1
|
Dhanalakshmi M, Pandya M, Sruthi D, Jinuraj KR, Das K, Gadnayak A, Dave S, Andal NM. The artificial neural network selects saccharides from natural sources a promise for potential FimH inhibitor to prevent UTI infections. In Silico Pharmacol 2024; 12:37. [PMID: 38706885 PMCID: PMC11063016 DOI: 10.1007/s40203-024-00212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/13/2024] [Indexed: 05/07/2024] Open
Abstract
The major challenge in the development of affordable medicines from natural sources is the unavailability of logical protocols to explain their mechanism of action in biological targets. FimH (Type 1 fimbrin with D-mannose specific adhesion property), a lectin on E. coli cell surface is a promising target to combat the urinary tract infection (UTI). The present study aimed at predicting the inhibitory capacity of saccharides on FimH. As mannosides are considered FimH inhibitors, the readily accessible saccharides from the PubChem collection were utilized. The artificial neural networks (ANN)-based machine learning algorithm Self-organizing map (SOM) has been successfully employed in predicting active molecules as they could discover relationships through self-organization for the ligand-based virtual screening. Docking was used for the structure-based virtual screening and molecular dynamic simulation for validation. The result revealed that the predicted molecules malonyl hexose and mannosyl glucosyl glycerate exhibit exactly similar binding interactions and better docking scores as that of the reference bioassay active, heptyl mannose. The pharmacokinetic profile matches that of the selected bioflavonoids (quercetin malonyl hexose, kaempferol malonyl hexose) and has better values than the control drug bioflavonoid, monoxerutin. Thus, these two molecules can effectively inhibit type 1 fimbrial adhesin, as antibiotics against E. coli and can be explored as a prophylactic against UTIs. Moreover, this investigation can pave the way to the exploration of the potential benefits of plant-based treatments. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00212-5.
Collapse
Affiliation(s)
| | - Medha Pandya
- Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, Gujarat India
| | - Damodaran Sruthi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka India
| | - K. Rajappan Jinuraj
- Open Source Pharma Foundation, Manyatha Tech Park, MFAR Green Heart Building, Hebbal, Bengaluru, Karnataka India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha India
| | - Ayushman Gadnayak
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata India
| | - Sushma Dave
- Department of Chemistry, JIET, Jodhpur, Rajasthan India
| | - N. Muthulakshmi Andal
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu India
| |
Collapse
|
2
|
Daga MA, Nicolau ST, Jurumenha-Barreto J, Lima LBS, Cabral IL, Pivotto AP, Stefanello A, Amorim JPA, Hoscheid J, Silva EA, Ayala TS, Menolli RA. Ursolic acid-rich extract presents trypanocidal action in vitro but worsens mice under experimental acute Chagas disease. Parasite Immunol 2023; 45:e13005. [PMID: 37467029 DOI: 10.1111/pim.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Chagas disease is a neglected tropical disease with only two drugs available for treatment and the plant Cecropia pachystachya has several compounds with antimicrobial and anti-inflammatory activities. This study aimed to evaluate a supercritical extract from C. pachystachya leaves in vitro and in vivo against Trypanosoma cruzi. A supercritical CO2 extraction was used to obtain the extract (CPE). Cytotoxicity and immunostimulation ability were evaluated in macrophages, and the in vitro trypanocidal activity was evaluated against epimastigotes and trypomastigotes forms. In vivo tests were done by infecting BALB/c mice with blood trypomastigotes forms and treating animals orally with CPE for 10 days. The parasitemia, survival rate, weight, cytokines and nitric oxide dosage were evaluated. CPE demonstrated an effect on the epi and trypomastigotes forms of the parasite (IC50 17.90 ± 1.2 μg/mL; LC50 26.73 ± 1.2 μg/mL) and no changes in macrophages viability, resulting in a selectivity index similar to the reference drug. CPE-treated animals had a worsening compared to non-treated, demonstrated by higher parasitemia and lower survival rate. This result was attributed to the anti-inflammatory effect of CPE, demonstrated by the higher IL-10 and IL-4 values observed in the treated mice compared to the control ones. CPE demonstrated a trypanocidal effect in vitro and a worsening in the in vivo infection due to its anti-inflammatory activity.
