associated with neurodegenerative disorders like Parkinson's disease. Interestingly, the protein can appear in different conformations, including monomeric and oligomeric forms as well as amyloid fibrils. Its individual structural constituents seem to be dependent on various factors and the composition of the respective cellular surroundings. Although under physiological conditions, most aSyn is found in the cytosol and synapses of neurons, aSyn can also be found in lysosomal compartments, where it gets degraded. We here compare the assembly speed, morphology, folding state, and spreading of aSyn at cytosolic pH (pH 7.4) and lysosomal pH (pH 5) using Thioflavin T, transmission electron microscopy, circular dichroism, and Fourier transform infrared spectroscopy. Interestingly, we found substantial differences between aSyn aggregation under neutral and acidic pH conditions, like those present in cytosolic and lysosomal cellular compartments. Also, lysosomal aSyn enriched from an aSyn-overexpressing cell line was able to seed aggregation in a concentration-dependent manner. Moreover, we observed that aSyn aggregates formed under in vitro lysosomal pH (pH 5) conditions were not stable at neutral pH and collapsed into partly soluble aggregates with changed structural characteristics. Our findings have meaningful implications in intracellular toxicity events as well as in lysis procedures for molecular and structural characterization of intracellular aSyn conformers.
Collapse
Affiliation(s)
- Bisher Eymsh
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany.,Institute of Anatomy, Kiel University, 24118 Kiel, Germany
| | - Alice Drobny
- Institute of Biochemistry, Kiel University, 24118 Kiel, Germany
| | - Timon R Heyn
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91045 Erlangen, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany
| | - Karin Schwarz
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany
| | - Julia K Keppler
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany.,Laboratory of Food Process Engineering, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Philipp Arnold
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany.,MSH Medical School Hamburg, Am Kaiserkai 1, 20457 Hamburg, Germany
| |
Collapse
|
24
|
Jęśko H, Cieślik M, Gromadzka G, Adamczyk A. Dysfunctional proteins in neuropsychiatric disorders: From neurodegeneration to autism spectrum disorders. Neurochem Int 2020; 141:104853. [PMID: 32980494 DOI: 10.1016/j.neuint.2020.104853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Despite fundamental differences in disease course and outcomes, neurodevelopmental (autism spectrum disorders - ASD) and neurodegenerative disorders (Alzheimer's disease - AD and Parkinson's disease - PD) present surprising, common traits in their molecular pathomechanisms. Uncontrolled oligomerization and aggregation of amyloid β (Aβ), microtubule-associated protein (MAP) tau, or α-synuclein (α-syn) contribute to synaptic impairment and the ensuing neuronal death in both AD and PD. Likewise, the pathogenesis of ASD may be attributed, at least in part, to synaptic dysfunction; attention has also been recently paid to irregularities in the metabolism and function of the Aβ precursor protein (APP), tau, or α-syn. Commonly affected elements include signaling pathways that regulate cellular metabolism and survival such as insulin/insulin-like growth factor (IGF) - PI3 kinase - Akt - mammalian target of rapamycin (mTOR), and a number of key synaptic proteins critically involved in neuronal communication. Understanding how these shared pathomechanism elements operate in different conditions may help identify common targets and therapeutic approaches.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Magdalena Cieślik
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Grażyna Gromadzka
- Cardinal Stefan Wyszynski University, Faculty of Medicine. Collegium Medicum, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Agata Adamczyk
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
25
|
Yoon HR, Balupuri A, Choi KE, Kang NS. Small Molecule Inhibitors of DYRK1A Identified by Computational and Experimental Approaches. Int J Mol Sci 2020; 21:E6826. [PMID: 32957634 PMCID: PMC7554884 DOI: 10.3390/ijms21186826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a protein kinase with diverse functions in cell regulation. Abnormal expression and activity of DYRK1A contribute to numerous human malignancies, Down syndrome, and Alzheimer's disease. Notably, DYRK1A has been proposed as a potential therapeutic target for the treatment of diabetes because of its key role in pancreatic β-cell proliferation. Consequently, DYRK1A is an attractive drug target for a variety of diseases. Here, we report the identification of several DYRK1A inhibitors using our in-house topological water network-based approach. All inhibitors were further verified by in vitro assay.
