1
|
Nasseri Moghaddam Z, Reinhardt EK, Thurm A, Potter BK, Smith M, Graham C, Tiller BH, Baker SA, Bilder DA, Bogar R, Britz J, Cafferty R, Coller DP, DeGrauw TJ, Hall V, Lipshutz GS, Longo N, Mercimek-Andrews S, Miller JS, Pasquali M, Salomons GS, Schulze A, Wheaton CP, Williams KF, Young SP, Li J, Balog S, Selucky T, Stockler-Ipsiroglu S, Wallis H. Establishing a Core Outcome Set for Creatine Transporter Deficiency and Guanidinoacetate Methyltransferase Deficiency. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313213. [PMID: 39371127 PMCID: PMC11451665 DOI: 10.1101/2024.09.06.24313213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Creatine transporter (CTD) and guanidinoacetate methyltransferase (GAMT) deficiencies are rare inborn errors of creatine metabolism, resulting in cerebral creatine deficiency. Patients commonly exhibit intellectual and developmental disabilities, often accompanied by behavior problems, delayed speech, seizures, and motor impairments. There is currently no efficacious treatment for CTD, while the current management for GAMT requires lifelong treatment with a protein restricted diet and intake of high amounts of oral supplements. Efforts to develop effective, sustainable treatments for these disorders are limited by the lack of clinical and patient-derived meaningful outcomes. A core outcome set (COS) can facilitate consensus about outcomes for inclusion in studies. Unfortunately, patient and caregiver perspectives have historically been overlooked in the COS development process, thus limiting their input into the outcome selection. We partnered with caregivers and health professionals to establish the first COS for CTD and GAMT. The COS developed includes seven outcomes ("Adaptive Functioning", "Cognitive Functioning", "Emotional Dysregulation", "MRS Brain Creatine", "Seizure/Convulsions", "Expressive Communication", and "Fine Motor Functions") for both CTD and GAMT, and an additional outcome for GAMT ("Serum/Plasma Guanidinoacetate") that are important to stakeholders and consequently should be considered for measurement in every clinical trial. Caregivers were valued partners throughout the COS development process, which increased community engagement and facilitated caregiver empowerment. We expect this COS will ensure a patient-centered approach for accelerating drug development for CTD and GAMT, make clinical trial results comparable, minimize bias in clinical trial outcome selection, and promote efficient use of resources.
Collapse
Affiliation(s)
| | - Emily K. Reinhardt
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Audrey Thurm
- National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Beth K. Potter
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maureen Smith
- Patient Partner, University of Ottawa, Ottawa, ON, Canada
| | - Celeste Graham
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Beth H. Tiller
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Steven A. Baker
- Department of Transfusion Medicine, University of Utah, Salt Lake City, UT, USA
| | - Deborah A. Bilder
- Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, USA
| | - Regina Bogar
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Jacobus Britz
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Rachel Cafferty
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Daniel P. Coller
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Ton J. DeGrauw
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Vicky Hall
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Gerald S. Lipshutz
- David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Nicola Longo
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Saadet Mercimek-Andrews
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Department of Medical Genetics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Judith S. Miller
- Center for Autism Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marzia Pasquali
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- ARUP Laboratories, Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Gajja S. Salomons
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Laboratory Genetic Metabolic Diseases & Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Schulze
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Hospital for Sick Children & University of Toronto, Toronto, ON, Canada
| | - Celine P. Wheaton
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Kayla F. Williams
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | - Sarah P. Young
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Division of Genetics and Metabolism, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Jasmine Li
- Department Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Sofia Balog
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
| | | | - Sylvia Stockler-Ipsiroglu
- Department Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Scientific Medical Advisory Board, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Division Biochemical Diseases, British Columbia Children’s Hospital, Vancouver, BC, Canada
| | - Heidi Wallis
- Board of Directors & Staff, Association for Creatine Deficiencies, Carlsbad, CA, USA
- Patient/Family Partner, Association for Creatine Deficiencies, Carlsbad, CA, USA
| |
Collapse
|
2
|