Collapse
Affiliation(s)
- Maiara A Daga
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Scheila T Nicolau
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Juliana Jurumenha-Barreto
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Lucas B S Lima
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Isaac L Cabral
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Ana Paula Pivotto
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Amanda Stefanello
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - João P A Amorim
- Center of Biological and Health Sciences, Western Parana State University, Cascavel, Brazil
| | - Jaqueline Hoscheid
- Professional Master's Program in Medicinal Plants and Herbal Medicine in Primary Care, Universidade Paranaense, Umuarama, Brazil
| | - Edson A Silva
- Laboratory of Biotechnological Processes and Separation, Center of Exact and Technological Sciences, Western Parana State University, Toledo, Brazil
| | - Thaís S Ayala
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| | - Rafael A Menolli
- Laboratory of Applied Immunology, Center of Medical and Pharmaceutical Sciences, Western Parana State University, Cascavel, Brazil
| |
Collapse
|
3
|
Medrano-Sánchez EJ, Hernández-Bolio GI, Lobato-García CE, González-Cortazar M, Antunez-Mojica M, Gallegos-García AJ, Barredo-Hernández CO, López-Rodríguez R, Aguilar-Sánchez NC, Gómez-Rivera A. Intra- and Interspecies Differences of Two Cecropia Species from Tabasco, Mexico, Determined through the Metabolic Analysis and 1H-NMR-Based Fingerprinting of Hydroalcoholic Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2440. [PMID: 37447001 DOI: 10.3390/plants12132440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The genus Cecropia is used in the traditional medicine of Tabasco, Mexico, in diabetes and hypertension treatments, mainly without distinction of the species. This contribution aimed to carry out the metabolic analysis and Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy-based fingerprinting of the hydroalcoholic leaf extracts of Cecropia peltata (Cp) and Cecropia obtusifolia (Co) collected in five sub-regions of the State of Tabasco (Cp1, "Centro"; Cp2, "Chontalpa"; Cp3, "Pantanos"; Cp4, "Ríos" and Co5, "Sierra"). Firstly, the extracts were evaluated for their Total Phenol Content (TPC) and Total Flavonoid Content (TFC) by spectrophotometric methods. In addition, metabolic analysis was performed using High-Performance Liquid Chromatography with Diode-Array Detection HPLC-DAD, which allowed the quantification of the chemical markers: chlorogenic acid, isoorientin, and orientin, as well as a vitexin analog. Finally, metabolomic analysis was carried out based on the 1H-NMR spectra. The Cp4 extract (C. peltata from the "Ríos" sub-region) presented the highest values of TPC (155 ± 9.1 mg GAE/g E) and TFC (724 ± 22.2 mg RE/g E). The metabolic analysis was similar among the five samples; the highest concentrations of the four chemical markers were found in Cp3 (C. peltata from the "Pantanos" sub-region) for chlorogenic acid (39.8 ± 2.3 mg/g) and isoorientin (51.5 ± 2.9 mg/g), in Cp4 for orientin (49.9 ± 0.6 mg/g), and in Cp2 (C. peltata from the "Chontalpa" sub-region) for the vitexin analog (6.2 ± 0.2 mg/g). The metabolic analysis and the 1H-NMR fingerprint analysis showed intraspecies differences among the C. peltata samples and interspecies between C. peltata and C. obtusifolia, which were attributed to variations in the metabolite groups as well as in the proportion of sugars such as glucose and xylose.