Collapse
Affiliation(s)
| | | | | | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (H.R.Y.); (A.B.); (K.-E.C.)
| |
Collapse
|
26
|
Bromley D, Daggett V. Tumorigenic p53 mutants undergo common structural disruptions including conversion to α-sheet structure. Protein Sci 2020; 29:1983-1999. [PMID: 32715544 DOI: 10.1002/pro.3921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022]
Abstract
The p53 protein is a commonly studied cancer target because of its role in tumor suppression. Unfortunately, it is susceptible to mutation-associated loss of function; approximately 50% of cancers are associated with mutations to p53, the majority of which are located in the central DNA-binding domain. Here, we report molecular dynamics simulations of wild-type (WT) p53 and 20 different mutants, including a stabilized pseudo-WT mutant. Our findings indicate that p53 mutants tend to exacerbate latent structural-disruption tendencies, or vulnerabilities, already present in the WT protein, suggesting that it may be possible to develop cancer therapies by targeting a relatively small set of structural-disruption motifs rather than a multitude of effects specific to each mutant. In addition, α-sheet secondary structure formed in almost all of the proteins. α-Sheet has been hypothesized and recently demonstrated to play a role in amyloidogenesis, and its presence in the reported p53 simulations coincides with the recent re-consideration of cancer as an amyloid disease.
Collapse
Affiliation(s)
- Dennis Bromley
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
| | - Valerie Daggett
- Division of Biomedical and Health Informatics, Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
Shillcock JC, Brochut M, Chénais E, Ipsen JH. Phase behaviour and structure of a model biomolecular condensate. SOFT MATTER 2020; 16:6413-6423. [PMID: 32584357 DOI: 10.1039/d0sm00813c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phase separation of immiscible fluids is a common phenomenon in polymer chemistry, and is recognized as an important mechanism by which cells compartmentalize their biochemical reactions. Biomolecular condensates are condensed fluid droplets in cells that form by liquid-liquid phase separation of intrinsically-disordered proteins. They have a wide range of functions and are associated with chronic neurodegenerative diseases in which they become pathologically rigid. However, it remains unclear how their material properties depend on the molecular structure of the proteins. Here we explore the phase behaviour and structure of a model biomolecular condensate composed of semi-flexible polymers with attractive end-caps using coarse-grained simulations. The model contains the minimal molecular features that are sufficient to observe liquid-liquid phase separation of soluble polymers into a porous, three-dimensional network in which their end-caps reversibly bind at junctions. The distance between connected junctions scales with the polymer length as a self-avoiding random walk over a wide range of concentration with a weak affinity-dependent prefactor. By contrast, the average number of polymers that meet at the junctions depends on the end-cap affinity but only weakly on the polymer length. The structured porosity of the condensed phase suggests a mechanism for cells to regulate biomolecular condensates. Protein interaction sites may be turned on or off to modulate the condensate's porosity and therefore the diffusion and interaction of additional proteins.
Collapse
Affiliation(s)
- J C Shillcock
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
28
|
Aggregation Mechanism of Alzheimer's Amyloid β-Peptide Mediated by α-Strand/α-Sheet Structure. Int J Mol Sci 2020; 21:ijms21031094. [PMID: 32046006 PMCID: PMC7038184 DOI: 10.3390/ijms21031094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and a widespread form of dementia. Aggregated forms of the amyloid β-peptide (Aβ) are identified as a toxic species responsible for neuronal damage in AD. Extensive research has been conducted to reveal the aggregation mechanism of Aβ. However, the structure of pathological aggregates and the mechanism of aggregation are not well understood. Recently, experimental studies have confirmed that the α-sheet structure in Aβ drives aggregation and toxicity in AD. However, how the α-sheet structure is formed in Aβ and how it contributes to Aβ aggregation remains elusive. In the present study, molecular dynamics simulations suggest that Aβ adopts the α-strand conformation by peptide-plane flipping. Multiple α-strands interact through hydrogen bonding to form α-sheets. This structure acts as a nucleus that initiates and promotes aggregation and fibrillation of Aβ. Our findings are supported by previous experimental as well as theoretical studies. This study provides valuable structural insights for the design of anti-AD drugs exploiting the α-strand/α-sheet structure.