Fernandes-Pires G, Azevedo MD, Lanzillo M, Roux-Petronelli C, Binz PA, Cudalbu C, Sandi C, Tenenbaum L, Braissant O. Rescue of myocytes and locomotion through AAV2/9-2YF intracisternal gene therapy in a rat model of creatine transporter deficiency. Mol Ther Methods Clin Dev 2024; 32:101251. [PMID: 38745894 PMCID: PMC11091509 DOI: 10.1016/j.omtm.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Creatine deficiency syndromes (CDS), caused by mutations in GATM (AGAT), GAMT, and SLC6A8, mainly affect the central nervous system (CNS). CDS show brain creatine (Cr) deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy, and motor dysfunction. AGAT/GAMT-deficient patients lack brain Cr synthesis but express the Cr transporter SLC6A8 at the blood-brain barrier and are thus treatable by oral supplementation of Cr. In contrast, no satisfactory treatment has been identified for Cr transporter deficiency (CTD), the most frequent of CDS. We used our Slc6a8Y389C CTD rat model to develop a new AAV2/9-2YF-driven gene therapy re-establishing the functional Slc6a8 transporter in rat CNS. We show, after intra-cisterna magna AAV2/9-2YF-Slc6a8-FLAG vector injection of postnatal day 11 pups, the transduction of Slc6a8-FLAG in cerebellum, medulla oblongata, and spinal cord as well as a partial recovery of Cr in these brain regions, together with full prevention of locomotion defaults and impairment of myocyte development observed in Slc6a8Y389 C/y male rats. While more work is needed to correct those CTD phenotypes more associated with forebrain structures, this study is the first demonstrating positive effects of an AAV-driven gene therapy on CTD and thus represents a very encouraging approach to treat the so-far untreatable CTD.
Collapse
Affiliation(s)
- Gabriella Fernandes-Pires
- Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Marcelo Duarte Azevedo
- Laboratory of Cellular and Molecular Neurotherapies, Clinical Neurosciences Department, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Marc Lanzillo
- Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Clothilde Roux-Petronelli
- Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre-Alain Binz
- Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Clinical Neurosciences Department, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
3
|
Bian X, Zhu J, Jia X, Liang W, Yu S, Li Z, Zhang W, Rao Y. Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology. eLife 2023; 12:RP89317. [PMID: 38126335 PMCID: PMC10735228 DOI: 10.7554/elife.89317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The discovery of a new neurotransmitter, especially one in the central nervous system, is both important and difficult. We have been searching for new neurotransmitters for 12 y. We detected creatine (Cr) in synaptic vesicles (SVs) at a level lower than glutamate and gamma-aminobutyric acid but higher than acetylcholine and 5-hydroxytryptamine. SV Cr was reduced in mice lacking either arginine:glycine amidinotransferase (a Cr synthetase) or SLC6A8, a Cr transporter with mutations among the most common causes of intellectual disability in men. Calcium-dependent release of Cr was detected after stimulation in brain slices. Cr release was reduced in Slc6a8 and Agat mutants. Cr inhibited neocortical pyramidal neurons. SLC6A8 was necessary for Cr uptake into synaptosomes. Cr was found by us to be taken up into SVs in an ATP-dependent manner. Our biochemical, chemical, genetic, and electrophysiological results are consistent with the possibility of Cr as a neurotransmitter, though not yet reaching the level of proof for the now classic transmitters. Our novel approach to discover neurotransmitters is to begin with analysis of contents in SVs before defining their function and physiology.
Collapse
Affiliation(s)
- Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Xiaobo Jia
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
| | - Wenjun Liang
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Sihan Yu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
| | - Zhiqiang Li
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Yi Rao
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institute for Brain Research (CIBR)BeijingChina
- Chinese Institutes of Medical Research, Capital Medical UniversityBeijingChina
- Changping Laboratory, Yard 28, Science Park Road, Changping DistrictBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
4
|
Ghirardini E, Sagona G, Marquez-Galera A, Calugi F, Navarron CM, Cacciante F, Chen S, Di Vetta F, Dadà L, Mazziotti R, Lupori L, Putignano E, Baldi P, Lopez-Atalaya JP, Pizzorusso T, Baroncelli L. Cell-specific vulnerability to metabolic failure: the crucial role of parvalbumin expressing neurons in creatine transporter deficiency. Acta Neuropathol Commun 2023; 11:34. [PMID: 36882863 PMCID: PMC9990224 DOI: 10.1186/s40478-023-01533-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Mutations in the solute carrier family 6-member 8 (Slc6a8) gene, encoding the protein responsible for cellular creatine (Cr) uptake, cause Creatine Transporter Deficiency (CTD), an X-linked neurometabolic disorder presenting with intellectual disability, autistic-like features, and epilepsy. The pathological determinants of CTD are still poorly understood, hindering the development of therapies. In this study, we generated an extensive transcriptomic profile of CTD showing that Cr deficiency causes perturbations of gene expression in excitatory neurons, inhibitory cells, and oligodendrocytes which result in remodeling of circuit excitability and synaptic wiring. We also identified specific alterations of parvalbumin-expressing (PV+) interneurons, exhibiting a reduction in cellular and synaptic density, and a hypofunctional electrophysiological phenotype. Mice lacking Slc6a8 only in PV+ interneurons recapitulated numerous CTD features, including cognitive deterioration, impaired cortical processing and hyperexcitability of brain circuits, demonstrating that Cr deficit in PV+ interneurons is sufficient to determine the neurological phenotype of CTD. Moreover, a pharmacological treatment targeted to restore the efficiency of PV+ synapses significantly improved cortical activity in Slc6a8 knock-out animals. Altogether, these data demonstrate that Slc6a8 is critical for the normal function of PV+ interneurons and that impairment of these cells is central in the disease pathogenesis, suggesting a novel therapeutic venue for CTD.