Collapse
Affiliation(s)
- Eric Jaziel Medrano-Sánchez
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico
| | - Gloria Ivonne Hernández-Bolio
- Departamento de Física Aplicada, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Antigua Carretera a Progreso Km. 6, Mérida 97310, Yucatán, Mexico
| | - Carlos Ernesto Lobato-García
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico
| | - Mayra Antunez-Mojica
- CONACYT-Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Chamilpa, Cuernavaca 62209, Morelos, Mexico
| | - Ammy Joana Gallegos-García
- División de Ciencias Básicas e Ingeniería, Universidad Popular de la Chontalpa-Carretera Cárdenas-Huimanguillo Km 2 S/N, Ranchería, Invitab Paso y Playa, Heroica, Cárdenas 86556, Tabasco, Mexico
| | - Cristian Octavio Barredo-Hernández
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico
| | - Ricardo López-Rodríguez
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico
| | - Nelly Cristina Aguilar-Sánchez
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Carretera Estatal Libre Villahermosa Comalcalco Km 27 S/N, Ranchería Rivera Alta, Jalpa de Méndez 86205, Tabasco, Mexico
| | - Abraham Gómez-Rivera
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa Km. 0.5, Cunduacán 86690, Tabasco, Mexico
| |
Collapse
|
4
|
Puspitasari YE, Tuenter E, Foubert K, Herawati H, Hariati AM, Aulanni’am A, Pieters L, De Bruyne T, Hermans N. Saponin and Fatty Acid Profiling of the Sea Cucumber Holothuria atra, α-Glucosidase Inhibitory Activity and the Identification of a Novel Triterpene Glycoside. Nutrients 2023; 15:nu15041033. [PMID: 36839391 PMCID: PMC9960930 DOI: 10.3390/nu15041033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Saponin-rich sea cucumber extracts have shown antidiabetic effects in a few reports. Although the triterpene glycosides of sea cucumbers are commonly isolated from their Cuvierian tubules, these are absent in Holothuria atra Jaeger. Therefore, this study intended to investigate the saponin profile in the body wall of H. atra, as well as to assess the α-glucosidase inhibitory activity of the H. atra extracts. The chemical profiling of sea cucumber extracts was conducted by UPLC-HRMS analysis. This resulted in the tentative identification of 11 compounds, 7 of which have not been reported in the H. Atra body wall before. Additionally, two triterpene glycosides were purified and their structures were elucidated based on HRMS and NMR data: desholothurin B (1), and a novel epimer, 12-epi-desholothurin B (2). Moreover, the fatty acid profile of the H. atra body wall was investigated by GC-MS. It was found that the Me90 fraction of the H. atra body wall showed the strongest α-glucosidase inhibitory activity (IC50 value 0.158 ± 0.002 mg/mL), thus making it more potent than acarbose (IC50 value 2.340 ± 0.044 mg/mL).
Collapse
Affiliation(s)
- Yunita Eka Puspitasari
- Natural Products and Food Research & Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Antwerpen, Belgium
- Department of Fish Product Technology, Faculty of Fisheries and Marine Sciences, Universitas Brawijaya, Malang 65149, Indonesia
- Doctoral Program of Environmental Studies, Postgraduate School, Universitas Brawijaya, Malang 65145, Indonesia
- Correspondence: (Y.E.P.); (N.H.)
| | - Emmy Tuenter
- Natural Products and Food Research & Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Antwerpen, Belgium
| | - Kenn Foubert
- Natural Products and Food Research & Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Antwerpen, Belgium
| | - Herawati Herawati
- Faculty of Veterinary Medicine, Universitas Brawijya, Malang 65145, Indonesia
| | - Anik Martinah Hariati
- Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Universitas Brawijaya, Malang 65145, Indonesia
| | - Aulanni’am Aulanni’am
- Biochemistry Laboratory, Faculty of Sciences, Universitas Brawijaya, Malang 65145, Indonesia
| | - Luc Pieters
- Natural Products and Food Research & Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Antwerpen, Belgium
| | - Tess De Bruyne
- Natural Products and Food Research & Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Antwerpen, Belgium
| | - Nina Hermans
- Natural Products and Food Research & Analysis—Pharmaceutical Technology (NatuRAPT), University of Antwerp, 2610 Antwerpen, Belgium
- Correspondence: (Y.E.P.); (N.H.)