Collapse
|
29
|
Kumar D, Kumar P. Aβ, Tau, and α-Synuclein aggregation and integrated role of PARK2 in the regulation and clearance of toxic peptides. Neuropeptides 2019; 78:101971. [PMID: 31540705 DOI: 10.1016/j.npep.2019.101971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's and Parkinson's diseases are one of the world's leading causes of death. >50 million people throughout the world are suffering with these diseases. They are two distinct progressive neurodegenerative disorders affecting different regions of the brain with diverse symptoms, including memory and motor loss respectively, but with the advancement of diseases, both affect the whole brain and exhibit some common biological symptoms. For instance, >50% PD patients develop dementia in their later stages, though it is a hallmark of Alzheimer's disease. In fact, latest research has suggested the involvement of some common pathophysiological and genetic links between these diseases, including the deposition of pathological Aβ, Tau, and α-synuclein in both the cases. Therefore, it is pertinent to diagnose the shared biomarkers, their aggregation mechanism, their intricate relationships in the pathophysiology of disease and therapeutic markers to target them. This would enable us to identify novel markers for the early detection of disease and targets for the future therapies. Herein, we investigated molecular aspects of Aβ, Tau, and α-Synuclein aggregation, and characterized their functional partners involved in the pathology of AD and PD. Moreover, we identified the molecular-crosstalk between AD and PD associated with their pathogenic proteins- Aβ, Tau, and α-Synuclein. Furthermore, we characterized their ubiquitinational enzymes and associated interaction network regulating the proteasomal clearance of these pathological proteins.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
30
|
Depicting Conformational Ensembles of α-Synuclein by Single Molecule Force Spectroscopy and Native Mass Spectroscopy. Int J Mol Sci 2019; 20:ijms20205181. [PMID: 31635031 PMCID: PMC6829300 DOI: 10.3390/ijms20205181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Description of heterogeneous molecular ensembles, such as intrinsically disordered proteins, represents a challenge in structural biology and an urgent question posed by biochemistry to interpret many physiologically important, regulatory mechanisms. Single-molecule techniques can provide a unique contribution to this field. This work applies single molecule force spectroscopy to probe conformational properties of α-synuclein in solution and its conformational changes induced by ligand binding. The goal is to compare data from such an approach with those obtained by native mass spectrometry. These two orthogonal, biophysical methods are found to deliver a complex picture, in which monomeric α-synuclein in solution spontaneously populates compact and partially compacted states, which are differently stabilized by binding to aggregation inhibitors, such as dopamine and epigallocatechin-3-gallate. Analyses by circular dichroism and Fourier-transform infrared spectroscopy show that these transitions do not involve formation of secondary structure. This comparative analysis provides support to structural interpretation of charge-state distributions obtained by native mass spectrometry and helps, in turn, defining the conformational components detected by single molecule force spectroscopy.
Collapse
|
31
|
Milner-White EJ. Protein three-dimensional structures at the origin of life. Interface Focus 2019; 9:20190057. [PMID: 31641431 DOI: 10.1098/rsfs.2019.0057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Proteins are relatively easy to synthesize, compared to nucleic acids and it is likely that there existed a stage prior to the RNA world which can be called the protein world. Some of the three-dimensional (3D) peptide structures in these proteins have, we argue, been conserved since then and may constitute the oldest biological relics in existence. We focus on 3D peptide motifs consisting of up to eight or so amino acid residues. The best known of these is the 'nest', a three- to seven-residue protein motif, which has the function of binding anionic atoms or groups of atoms. Ten per cent of amino acids in typical proteins belong to a nest, so it is a common motif. A five-residue nest is found as part of the well-known P-loop that is a recurring feature of many ATP or GTP-binding proteins and it has the function of binding the phosphate part of these ligands. A synthetic hexapeptide, ser-gly-ala-gly-lys-thr, designed to resemble the P-loop, has been shown to bind inorganic phosphate. Another type of nest binds iron-sulfur centres. A range of other simple motifs occur with various intriguing 3D structures; others bind cations or form channels that transport potassium ions; other peptides form catalytically active haem-like or sheet structures with certain transition metals. Amyloid peptides are also discussed. It now seems that the earliest polypeptides were far from being functionless stretches, and had many of the properties, both binding and catalytic, that might be expected to encourage and stabilize simple life forms in the hydrothermal vents of ocean depths.
