Zhou LB, Zhou YQ, Zhang XY. Blocking VEGF signaling augments interleukin-8 secretion
via MEK/ERK/1/2 axis in human retinal pigment epithelial cells.
Int J Ophthalmol 2020;
13:1039-1045. [PMID:
32685389 PMCID:
PMC7321944 DOI:
10.18240/ijo.2020.07.04]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
AIM
To identify proangiogenic factors engaged in neovascular age-related macular degeneration (AMD) except vascular endothelial growth factor (VEGF) from human retinal pigment epithelial (hRPE) cells and investigate the underlying mechanisms.
METHODS
VEGF receptor 2 (VEGFR2) in ARPE-19 cells was depleted by siRNA transfection or overexpressed through adenovirus infection. The mRNA and the protein levels of interleukin-8 (IL-8) in ARPE-19 cells were measured by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. The protein levels of AKT, p-AKT, MEK, p-MEK, ERK1/2, p-ERK1/2, JNK, p-JNK, p38 and p-p38 were detected by Western blotting. A selective chemical inhibitor, LY3214996, was employed to inhibit phosphorylation of ERK1/2. Cell viability was determined by MTT assay.
RESULTS
Knockdown of VEGFR2 in ARPE-19 cells robustly augmented IL-8 production at both the mRNA and the protein levels. Silencing VEGFR2 substantially enhanced phosphorylation of MEK and ERK1/2 while exerted no effects on phosphorylation of AKT, JNK and p38. Inhibiting ERK1/2 phosphorylation by LY3214996 reversed changes in VEGFR2 knockdown-induced IL-8 upregulation at the mRNA and the protein levels with no effects on cell viability. VEGFR2 overexpression significantly reduced IL-8 generation at the mRNA and the protein levels.
CONCLUSION
Blockade of VEGF signaling augments IL-8 secretion via MEK/ERK1/2 axis and overactivation of VEGF pathway decreases IL-8 production in hRPE cells. Upregulated IL-8 expression after VEGF signaling inhibition in hRPE cells may be responsible for being incompletely responsive to anti-VEGF remedy in neovascular AMD, and IL-8 may serve as an alternative therapeutic target for neovascular AMD.
Collapse