| |
Collapse
|
5
|
Álvarez SA, Rocha-Guzmán NE, González-Laredo RF, Gallegos-Infante JA, Moreno-Jiménez MR, Bravo-Muñoz M. Ancestral Food Sources Rich in Polyphenols, Their Metabolism, and the Potential Influence of Gut Microbiota in the Management of Depression and Anxiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:944-956. [PMID: 35041424 DOI: 10.1021/acs.jafc.1c06151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The relationship between a population's diet and the risk of suffering from mental disorders has gained importance in recent years, becoming exacerbated due to the COVID-19 lockdown. This review concentrates relevant literature from Scopus, PubMed, and Google Scholar analyzed with the aim of rescuing knowledge that promotes mental health. In this context, it is important to highlight those flowers, seeds, herbaceous plants, fungi, leaves, and tree barks, among other ancestral matrices, that have been historically part of the eating habits of human beings and have also been a consequence of the adaptation of collectors, consuming the ethnoflora present in different ecosystems. Likewise, it is important to note that this knowledge has been progressively lost in the new generations. Therefore, this review concentrates an important number of matrices used particularly for food and medicinal purposes, recognized for their anxiolytic and antidepressant effects, establishing the importance of metabolism and biotransformation mainly of bioactive compounds such as polyphenols by the action of the gut microbiota.
Collapse
Affiliation(s)
- Saúl Alberto Álvarez
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Rubén Francisco González-Laredo
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - José Alberto Gallegos-Infante
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Martha Rocío Moreno-Jiménez
- Research Group on Functional Foods and Nutraceuticals, TecNM/Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Durango, México
| | - Marely Bravo-Muñoz
- Instituo Nacional de Neurociencias y Salud Mental, INNSAM, 21831 Chiapas, México
| |
Collapse
|
6
|
N B, K R C. Antiviral, Anticancer and Hypotensive Potential of Diphyllin Glycosides and their Mechanisms of Action. Mini Rev Med Chem 2022; 22:1752-1771. [PMID: 35040401 DOI: 10.2174/1389557522666220117122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Diphyllin glycosides (DG) are the type of arylnaphthalene lignans isolated from different plants and their synthetic derivatives have shown effective antiviral, cytotoxic, hypotensive and diuretic effects at very low concentrations similar to standard drugs that are under clinical use. The biological activities of the DG interfere with signaling pathways of viral infection and cancer induction. The sugar moieties of DG enhance bioavailability and pharmacological activities. The promising results of DG at nanomolar concentrations under in vitro and in vivo conditions should be explored further with clinical trials to determine its toxic effects, pharmacokinetics and pharmacodynamics. This may identify suitable antiviral and anticancer drugs in the near future. Considering all these activities, the present review is focused on the chemical aspects of DG with a detailed account on the mechanisms of action of DG. An attempt is also made to comment on the status of clinical trials of DG along with the possible limitations in studies based on available literature through September 2020.
Collapse
Affiliation(s)
- Bhagya N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore-575018, Karnataka, India
| | - Chandrashekar K R
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore-575018, Karnataka, India
| |
Collapse
|
7
|
Freitas PHSD, Conegundes JLM, Evangelista MDR, Almeida MAD, Silva NPD, Tavares GD, Vilela FMP, Duque APDN, Ribeiro A, Scio E. Cecropia pachystachya Trécul: a promising ingredient for skin-whitening cosmetics. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Elita Scio
- Federal University of Juiz de Fora, Brazil
| |
Collapse
|
8
|
Omar HS, Elsayed TR, Reyad NEHA, Shamkh IM, Sedeek MS. Gene-targeted molecular phylogeny, phytochemical analysis, antibacterial and antifungal activities of some medicinal plant species cultivated in Egypt. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:724-739. [PMID: 33314357 DOI: 10.1002/pca.3018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Medicinal plants have been used in healthcare since time immemorial, as have their therapeutic activities and the production of plant-based medicines. OBJECTIVES This study aims to use gene-targeted molecular markers for genetic diversity analysis of 16 medicinal plants. Besides, phytochemical analysis antibacterial and antifungal activities of some medicinal plant extracts commonly used in Egypt are compared to major compounds. METHODS DNA-based classification of 16 medicinal species using Conserved DNA-Derived Polymorphism (CDDP) and Start Codon Targeted (SCoT) primers. Three species representing three orders (Pelargonium graveolens, Matricaria chamomilla, and Hyoscyamus muticus were analysed [high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS)] and evaluated for their antibacterial and antifungal activities against (Escherichia coli O157: H7 ATCC 93111, Salmonella typhimurium ATCC 14028, Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Bacillus ceruse ATCC 33018, and Sclerotinia sclerotiorum in comparison with some of their antimicrobial components. RESULTS Our results revealed 309 and 349 polymorphic bands with 100% polymorphism. Among them, 51 and 57 were unique loci for CDDP and SCoT, respectively. The 16 species were categorised into three groups depending on the similarity matrix. The results of antibacterial and antifungal activities revealed that Pelargonium oil showed significant antifungal and antibacterial activities against the tested pathogens. Gallic acid severely reduced all tested bacteria's growth, but atropine severely reduced the growth of the B. ceruse only. Molecular modelling revealed their activity against sclerotium development. CONCLUSION The gene-targeted marker techniques were highly useful tools for the classification of the 16 medicinal plant species, despite displaying high similarities at morphological and phytochemical analyses but, have antifungal and antibacterial activities.