Collapse
Affiliation(s)
- Elsa Ghirardini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone (PI), Italy. .,Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.
| | - Giulia Sagona
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramon Y Cajal, S/N, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francesco Calugi
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Via Di San Salvi 12, 50135, Florence, Italy.,BIO@SNS Lab, Scuola Normale Superiore Di Pisa, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Carmen M Navarron
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramon Y Cajal, S/N, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francesco Cacciante
- BIO@SNS Lab, Scuola Normale Superiore Di Pisa, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Siwei Chen
- Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, CA, 92697-3435, USA
| | - Federica Di Vetta
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Lorenzo Dadà
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Via Di San Salvi 12, 50135, Florence, Italy
| | - Leonardo Lupori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone (PI), Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - Pierre Baldi
- Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, CA, 92697-3435, USA
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramon Y Cajal, S/N, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.,BIO@SNS Lab, Scuola Normale Superiore Di Pisa, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura Baroncelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Viale del Tirreno 331, 56128, Calambrone (PI), Italy.,Institute of Neuroscience, National Research Council (CNR), Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
5
|
Duran‐Trio L, Fernandes‐Pires G, Grosse J, Soro‐Arnaiz I, Roux‐Petronelli C, Binz P, De Bock K, Cudalbu C, Sandi C, Braissant O. Creatine transporter-deficient rat model shows motor dysfunction, cerebellar alterations, and muscle creatine deficiency without muscle atrophy. J Inherit Metab Dis 2022; 45:278-291. [PMID: 34936099 PMCID: PMC9302977 DOI: 10.1002/jimd.12470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
Creatine (Cr) is a nitrogenous organic acid and plays roles such as fast phosphate energy buffer to replenish ATP, osmolyte, antioxidant, neuromodulator, and as a compound with anabolic and ergogenic properties in muscle. Cr is taken from the diet or endogenously synthetized by the enzymes arginine:glycine amidinotransferase and guanidinoacetate methyltransferase, and specifically taken up by the transporter SLC6A8. Loss-of-function mutations in the genes encoding for the enzymes or the transporter cause creatine deficiency syndromes (CDS). CDS are characterized by brain Cr deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy, and motor dysfunction. Among CDS, the X-linked Cr transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different animal models of CTD show reduced brain Cr levels, cognitive deficiencies, and together they cover other traits similar to those of patients. However, motor function was poorly explored in CTD models, and some controversies in the phenotype exist in comparison with CTD patients. Our recently described Slc6a8Y389C knock-in rat model of CTD showed mild impaired motor function, morphological alterations in cerebellum, reduced muscular mass, Cr deficiency, and increased guanidinoacetate content in muscle, although no consistent signs of muscle atrophy. Our results indicate that such motor dysfunction co-occurred with both nervous and muscle dysfunctions, suggesting that muscle strength and performance as well as neuronal connectivity might be affected by this Cr deficiency in muscle and brain.