Collapse
Affiliation(s)
- E James Milner-White
- Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|
32
|
Lee MH, Lee DY, Balupuri A, Jeong JW, Kang NS. Pharmacophoric Site Identification and Inhibitor Design for Autotaxin. Molecules 2019; 24:molecules24152808. [PMID: 31374894 PMCID: PMC6696049 DOI: 10.3390/molecules24152808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Autotaxin (ATX) is a potential drug target that is associated with inflammatory diseases and various cancers. In our previous studies, we have designed several inhibitors targeting ATX using computational and experimental approaches. Here, we have analyzed topological water networks (TWNs) in the binding pocket of ATX. TWN analysis revealed a pharmacophoric site inside the pocket. We designed and synthesized compounds considering the identified pharmacophoric site. Furthermore, we performed biological experiments to determine their ATX inhibitory activities. High potency of the designed compounds supports the predictions of the TWN analysis.
Collapse
Affiliation(s)
- Myeong Hwi Lee
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Dae-Yon Lee
- LegoChem Biosciences, Inc., 8-26 Munoyeongseo-ro, Daedeok-gu, Daejeon 34302, Korea
| | - Anand Balupuri
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jong-Woo Jeong
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
33
|
Choi KE, Chae E, Balupuri A, Yoon HR, Kang NS. Topological Water Network Analysis Around Amino Acids. Molecules 2019; 24:molecules24142653. [PMID: 31336667 PMCID: PMC6681432 DOI: 10.3390/molecules24142653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Water molecules play a key role in protein stability, folding, function and ligand binding. Protein hydration has been studied using free energy perturbation algorithms. However, the study of protein hydration without free energy calculation is also an active field of research. Accordingly, topological water network (TWN) analysis has been carried out instead of free energy calculation in the present work to investigate hydration of proteins. Water networks around 20 amino acids in the aqueous solution were explored through molecular dynamics (MD) simulations. These simulation results were compared with experimental observations. Water molecules from the protein data bank structures showed TWN patterns similar to MD simulations. This work revealed that TWNs are effected by the surrounding environment. TWNs could provide valuable clues about the environment around amino acid residues in the proteins. The findings from this study could be exploited for TWN-based drug discovery and development.
Collapse
Affiliation(s)
- Kwang-Eun Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Eunkyoung Chae
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Anand Balupuri
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Hye Ree Yoon
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
34
|
Viodé A, Epelbaum S, Benyounes I, Verny M, Dubois B, Junot C, Fenaille F, Lamari F, Becher F. Simultaneous quantification of tau and α-synuclein in cerebrospinal fluid by high-resolution mass spectrometry for differentiation of Lewy Body Dementia from Alzheimer's Disease and controls. Analyst 2019; 144:6342-6351. [DOI: 10.1039/c9an00751b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel mass spectrometry assay offers simultaneous quantification of CSF α-synuclein and tau and has potential diagnostic value.
Collapse
Affiliation(s)
- Arthur Viodé
- Service de Pharmacologie et d'Immunoanalyse (SPI)
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
- CEA
- INRA
- Université Paris Saclay
| | - Stéphane Epelbaum
- Institut de la Mémoire et de Maladie d'Alzheimer (IM2A)
- Département de Neurologie
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - Imen Benyounes
- Service de Biochimie Métabolique
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - Marc Verny
- Service de Gériatrie
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - Bruno Dubois
- Institut de la Mémoire et de Maladie d'Alzheimer (IM2A)
- Département de Neurologie
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - Christophe Junot
- Service de Pharmacologie et d'Immunoanalyse (SPI)
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
- CEA
- INRA
- Université Paris Saclay
| | - François Fenaille
- Service de Pharmacologie et d'Immunoanalyse (SPI)
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
- CEA
- INRA
- Université Paris Saclay
| | - Foudil Lamari
- Service de Biochimie Métabolique
- Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix
- Paris
- France
| | - François Becher
- Service de Pharmacologie et d'Immunoanalyse (SPI)
- Laboratoire d'Etude du Métabolisme des Médicaments (LEMM)
- CEA
- INRA
- Université Paris Saclay
| |
Collapse
|