Collapse
Affiliation(s)
- Hanaa S Omar
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Tarek R Elsayed
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | | | - Israa M Shamkh
- Chemo Informatics Lab, Faculty of Agriculture, Cairo University, Research Park, CURP, Giza, Egypt
| | - Mohamed S Sedeek
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
A High-Content Screen for the Identification of Plant Extracts with Insulin Secretion-Modulating Activity. Pharmaceuticals (Basel) 2021; 14:ph14080809. [PMID: 34451906 PMCID: PMC8402219 DOI: 10.3390/ph14080809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Bioactive plant compounds and extracts are of special interest for the development of pharmaceuticals. Here, we describe the screening of more than 1100 aqueous plant extracts and synthetic reference compounds for their ability to stimulate or inhibit insulin secretion. To quantify insulin secretion in living MIN6 β cells, an insulin–Gaussia luciferase (Ins-GLuc) biosensor was used. Positive hits included extracts from Quillaja saponaria, Anagallis arvensis, Sapindus mukorossi, Gleditsia sinensis and Albizia julibrissin, which were identified as insulin secretion stimulators, whereas extracts of Acacia catechu, Myrtus communis, Actaea spicata L., Vaccinium vitis-idaea and Calendula officinalis were found to exhibit insulin secretion inhibitory properties. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to characterize several bioactive compounds in the selected plant extracts, and these bioactives were retested for their insulin-modulating properties. Overall, we identified several plant extracts and some of their bioactive compounds that may be used to manipulate pancreatic insulin secretion.
Collapse
|
10
|
Rivera-Mondragón A, Ortíz OO, Gupta MP, Caballero-George C. Pharmacognostic Evaluation of Ten Species of Medicinal Importance of Cecropia: Current Knowledge and Therapeutic Perspectives. PLANTA MEDICA 2021; 87:764-779. [PMID: 34284521 DOI: 10.1055/a-1495-9785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work covers a systematic review of literature about the genus Cecropia from 1978 to 2020, emphasizing the analysis of 10 of the most relevant species and their associated biological activities. Cecropia is a neotropical genus, which comprises about 61 native species in the American continent where it is known to be part of the traditional medicine of numerous countries. Secondary metabolites described for this genus showed an elevated structural and functional diversity, where polyphenols have been the most abundant. Based on this diversity, Cecropia phytochemicals represent an important source of potential therapeutic agents yet to be exploited. This review also highlights the effectiveness of combining chemometrics and ultra-performance liquid chromatography-tandem mass spectrometry as a novel approach to successfully single out Cecropia species phytochemicals. While the medicinal use of Cecropia species is officially recognized in National Pharmacopoeias and Formularies of several Latin American countries, it is important to recognize that these phytomedicines are complex mixtures requiring a thorough understanding of their chemical composition and their correlation with biological activities to guarantee their quality, safety, and efficacy.