Collapse
Affiliation(s)
- Lara Duran‐Trio
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Gabriella Fernandes‐Pires
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Jocelyn Grosse
- Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ines Soro‐Arnaiz
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
| | - Clothilde Roux‐Petronelli
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Pierre‐Alain Binz
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| | - Katrien De Bock
- Department of Health Sciences and TechnologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Carmen Sandi
- Brain Mind InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Olivier Braissant
- Service of Clinical ChemistryUniversity of Lausanne and Lausanne University Hospital of LausanneLausanneSwitzerland
| |
Collapse
|
6
|
Chen HR, Zhang-Brotzge X, Morozov YM, Li Y, Wang S, Zhang HH, Kuan IS, Fugate EM, Mao H, Sun YY, Rakic P, Lindquist DM, DeGrauw T, Kuan CY. Creatine transporter deficiency impairs stress adaptation and brain energetics homeostasis. JCI Insight 2021; 6:e140173. [PMID: 34324436 PMCID: PMC8492331 DOI: 10.1172/jci.insight.140173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
The creatine transporter (CrT) maintains brain creatine (Cr) levels, but the effects of its deficiency on energetics adaptation under stress remain unclear. There are also no effective treatments for CrT deficiency, the second most common cause of X-linked intellectual disabilities. Herein, we examined the consequences of CrT deficiency in brain energetics and stress-adaptation responses plus the effects of intranasal Cr supplementation. We found that CrT-deficient (CrT–/y) mice harbored dendritic spine and synaptic dysgenesis. Nurtured newborn CrT–/y mice maintained baseline brain ATP levels, with a trend toward signaling imbalance between the p-AMPK/autophagy and mTOR pathways. Starvation elevated the signaling imbalance and reduced brain ATP levels in P3 CrT–/y mice. Similarly, CrT–/y neurons and P10 CrT–/y mice showed an imbalance between autophagy and mTOR signaling pathways and greater susceptibility to cerebral hypoxia-ischemia and ischemic insults. Notably, intranasal administration of Cr after cerebral ischemia increased the brain Cr/N-acetylaspartate ratio, partially averted the signaling imbalance, and reduced infarct size more potently than intraperitoneal Cr injection. These findings suggest important functions for CrT and Cr in preserving the homeostasis of brain energetics in stress conditions. Moreover, intranasal Cr supplementation may be an effective treatment for congenital CrT deficiency and acute brain injury.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Neurosciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Xiaohui Zhang-Brotzge
- Department of Pediatrics, Division of Neurology, Emory University, Atlanta, Georgia, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | | | - Irena S Kuan
- Department of Pediatrics, Division of Neurology, Emory University, Atlanta, Georgia, USA
| | - Elizabeth M Fugate
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Yu-Yo Sun
- Department of Neurosciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Diana M Lindquist
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ton DeGrauw
- Department of Pediatrics, Division of Neurology, Emory University, Atlanta, Georgia, USA
| | - Chia-Yi Kuan
- Department of Neurosciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Ghirardini E, Calugi F, Sagona G, Di Vetta F, Palma M, Battini R, Cioni G, Pizzorusso T, Baroncelli L. The Role of Preclinical Models in Creatine Transporter Deficiency: Neurobiological Mechanisms, Biomarkers and Therapeutic Development. Genes (Basel) 2021; 12:genes12081123. [PMID: 34440297 PMCID: PMC8392480 DOI: 10.3390/genes12081123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine (Cr) Transporter Deficiency (CTD) is an X-linked metabolic disorder, mostly caused by missense mutations in the SLC6A8 gene and presenting with intellectual disability, autistic behavior, and epilepsy. There is no effective treatment for CTD and patients need lifelong assistance. Thus, the research of novel intervention strategies is a major scientific challenge. Animal models are an excellent tool to dissect the disease pathogenetic mechanisms and drive the preclinical development of therapeutics. This review illustrates the current knowledge about Cr metabolism and CTD clinical aspects, with a focus on mainstay diagnostic and therapeutic options. Then, we discuss the rodent models of CTD characterized in the last decade, comparing the phenotypes expressed within clinically relevant domains and the timeline of symptom development. This analysis highlights that animals with the ubiquitous deletion/mutation of SLC6A8 genes well recapitulate the early onset and the complex pathological phenotype of the human condition. Thus, they should represent the preferred model for preclinical efficacy studies. On the other hand, brain- and cell-specific conditional mutants are ideal for understanding the basis of CTD at a cellular and molecular level. Finally, we explain how CTD models might provide novel insight about the pathogenesis of other disorders, including cancer.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Brain Diseases, Metabolic, Inborn/therapy
