1
|
Ma CY, Yu AC, Sheng XH, Wang XG, Xing K, Xiao LF, Lv XZ, Guo Y, Long C, Qi XL. Supplementing ageing male laying breeders with lycopene alleviates oxidative stress in testis and improves testosterone secretion. Theriogenology 2024; 230:220-232. [PMID: 39341034 DOI: 10.1016/j.theriogenology.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Reproductive performance is a crucial aspect of poultry production and is carefully controlled by endocrine, paracrine, and autocrine factors. This study aimed to investigate the effect of lycopene on testosterone synthesis in Leydig cells of laying breeder roosters, clarify the mechanism of lycopene improving Leydig cells function and promoting testosterone production, and explore the role of related signal transduction pathways in testosterone synthesis. RESULTS A total of 96 healthy 55-week-old breeding roosters were randomly assigned to one of five dietary treatments. They were provided with a corn-soybean meal-based diet containing different levels of lycopene: 0 mg/kg (control), 50 mg/kg, 100 mg/kg, or 200 mg/kg. The experiment lasted for 6 weeks. With the increase in lycopene levels, the testosterone content in the plasma was significantly higher than in the control group. Testicular Leydig cells were isolated and cultured from fresh testicular tissue of 45-wk-old to 60-wk-old breeding roosters. Various doses of lycopene were administered to Leydig cells, and subsequently, cells were collected for the detection of cell viability and testosterone content. The optimal concentration of lycopene to be added was determined, and changes in mRNA expression and protein levels of key proteins involved in testosterone synthesis were investigated. The results showed that lycopene treatment significantly increased testosterone secretion, mRNA expression, and protein levels of steroid-producing enzymes. Cells were collected to measure the activity of antioxidant enzymes, the mRNA transcription level of apoptotic factors, and the protein expression of apoptotic factors after treatment with lycopene. The results showed that lycopene significantly increased the activities of antioxidant enzymes, and the ability to inhibit oxygen radicals, and decreased the content of malondialdehyde. Apoptosis was inhibited by regulating the expression of apoptosis-inducing and anti-apoptosis factors. After that, the MAPK signaling pathway and downstream SF-1, Nrf2 gene, and protein expression levels were detected. The results showed that lycopene treatment significantly increased the gene and protein expression of JNK, SF-1, and Nrf2, and significantly decreased the gene and protein expression of p38. CONCLUSIONS Lycopene treatment could promote testosterone synthesis of testicular Leydig cells by activating MAPK-SF-1 (increasing steroid-producing enzyme level) and MAPK-Nrf2 pathways (resisting oxidative damage).
Collapse
Affiliation(s)
- Chun-Yu Ma
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ao-Chuan Yu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue-Ze Lv
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
2
|
Mukherjee AG, Valsala Gopalakrishnan A. Rosolic acid as a novel activator of the Nrf2/ARE pathway in arsenic-induced male reproductive toxicity: An in silico study. Biochem Biophys Rep 2024; 39:101801. [PMID: 39175663 PMCID: PMC11340599 DOI: 10.1016/j.bbrep.2024.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Male reproductive toxicity as a result of arsenic exposure is linked with oxidative stress and excessive generation of reactive oxygen species (ROS). It leads to an imbalance between ROS production and antioxidant defense mechanisms ultimately resulting in male infertility. The nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a transcription factor that responds to cellular stressors controlling the oxidative state, mitochondrial dysfunction, inflammation, and proteostasis. This study aims to investigate the potential of Rosolic acid (ROA) to act as a novel Nrf2 activator by mitigating oxidative stress to combat arsenic-induced male reproductive toxicity. The protein and ligands were prepared in the BIOVIA Discovery Studio, followed by protein-ligand docking using auto dock vina integrated with the PyRx-Virtual Screening Tool. Then the ADME properties were analyzed using the SwissADME tool to get a clear idea about the physicochemical properties, lipophilicity, water solubility, pharmacokinetics, and drug likeliness of ROA. It was followed by molecular dynamics simulation (MDS) studies using GROMACS. The 3D and 2D interaction maps revealed the interactions of Keap 1 with ROA. Keap1-ROA complex was found to have a binding energy of -7.8 kcal/mol. ROA showed 0 violations for Lipinski and 0 alerts each for PAINS and Brenk and a bioavailability score of 0.55. The BOILED-Egg representation showcases that ROA is predicted as passively crossing the blood-brain barrier (BBB). The MDS described 2FLU-ROA as a stable system. This work portrays that ROA can be a potent Nrf2 activator by exhibiting an inhibitory activity against the Keap1 protein and thus mitigating oxidative stress in arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