Collapse
Affiliation(s)
- Andrés Rivera-Mondragón
- Centre of Innovation and Technology Transfer, Institute of Scientific Research and High Technology Services (INDICASAT-AIP), Republic of Panama
| | | | - Mahabir P Gupta
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Republic of Panama
| | - Catherina Caballero-George
- Centre of Innovation and Technology Transfer, Institute of Scientific Research and High Technology Services (INDICASAT-AIP), Republic of Panama
| |
Collapse
|
11
|
Olech M, Ziemichód W, Nowacka-Jechalke N. The Occurrence and Biological Activity of Tormentic Acid-A Review. Molecules 2021; 26:molecules26133797. [PMID: 34206442 PMCID: PMC8270333 DOI: 10.3390/molecules26133797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
This review focuses on the natural sources and pharmacological activity of tormentic acid (TA; 2α,3β,19α-trihydroxyurs-2-en-28-oic acid). The current knowledge of its occurrence in various plant species and families is summarized. Biological activity (e.g., anti-inflammatory, antidiabetic, antihyperlipidemic, hepatoprotective, cardioprotective, neuroprotective, anti-cancer, anti-osteoarthritic, antinociceptive, antioxidative, anti-melanogenic, cytotoxic, antimicrobial, and antiparasitic) confirmed in in vitro and in vivo studies is compiled and described. Biochemical mechanisms affected by TA are indicated. Moreover, issues related to the biotechnological methods of production, effective eluents, and TA derivatives are presented.
Collapse
|
12
|
Eke R, Ejiofor E, Oyedemi S, Onoja S, Omeh N. Evaluation of nutritional composition of Citrullus lanatus Linn. (watermelon) seed and biochemical assessment of the seed oil in rats. J Food Biochem 2021; 45:e13763. [PMID: 34002399 DOI: 10.1111/jfbc.13763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 01/18/2023]
Abstract
The present study investigated the nutritional composition of watermelon seeds and the effect of extracted oil on the biochemical parameters in rats after 28 days of oral administration. The watermelon seeds showed considerable proximate values but with less moisture, crude fiber, ash, and phytochemical components. The maximal dose of 50 ml/kg of watermelon seed oil (WMSO) showed no sign of toxicity in rats. WMSO significantly decreased serum cholesterol, triglyceride, LDL, ALT, and MDA but enhanced the level of HDL, VLDL, SOD, and CAT without compromising the liver integrity. For glucose tolerance, a positive oral glucose-lowering was observed. The fatty acid analysis showed the presence of three major fatty acids; 9,12-octadecadienoic acid (52.32%), n-hexadecenoic acid (21.23%), and oleic acid (10.11%) with good oxidative stability and fatty acid ratio. The outcome of this study suggests that the seeds and oil from watermelon could have a beneficial effect on man. PRACTICAL APPLICATIONS: Plant-based oils have gained significant interest globally as a source of food, cosmetics, and compounds with therapeutic potential against certain human diseases. The watermelon seed oil is a rich source of oleic acid, linoleic, and palmitic acid. These prominent biologically active fatty acid components have contributed to the robust biochemical effects observed in this study. Based on the data obtained in this work on the nutritional analysis of the watermelon seed and potent antioxidative capacity, improved liver biomarkers, good oxidative stability, and the fatty acid ratio of WMSO, we proposed that consumption of the seed and its oil could offer a cheap and affordable nutraceutical for human benefits. However, we recommend further studies on the biological activity and safety aspect of watermelon seed oil for its long-term usage.
Collapse
Affiliation(s)
- Rita Eke
- Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| | - Emmanuel Ejiofor
- Biochemistry Programme, Department of Chemical sciences, Faculty of Science, Clifford University, Owerrinta, Abia State, Nigeria
| | - Sunday Oyedemi
- School of Science and Technology, Department of Pharmacology, Nottingham Trent University, Nottingham, UK
| | - Samuel Onoja
- Department of Pharmacology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| | - Ndukaku Omeh
- Department of Biochemistry, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| |
Collapse
|
13
|
Rivera-Mondragón A, Peeters L, Van AA, Breynaert A, Caballero-George C, Pieters L, Hermans N, Foubert K. Simulated Gastrointestinal Biotransformation of Chlorogenic Acid, Flavonoids, Flavonolignans and Triterpenoid Saponins in Cecropia obtusifolia Leaf Extract. PLANTA MEDICA 2021; 87:404-416. [PMID: 33007785 DOI: 10.1055/a-1258-4383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is well known that biotransformation processes in the human body are crucial to form potentially bioactive metabolites from particular classes of natural products. However, little research has been conducted concerning the bioavailability of polyphenols, especially in the colon. The gastrointestinal stability and colonic biotransformation of the crude extract of the leaves of Cecropia obtusifolia, rich in flavone C-glycosides, was investigated under in vitro conditions, and the processing and interpretation of results were facilitated by using an automated machine learning model. This investigation revealed that flavone C-glycosides and flavonolignans from C. obtusifolia were stable throughout their passage in the simulated gastrointestinal tract including the colon phase. On the other hand, the colon bacteria extensively metabolized chlorogenic acid, flavonol, and triterpenoid O-glycosides. This investigation revealed that the colonic microbiota has an important role in the biotransformation of some chemical constituents of this extract.
