1
|
Ortiz JA, Ghazalli N, Lopez K, Rawson J, McCown EM, Oh E, Irimia JM, Jou K, Mares J, Chen MH, Wu X, Zook HN, Quijano JC, Erdem N, Lizarraga A, Kandeel F, Fueger PT, Thurmond DC, Ku HT. Trefoil Factor 2 Expressed by the Murine Pancreatic Acinar Cells Is Required for the Development of Islets and for β-Cell Function During Aging. Diabetes 2024; 73:1447-1461. [PMID: 38905124 PMCID: PMC11333379 DOI: 10.2337/db23-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Exocrine-to-endocrine cross talk in the pancreas is crucial to maintain β-cell function. However, the molecular mechanisms underlying this cross talk are largely undefined. Trefoil factor 2 (Tff2) is a secreted factor known to promote the proliferation of β-cells in vitro, but its physiological role in vivo in the pancreas is unknown. Also, it remains unclear which pancreatic cell type expresses Tff2 protein. We therefore created a mouse model with a conditional knockout of Tff2 in the murine pancreas. We find that the Tff2 protein is preferentially expressed in acinar but not ductal or endocrine cells. Tff2 deficiency in the pancreas reduces β-cell mass on embryonic day 16.5. However, homozygous mutant mice are born without a reduction of β-cells and with acinar Tff3 compensation by day 7. When mice are aged to 1 year, both male and female homozygous and male heterozygous mutants develop impaired glucose tolerance without affected insulin sensitivity. Perifusion analysis reveals that the second phase of glucose-stimulated insulin secretion from islets is reduced in aged homozygous mutant compared with controls. Collectively, these results demonstrate a previously unknown role of Tff2 as an exocrine acinar cell-derived protein required for maintaining functional endocrine β-cells in mice. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jose A. Ortiz
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Nadiah Ghazalli
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Kassandra Lopez
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Erika M. McCown
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Eunjin Oh
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Jose M. Irimia
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Comprehensive Metabolic Phenotyping Core, City of Hope, Duarte, CA
| | - Kevin Jou
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Jacob Mares
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | | | - Xiwei Wu
- Comprehensive Metabolic Phenotyping Core, City of Hope, Duarte, CA
| | - Heather N. Zook
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Janine C. Quijano
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Neslihan Erdem
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Anahy Lizarraga
- Eugene and Ruth Roberts Summer Student Academy, City of Hope, Duarte, CA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Patrick T. Fueger
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Comprehensive Metabolic Phenotyping Core, City of Hope, Duarte, CA
| | - Debbie C. Thurmond
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Molecular & Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA
- Irell and Manella School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| |
Collapse
|
2
|
Jiang Z, Wu F, Laise P, Takayuki T, Na F, Kim W, Kobayashi H, Chang W, Takahashi R, Valenti G, Sunagawa M, White RA, Macchini M, Renz BW, Middelhoff M, Hayakawa Y, Dubeykovskaya ZA, Tan X, Chu TH, Nagar K, Tailor Y, Belin BR, Anand A, Asfaha S, Finlayson MO, Iuga AC, Califano A, Wang TC. Tff2 defines transit-amplifying pancreatic acinar progenitors that lack regenerative potential and are protective against Kras-driven carcinogenesis. Cell Stem Cell 2023; 30:1091-1109.e7. [PMID: 37541213 PMCID: PMC10414754 DOI: 10.1016/j.stem.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
While adult pancreatic stem cells are thought not to exist, it is now appreciated that the acinar compartment harbors progenitors, including tissue-repairing facultative progenitors (FPs). Here, we study a pancreatic acinar population marked by trefoil factor 2 (Tff2) expression. Long-term lineage tracing and single-cell RNA sequencing (scRNA-seq) analysis of Tff2-DTR-CreERT2-targeted cells defines a transit-amplifying progenitor (TAP) population that contributes to normal homeostasis. Following acute and chronic injury, Tff2+ cells, distinct from FPs, undergo depopulation but are eventually replenished. At baseline, oncogenic KrasG12D-targeted Tff2+ cells are resistant to PDAC initiation. However, KrasG12D activation in Tff2+ cells leads to survival and clonal expansion following pancreatitis and a cancer stem/progenitor cell-like state. Selective ablation of Tff2+ cells prior to KrasG12D activation in Mist1+ acinar or Dclk1+ FP cells results in enhanced tumorigenesis, which can be partially rescued by adenoviral Tff2 treatment. Together, Tff2 defines a pancreatic TAP population that protects against Kras-driven carcinogenesis.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Pasquale Laise