- Central Nervous System/pathology
- Creatine/deficiency
- Creatine/metabolism
- Disease Models, Animal
- Humans
- Mental Retardation, X-Linked/metabolism
- Mental Retardation, X-Linked/pathology
- Mental Retardation, X-Linked/therapy
- Mice
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Rats
Collapse
Affiliation(s)
- Elsa Ghirardini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
| | - Francesco Calugi
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Federica Di Vetta
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Biology, University of Pisa, I-56126 Pisa, Italy
| | - Martina Palma
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Laura Baroncelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Correspondence:
| |
Collapse
|
8
|
Duran-Trio L, Fernandes-Pires G, Simicic D, Grosse J, Roux-Petronelli C, Bruce SJ, Binz PA, Sandi C, Cudalbu C, Braissant O. A new rat model of creatine transporter deficiency reveals behavioral disorder and altered brain metabolism. Sci Rep 2021; 11:1636. [PMID: 33452333 PMCID: PMC7810893 DOI: 10.1038/s41598-020-80824-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/28/2020] [Indexed: 11/10/2022] Open
Abstract
Creatine is an organic compound used as fast phosphate energy buffer to recycle ATP, important in tissues with high energy demand such as muscle or brain. Creatine is taken from the diet or endogenously synthetized by the enzymes AGAT and GAMT, and specifically taken up by the transporter SLC6A8. Deficit in the endogenous synthesis or in the transport leads to Cerebral Creatine Deficiency Syndromes (CCDS). CCDS are characterized by brain creatine deficiency, intellectual disability with severe speech delay, behavioral troubles such as attention deficits and/or autistic features, and epilepsy. Among CCDS, the X-linked creatine transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different mouse models of CTD were generated by doing long deletions in the Slc6a8 gene showing reduced brain creatine and cognitive deficiencies or impaired motor function. We present a new knock-in (KI) rat model of CTD holding an identical point mutation found in patients with reported lack of transporter activity. KI males showed brain creatine deficiency, increased urinary creatine/creatinine ratio, cognitive deficits and autistic-like traits. The Slc6a8Y389C KI rat fairly enriches the spectrum of CTD models and provides new data about the pathology, being the first animal model of CTD carrying a point mutation.
Collapse
Affiliation(s)
- Lara Duran-Trio
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Gabriella Fernandes-Pires
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Dunja Simicic
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jocelyn Grosse
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Clothilde Roux-Petronelli
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Stephen J Bruce
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Pierre-Alain Binz
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| |
Collapse
|
9
|
Cacciante F, Gennaro M, Sagona G, Mazziotti R, Lupori L, Cerri E, Putignano E, Butt M, Do MHT, McKew JC, Alessandrì MG, Battini R, Cioni G, Pizzorusso T, Baroncelli L. Cyclocreatine treatment ameliorates the cognitive, autistic and epileptic phenotype in a mouse model of Creatine Transporter Deficiency. Sci Rep 2020; 10:18361. [PMID: 33110151 PMCID: PMC7591530 DOI: 10.1038/s41598-020-75436-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/25/2020] [Indexed: 02/02/2023] Open
Abstract
Creatine Transporter Deficiency (CTD) is an inborn error of metabolism presenting with intellectual disability, behavioral disturbances and epilepsy. There is currently no cure for this disorder. Here, we employed novel biomarkers for monitoring brain function, together with well-established behavioral readouts for CTD mice, to longitudinally study the therapeutic efficacy of cyclocreatine (cCr) at the preclinical level. Our results show that cCr treatment is able to partially correct hemodynamic responses and EEG abnormalities, improve cognitive deficits, revert autistic-like behaviors and protect against seizures. This study provides encouraging data to support the potential therapeutic benefit of cyclocreatine or other chemically modified lipophilic analogs of Cr.
Collapse
Affiliation(s)
- Francesco Cacciante
- Institute of Neuroscience, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy.,BIO@SNS Lab, Scuola Normale Superiore di Pisa, 56125, Pisa, Italy
| | - Mariangela Gennaro
- Institute of Neuroscience, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Giulia Sagona
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50135, Florence, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy
| | - Raffaele Mazziotti
- Institute of Neuroscience, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Leonardo Lupori
- BIO@SNS Lab, Scuola Normale Superiore di Pisa, 56125, Pisa, Italy
| | - Elisa Cerri
- Institute of Neuroscience, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Mark Butt
- Tox Path Specialists, Frederick, MD, 21701, USA
| | | | | | | | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, 50135, Florence, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy. .,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy.