Collapse
Affiliation(s)
- Andrés Rivera-Mondragón
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
- Centre of Innovation and Technology Transfer, Institute of Scientific Research and High Technology Services (INDICASAT-AIP), City of Knowledge, Panama, Republic of Panama
| | - Laura Peeters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Anastasiader Auwera Van
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Annelies Breynaert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Catherina Caballero-George
- Centre of Innovation and Technology Transfer, Institute of Scientific Research and High Technology Services (INDICASAT-AIP), City of Knowledge, Panama, Republic of Panama
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Phetcharaburanin J, Deewai S, Kulthawatsiri T, Moolpia K, Suksawat M, Promraksa B, Klanrit P, Namwat N, Loilome W, Poopasit K, Katekaew S, Phetcharaburanin P. 1H NMR metabolic phenotyping of Dipterocarpus alatus as a novel tool for age and growth determination. PLoS One 2020; 15:e0243432. [PMID: 33320902 PMCID: PMC7737897 DOI: 10.1371/journal.pone.0243432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/21/2020] [Indexed: 11/18/2022] Open
Abstract
Dipterocarpus alatus belongs to Family Dipterocarpaceae that can be commonly found in Southeast Asian countries. It is a perennial plant with oval-shaped leaves and oleoresin-rich wood. It has been considered as a multipurpose plant since all parts can be practically utilized. One of the major problems for utilizing Dipterocarpus alatus is the difficulty knowing the exact age as this kind of plant is ready for multipurpose use after 20 years of age. At present, the most commonly used method for determining age of Dipterocarpus alatus is the annual ring estimation. However, this conventional method is unable to provide the high precision and accuracy of age determination due to its limitation including blurry annual rings caused by enriched oleoresin in the wood. The current study aimed to investigate the differences of 1H -NMR spectroscopy-based metabolic profiles from bark and leaf of Dipterocarpus alatus at different ages including 2, 7, 15 and 25 years. Our findings demonstrated that there is a total of 56 metabolites shared between bark and leaf. It is noticeable that bark at different ages exhibited the strongest variation and sugar or sugar derivatives that were found in higher concentrations in bark compared with those in leaf. We found that decreasing levels of certain metabolites including tagatose, 1'kestose and 2'-fucosyllactose exhibited the promising patterns. In conclusion, panel metabolites involved in the sucrose biosynthesis can precisely determine the age and growth of Dipterocarpus alatus.