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; DarwinHealth Inc., New York, NY, USA
| | - Tanaka Takayuki
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Fu Na
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Woosook Kim
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Wenju Chang
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ryota Takahashi
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Masaki Sunagawa
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ruth A White
- Division of Hematology and Oncology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Marina Macchini
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bernhard W Renz
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of General, Visceral, and Transplantation Surgery, LMU University Hospital, LMU Munich, Germany
| | - Moritz Middelhoff
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Division of Digestive and Liver Diseases, CU and Klinikum rechts der Isar, Technical University, Munich, Germany
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Zinaida A Dubeykovskaya
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Xiangtian Tan
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Timothy H Chu
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Karan Nagar
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Bryana R Belin
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Akanksha Anand
- Division of Digestive and Liver Diseases, Department of Medicine and Department of Gastroenterology II, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - Samuel Asfaha
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael O Finlayson
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alina C Iuga
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; DarwinHealth Inc., New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Melzer MK, Kleger A. Pancreatic acinar heterogeneity hijacks carcinogenesis and homeostasis. Cell Stem Cell 2023; 30:1003-1005. [PMID: 37541205 DOI: 10.1016/j.stem.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/06/2023]
Abstract
In this issue, Jiang and colleagues employ multiple lineage-tracing approaches to elaborate on the role of Tff2+ transit-amplifying progenitor cells in the pancreatic acinar compartment of mice. This work provides insights into the steady-state homeostasis and tumor-suppressive features of certain progenitor cells and presents findings on acinar cell heterogeneity.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany; Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology, Ulm University Hospital, Ulm, Germany; Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany; Core Facility Organoids, Ulm University, Ulm, Germany.
| |
Collapse
|
4
|
Znalesniak EB, Laskou A, Salm F, Haupenthal K, Harder S, Schlüter H, Hoffmann W. The Forms of the Lectin Tff2 Differ in the Murine Stomach and Pancreas: Indications for Different Molecular Functions. Int J Mol Sci 2023; 24:ijms24087059. [PMID: 37108221 PMCID: PMC10138697 DOI: 10.3390/ijms24087059] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The lectin TFF2 belongs to the trefoil factor family (TFF). This polypeptide is typically co-secreted with the mucin MUC6 from gastric mucous neck cells, antral gland cells, and duodenal Brunner glands. Here, TFF2 fulfills a protective function by forming a high-molecular-mass complex with the MUC6, physically stabilizing the mucus barrier. In pigs and mice, and slightly in humans, TFF2 is also synthesized in the pancreas. Here, we investigated the murine stomach, pancreas, and duodenum by fast protein liquid chromatography (FPLC) and proteomics and identified different forms of Tff2. In both the stomach and duodenum, the predominant form is a high-molecular-mass complex with Muc6, whereas, in the pancreas, only low-molecular-mass monomeric Tff2 was detectable. We also investigated the expression of Tff2 and other selected genes in the stomach, pancreas, and the proximal, medial, and distal duodenum (RT-PCR analysis). The absence of the Tff2/Muc6 complex in the pancreas is due to a lack of Muc6. Based on its known motogenic, anti-apoptotic, and anti-inflammatory effects, we propose a protective receptor-mediated function of monomeric Tff2 for the pancreatic ductal epithelium. This view is supported by a report that a loss of Tff2 promotes the formation of pancreatic intraductal mucinous neoplasms.