3
|
Volkova N, Yukhta M, Goltsev A. DNA fragmentation, antioxidant activity and histological structure of cryopreserved testicular tissue depending on sexual maturity and immunological status. Cryobiology 2024; 114:104862. [PMID: 38360086 DOI: 10.1016/j.cryobiol.2024.104862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The objective of this work was to determine a relationship between a frequency of DNA fragmentation, a level of antioxidant activity and a preservation of histological structure depending on initial status of fragments of seminiferous tubules of testes (FSTT) of rats at the stages of cryopreservation. FSTT of animals of different ages (immature, mature), as well as animals with changed immunological status (adjuvant arthritis) were cryopreserved. Slow uncontrolled freezing was used in a cryomedium of fibrin gel with 0.7 M glycerol. The results showed that viability, TAS, γGGT and G6PD activities had the highest values in the group of intact immature animals both in fresh FSTT and after exposure to cryomedium or cryopreservation, while the indexes of DNA fragmentation and ROS content had the lowest values. It was found that an increase in the DNA fragmentation rate occurred in parallel with a decrease in the values of antioxidant activity and membrane integrity. The spermatogenenic epithelium after cryopreservation differed between the groups in a relative number of cells with pathologically changed nuclei and the frequency of exfoliation of epithelial cells into the tubule cavity namely, there was a tendency to an increase in the damaging effects in the series, "Immature → Sexually mature → Autoimmune arthritis". The obtained data can be taken into account in the development of low-temperature preservation protocols using cryotechnologies, which will ensure the maintenance of the morphological and functional characteristics of FSTT depending on sexual maturity and immunological status.
Collapse
Affiliation(s)
- Nataliia Volkova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, str. Pereyaslavska, 23, Kharkiv, 61016, Ukraine.
| | - Mariia Yukhta
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, str. Pereyaslavska, 23, Kharkiv, 61016, Ukraine
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, str. Pereyaslavska, 23, Kharkiv, 61016, Ukraine
| |
Collapse
|
4
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
5
|
Abstract
One of the major causes of defective sperm function is oxidative stress, which limits the fertilizing potential of these cells as the result of collateral damage to proteins and lipids in the sperm plasma membrane. On this point, a derangement of both generation and neutralization of reactive oxygen species (ROS) is a recognized cause of male infertility. Antioxidant protection in sperm has been widely investigated, as well as the sperm composition of fatty acids (FA), which represents the preferred substrate for ROS, most frequently linked to the disease-related infertility. Isoprostanes are compounds derived from free radical-mediated oxidation of FAs. As such, they are considered an index of lipid oxidative damage and lipid mediators. This article discusses the role of isoprostanes as relevant factors both to sperm FA composition and sperm membrane integrity. Additionally, isoprostane's influence on sperm quality is reviewed. With reference to male reproductive dysfunction, increasing evidence indicates isoprostanes, detectable in biological fluids or sperm membrane, as the specific index of 1) exposure to chemical etiological agents, 2) oxidative damage, 3) reduced antioxidant response, and 4) sperm immaturity. ABBREVIATIONS OS: oxidative stress; ROS: reactive oxygen species; PUFAs: polyunsaturated fatty acids; ARA: arachidonic acid, F2-IsoPs; F2-isoprostanes, PLA2: phospholipase A2; NADPH: nicotinamide adenine dinucleotide phosphate; IVF: in vitro fertilization.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Elena Moretti
- Department Molecular and Developmental Medicine, University of Siena , Siena, Italy
| | - Giulia Collodel
- Department Molecular and Developmental Medicine, University of Siena , Siena, Italy
| |
Collapse
|