Collapse
Affiliation(s)
- Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Suthicha Deewai
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Thanaporn Kulthawatsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Komkid Moolpia
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Museum and Lifelong Learning Center, Khon Kaen University, Khon Kaen, Thailand
| | - Manida Suksawat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Bundit Promraksa
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Khon Kaen University International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen, Thailand
| | - Kitisak Poopasit
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Somporn Katekaew
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Penprapa Phetcharaburanin
- Museum and Lifelong Learning Center, Khon Kaen University, Khon Kaen, Thailand
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Coordination Center of the Royal Initiative Projects, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Cadena-Zamudio JD, Nicasio-Torres P, Monribot-Villanueva JL, Guerrero-Analco JA, Ibarra-Laclette E. Integrated Analysis of the Transcriptome and Metabolome of Cecropia obtusifolia: A Plant with High Chlorogenic Acid Content Traditionally Used to Treat Diabetes Mellitus. Int J Mol Sci 2020; 21:ijms21207572. [PMID: 33066422 PMCID: PMC7588936 DOI: 10.3390/ijms21207572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
This investigation cultured Cecropia obtusifolia cells in suspension to evaluate the effect of nitrate deficiency on the growth and production of chlorogenic acid (CGA), a secondary metabolite with hypoglycemic and hypolipidemic activity that acts directly on type 2 diabetes mellitus. Using cell cultures in suspension, a kinetics time course was established with six time points and four total nitrate concentrations. The metabolites of interest were quantified by high-performance liquid chromatography (HPLC), and the metabolome was analyzed using directed and nondirected approaches. Finally, using RNA-seq methodology, the first transcript collection for C. obtusifolia was generated. HPLC analysis detected CGA at all sampling points, while metabolomic analysis confirmed the identity of CGA and of precursors involved in its biosynthesis. Transcriptome analysis identified differentially expressed genes and enzymes involved in the biosynthetic pathway of CGA. C. obtusifolia probably expresses a key enzyme with bifunctional activity, the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase and hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HQT/HCT), which recognizes shikimic acid or quinic acid as a substrate and incorporates either into one of the two routes responsible for CGA biosynthesis.
Collapse
Affiliation(s)
- Jorge David Cadena-Zamudio
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - Pilar Nicasio-Torres
- Instituto Mexicano del Seguro Social (IMSS), Centro de Investigación Biomédica del Sur (CIBIS), Xochitepec 62790, Morelos, Mexico;
| | - Juan Luis Monribot-Villanueva
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - José Antonio Guerrero-Analco
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
| | - Enrique Ibarra-Laclette
- Instituto de Ecología, A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAV), Xalapa 91073, Veracruz, Mexico; (J.D.C.-Z.); (J.L.M.-V.); (J.A.G.-A.)
- Correspondence: ; Tel.: +52-(228)-842-1823
| |
Collapse
|
16
|
Sharma N, Sharma A, Bhatia G, Landi M, Brestic M, Singh B, Singh J, Kaur S, Bhardwaj R. Isolation of Phytochemicals from Bauhinia variegata L. Bark and Their In Vitro Antioxidant and Cytotoxic Potential. Antioxidants (Basel) 2019; 8:antiox8100492. [PMID: 31627372 PMCID: PMC6826637 DOI: 10.3390/antiox8100492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Plants have been the basis of traditional medicine since the dawn of civilizations. Different plant parts possess various phytochemicals, playing important roles in preventing and curing diseases. Scientists, through extensive experimental studies, are playing an important part in establishing the use of phytochemicals in medicine. However, there are still a large number of medicinal plants which need to be studied for their phytochemical profile. In this study, the objective was to isolate phytochemicals from bark of Bauhinia variegata L. and to study them for their antioxidant and cytotoxic activities. The bark was extracted with methanol, followed by column chromatography and thus isolating kaempferol, stigmasterol, protocatechuic acid-methyl ester (PCA-ME) and protocatechuic acid (PCA). 2,2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) and 2, 2'-diphenyl-1-picrylhydrazyl radical (DPPH) radical scavenging assays were utilized for assessment of antioxidant activity, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) dye reduction assay was used to determine cytotoxic activity against C-6 glioma rat brain, MCF-7 breast cancer, and HCT-15 colon cancer cell lines. The compounds were found to have significant antioxidant and cytotoxic activity. Since there is a considerable increase in characterizing novel chemical compounds from plant parts, the present study might be helpful for chemotaxonomic determinations, for understanding of medicinal properties as well as for the quality assessment of herbal supplements containing B. variegata bark, thus establishing its use in traditional medicine.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Anket Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Gaurav Bhatia
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India.
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy.
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra 94976, Slovakia.
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic.
| | - Bikram Singh
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India.
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India.
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
17
|
Ortiz OO, Rivera-Mondragón A, Pieters L, Foubert K, Caballero-George C. Cecropia telenitida Cuatrec. (Urticaceae: Cecropieae): Phytochemical diversity, chemophenetic implications and new records from Central America. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.103935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|