Collapse
Affiliation(s)
- Eva B Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Katharina Haupenthal
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
5
|
D’Alterio C, Giardino A, Scognamiglio G, Butturini G, Portella L, Guardascione G, Frigerio I, Montella M, Gobbo S, Martignoni G, Napolitano V, De Vita F, Tatangelo F, Franco R, Scala S. CXCR4-CXCL12-CXCR7 and PD-1/PD-L1 in Pancreatic Cancer: CXCL12 Predicts Survival of Radically Resected Patients. Cells 2022; 11:3340. [PMID: 36359736 PMCID: PMC9655815 DOI: 10.3390/cells11213340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 04/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is currently the most deadly cancer. Although characterized by 5-20% of neoplastic cells in the highly fibrotic stroma, immunotherapy is not a valid option in PDAC treatment. As CXCR4-CXCL12 regulates tumor invasion and T-cell access and PD-1/PD-L1 controls immune tolerance, 76 PDACs were evaluated for CXCR4-CXCL12-CXCR7 and PD-1/PD-L1 in the epithelial and stromal component. Neoplastic CXCR4 and CXCL12 discriminated PDACs for recurrence-free survival (RFS), while CXCL12 and CXCR7 discriminated patients for cancer-specific survival (CSS). Interestingly, among patients with radical resection (R0), high tumor CXCR4 clustered patients with worse RFS, high CXCL12 identified poor prognostic patients for both RFS and CSS, while stromal lymphocytic-monocytic PD-L1 associated with improved RFS and CSS. PD-1 was only sporadically expressed (<1%) in focal lymphocyte infiltrate and does not impact prognosis. In multivariate analysis, tumoral CXCL12, perineural invasion, and AJCC lymph node status were independent prognostic factors for RFS; tumoral CXCL12, AJCC Stage, and vascular invasion were independent prognostic factors for CSS. CXCL12's poor prognostic meaning was confirmed in an additional perspective-independent 13 fine-needle aspiration cytology advanced stage-PDACs. Thus, CXCR4-CXCL12 evaluation in PDAC identifies prognostic categories and could orient therapeutic approaches.
Collapse
Affiliation(s)
- Crescenzo D’Alterio
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Alessandro Giardino
- Unit of HPB Surgery, Pederzoli Hospital, Peschiera del Garda, 37019 Verona, Italy
| | - Giosuè Scognamiglio
- Pathology Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Giovanni Butturini
- Unit of HPB Surgery, Pederzoli Hospital, Peschiera del Garda, 37019 Verona, Italy
| | - Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Giuseppe Guardascione
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Isabella Frigerio
- Unit of HPB Surgery, Pederzoli Hospital, Peschiera del Garda, 37019 Verona, Italy
| | - Marco Montella
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Stefano Gobbo
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, 37019 Verona, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Guido Martignoni
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, 37019 Verona, Italy
| | - Vincenzo Napolitano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Ferdinando De Vita
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Fabiana Tatangelo
- Pathology Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy
| |
Collapse
|
6
|
Ghanemi A, Yoshioka M, St-Amand J. Diet Impact on Obesity beyond Calories and Trefoil Factor Family 2 (TFF2) as an Illustration: Metabolic Implications and Potential Applications. Biomolecules 2021; 11:1830. [PMID: 34944474 PMCID: PMC8698828 DOI: 10.3390/biom11121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity is a health problem with increasing impacts on public health, economy and even social life. In order to reestablish the energy balance, obesity management focuses mainly on two pillars; exercise and diet. Beyond the contribution to the caloric intake, the diet nutrients and composition govern a variety of properties. This includes the energy balance-independent properties and the indirect metabolic effects. Whereas the energy balance-independent properties are close to "pharmacological" effects and include effects such as antioxidant and anti-inflammatory, the indirect metabolic effects represent the contribution a diet can have on energy metabolism beyond the caloric contribution itself, which include the food intake control and metabolic changes. As an illustration, we also described the metabolic implication and hypothetical pathways of the high-fat diet-induced gene Trefoil Factor Family 2. The properties the diet has can have a variety of applications mainly in pharmacology and nutrition and further explore the "pharmacologically" active food towards potential therapeutic applications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 4G2, Canada
| |
Collapse
|
7
|
Revisiting Cell Death Responses in Fibrotic Lung Disease: Crosstalk between Structured and Non-Structured Cells. Diagnostics (Basel) 2020; 10:diagnostics10070504. [PMID: 32708315 PMCID: PMC7400296 DOI: 10.3390/diagnostics10070504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a life-threatening disorder caused by excessive formation of connective tissue that can affect several critical organs. Innate immune cells are involved in the development of various disorders, including lung fibrosis. To date, several hematopoietic cell types have been implicated in fibrosis, including pro-fibrotic monocytes like fibrocytes and segregated-nucleus-containing atypical monocytes (SatMs), but the precise cellular and molecular mechanisms underlying its development remain unclear. Repetitive injury and subsequent cell death response are triggering events for lung fibrosis development. Crosstalk between lung structured and non-structured cells is known to regulate the key molecular event. We recently reported that RNA-binding motif protein 7 (RBM7) expression is highly upregulated in the fibrotic lung and plays fundamental roles in fibrosis development. RBM7 regulates nuclear degradation of NEAT1 non-coding RNA, resulting in sustained apoptosis in the lung epithelium and fibrosis. Apoptotic epithelial cells produce CXCL12, which leads to the recruitment of pro-fibrotic monocytes. Apoptosis is also the main source of autoantigens. Recent studies have revealed important functions for natural autoantibodies that react with specific sets of self-antigens and are unique to individual diseases. Here, we review recent insights into lung fibrosis development in association with crosstalk between structured cells like lung epithelial cells and non-structured cells like migrating immune cells, and discuss their relevance to acquired immunity through natural autoantibody production.