| |
Collapse
|
10
|
Farr CV, El-Kasaby A, Freissmuth M, Sucic S. The Creatine Transporter Unfolded: A Knotty Premise in the Cerebral Creatine Deficiency Syndrome. Front Synaptic Neurosci 2020; 12:588954. [PMID: 33192443 PMCID: PMC7644880 DOI: 10.3389/fnsyn.2020.588954] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Creatine provides cells with high-energy phosphates for the rapid reconstitution of hydrolyzed adenosine triphosphate. The eponymous creatine transporter (CRT1/SLC6A8) belongs to a family of solute carrier 6 (SLC6) proteins. The key role of CRT1 is to translocate creatine across tissue barriers and into target cells, such as neurons and myocytes. Individuals harboring mutations in the coding sequence of the human CRT1 gene develop creatine transporter deficiency (CTD), one of the pivotal underlying causes of cerebral creatine deficiency syndrome. CTD encompasses an array of clinical manifestations, including severe intellectual disability, epilepsy, autism, development delay, and motor dysfunction. CTD is characterized by the absence of cerebral creatine, which implies an indispensable role for CRT1 in supplying the brain cells with creatine. CTD-associated variants dramatically reduce or abolish creatine transport activity by CRT1. Many of these are point mutations that are known to trigger folding defects, leading to the retention of encoded CRT1 proteins in the endoplasmic reticulum and precluding their delivery to the cell surface. Misfolding of several related SLC6 transporters also gives rise to detrimental pathologic conditions in people; e.g., mutations in the dopamine transporter induce infantile parkinsonism/dystonia, while mutations in the GABA transporter 1 cause treatment-resistant epilepsy. In some cases, folding defects are amenable to rescue by small molecules, known as pharmacological and chemical chaperones, which restore the cell surface expression and transport activity of the previously non-functional proteins. Insights from the recent molecular, animal and human case studies of CTD add toward our understanding of this complex disorder and reveal the wide-ranging effects elicited upon CRT1 dysfunction. This grants novel therapeutic prospects for the treatment of patients afflicted with CTD, e.g., modifying the creatine molecule to facilitate CRT1-independent entry into brain cells, or correcting folding-deficient and loss-of-function CTD variants using pharmacochaperones and/or allosteric modulators. The latter justifies a search for additional compounds with a capacity to correct mutation-specific defects.
Collapse
Affiliation(s)
| | | | | | - Sonja Sucic
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Mazziotti R, Cacciante F, Sagona G, Lupori L, Gennaro M, Putignano E, Alessandrì MG, Ferrari A, Battini R, Cioni G, Pizzorusso T, Baroncelli L. Novel translational phenotypes and biomarkers for creatine transporter deficiency. Brain Commun 2020; 2:fcaa089. [PMID: 32954336 PMCID: PMC7472907 DOI: 10.1093/braincomms/fcaa089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/20/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Creatine transporter deficiency is a metabolic disorder characterized by intellectual disability, autistic-like behaviour and epilepsy. There is currently no cure for creatine transporter deficiency, and reliable biomarkers of translational value for monitoring disease progression and response to therapeutics are sorely lacking. Here, we found that mice lacking functional creatine transporter display a significant alteration of neural oscillations in the EEG and a severe epileptic phenotype that are recapitulated in patients with creatine transporter deficiency. In-depth examination of knockout mice for creatine transporter also revealed that a decrease in EEG theta power is predictive of the manifestation of spontaneous seizures, a frequency that is similarly affected in patients compared to healthy controls. In addition, knockout mice have a highly specific increase in haemodynamic responses in the cerebral cortex following sensory stimuli. Principal component and Random Forest analyses highlighted that these functional variables exhibit a high performance in discriminating between pathological and healthy phenotype. Overall, our findings identify novel, translational and non-invasive biomarkers for the analysis of brain function in creatine transporter deficiency, providing a very reliable protocol to longitudinally monitor the efficacy of potential therapeutic strategies in preclinical, and possibly clinical, studies.
Collapse
Affiliation(s)
- Raffaele Mazziotti
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence I-50135, Italy.,Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy
| | | | - Giulia Sagona
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence I-50135, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy
| | - Leonardo Lupori
- BIO@SNS Lab, Scuola Normale Superiore di Pisa, Pisa I-56125, Italy
| | - Mariangela Gennaro
- Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy
| | - Maria Grazia Alessandrì
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy
| | - Annarita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa I-56126, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa I-56126, Italy
| | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence I-50135, Italy.,Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Pisa I-56124, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa I-56128, Italy
| |
Collapse
|