Collapse
|
8
|
Natural Autoantibodies in Chronic Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21031138. [PMID: 32046322 PMCID: PMC7037933 DOI: 10.3390/ijms21031138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
In autoantibody-mediated autoimmune diseases, pathogenic autoantibodies generated by a failure of central or peripheral tolerance, have different effects mediated by a variety of mechanisms. Interestingly, even non-autoimmune chronic diseases have a set of disease-specific natural autoantibodies that are maintained for a long time. Because most of these natural autoantibodies target intracellular proteins or long non-coding RNAs, they are speculated to be non-pathological and have some important as yet unrecognized physiological functions such as debris clearance. Recently, we revealed a set of disease-specific natural autoantibodies of chronic pulmonary diseases with unknown etiology by protein arrays that enable detection of specific autoantibodies against >8000 targets. Surprisingly, some of the targeted antigens of disease-specific autoantibodies were subsequently reported by other laboratories as strongly associated with the disease, suggesting that these antigens reflect the pathology of each disease. Furthermore, some of these autoantibodies that target extracellular antigens might modify the original course of each disease. Here, we review the disease-specific natural autoantibodies of chronic pulmonary diseases, including chronic fibrosing idiopathic interstitial pneumonias, sarcoidosis, and autoimmune pulmonary alveolar proteinosis, and discuss their utility and effects.
Collapse
|
9
|
Horiguchi M, Yoshida M, Hirata K, Furuyama K, Masui T, Uemoto S, Kawaguchi Y. Senescence caused by inactivation of the homeodomain transcription factor Pdx1 in adult pancreatic acinar cells in mice. FEBS Lett 2019; 593:2226-2234. [PMID: 31240701 DOI: 10.1002/1873-3468.13504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/04/2019] [Accepted: 06/16/2019] [Indexed: 11/11/2022]
Abstract
In this study, we used tamoxifen-inducible Elastase-Cre-mediated inactivation of pancreatic and duodenal homeobox1 (Pdx1), an indispensable gene during embryonic pancreatogenesis, to investigate the role of Pdx1 in adult pancreatic exocrine tissue. We found that Pdx1 depletion in approximately 50% of acinar cell mass did not show any macroscopic phenotype. Lineage tracing experiments revealed that the percentage of Pdx1-depleted cells did not change initially but gradually decreased, while the proliferation of Pdx1-preserved cells increased. Electron microscopic analysis showed the emergence of round-shaped mitochondria with less cristae, dilated ER lumen and increased number of autophagosomes but no apoptosis. Instead, Pdx1-depleted acinar cells became senescent. These findings indicate that intracellular stress caused by Pdx1 inactivation triggers the senescence-associated secretory phenotype to maintain organ homeostasis in this model.
Collapse
Affiliation(s)
- Masashi Horiguchi
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Masahiro Yoshida
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Koji Hirata
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Kenichiro Furuyama
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Toshihiko Masui
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| | - Shinji Uemoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiya Kawaguchi
- Department of Clinical Application, Center for iPS cell Research and Application, Kyoto, Japan
| |
Collapse
|