1
|
Zhang B, Guo Y, Lu Y, Ma D, Wang X, Zhang L. Bibliometric and visualization analysis of the application of inorganic nanomaterials to autoimmune diseases. Biomater Sci 2024; 12:3981-4005. [PMID: 38979695 DOI: 10.1039/d3bm02015k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Objective: To conduct bibliometric analysis of the application of inorganic nanomaterials to autoimmune diseases to characterize current research trends and to visualize past and emerging trends in this field in the past 15 years. Methods: The evolution and thematic trends of the application of inorganic nanomaterials to autoimmune diseases from January 1, 1985, to March 15, 2024, were analyzed by bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database. A total of 734 relevant reports in the literature were evaluated according to specific characteristics such as year of publication, journal, institution, country/region, references, and keywords. VOSviewer was used to build co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization. Some important subtopics identified by bibliometric characterization are further discussed and reviewed. Result: From 2009 to 2024, annual publications worldwide increased from 11 to 95, an increase of 764%. ACS Nano published the most papers (14) with the most citations (1372). China (230 papers, 4922 citations) and the Chinese Academy of Sciences (36 papers, 718 citations) are the most productive and influential country and institution, respectively. The first 100 keywords were co-clustered to form four clusters: (1) the application of inorganic nanomaterials in drug delivery, (2) the application of inorganic nano-biosensing to autoimmune diseases, (3) the use of inorganic nanomaterials for imaging applied to autoimmune diseases, and (4) the application of inorganic nanomaterials in the treatment of autoimmune diseases. Combination therapy, microvesicles, photothermal therapy (PTT), targeting, diagnostics, transdermal, microneedling, silver nanoparticles, psoriasis, and inflammatory cytokines are the latest high-frequency keywords, marking the emerging frontier of inorganic nanomaterials in the field of autoimmune diseases. Sub-topics were further discussed to help researchers determine the scope of research topics and plan research directions. Conclusion: Over the past 39 years, the application of inorganic nanotechnology to the field of autoimmune diseases shows extensive cooperation between countries and institutions, showing a continuous increase in the number of reports in the literature, and has clinical translation prospects. Future research should further improve the safety of inorganic nanomaterials, clarify the mechanism of action of nanomaterials, establish a standardized nanomaterial preparation and performance evaluation system, and ultimately achieve the goal of early detection and precise treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Baiyan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Yuanyuan Guo
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Yu Lu
- The First Clinical Medical College of Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xiahui Wang
- School of Pharmacy, Shanxi Medical University, Jinzhong 030619, Shanxi, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| |
Collapse
|
2
|
Luo P, Gao FQ, Sun W, Li JY, Wang C, Zhang QY, Li ZZ, Xu P. Activatable fluorescent probes for imaging and diagnosis of rheumatoid arthritis. Mil Med Res 2023; 10:31. [PMID: 37443101 DOI: 10.1186/s40779-023-00467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that is primarily manifested as synovitis and polyarticular opacity and typically leads to serious joint damage and irreversible disability, thus adversely affecting locomotion ability and life quality. Consequently, good prognosis heavily relies on the early diagnosis and effective therapeutic monitoring of RA. Activatable fluorescent probes play vital roles in the detection and imaging of biomarkers for disease diagnosis and in vivo imaging. Herein, we review the fluorescent probes developed for the detection and imaging of RA biomarkers, namely reactive oxygen/nitrogen species (hypochlorous acid, peroxynitrite, hydroxyl radical, nitroxyl), pH, and cysteine, and address the related challenges and prospects to inspire the design of novel fluorescent probes and the improvement of their performance in RA studies.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fu-Qiang Gao
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Sun
- Department of Orthopaedic Surgery of the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun-You Li
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Cheng Wang
- Department of Orthopaedic Surgery, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Qing-Yu Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Zhi-Zhuo Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
3
|
Baruah M, Kwon HY, Cho H, Chang YT, Samanta A. A Photoinduced Electron Transfer-Based Hypochlorite-Specific Fluorescent Probe for Selective Imaging of Proinflammatory M1 in a Rheumatoid Arthritis Model. Anal Chem 2023; 95:4147-4154. [PMID: 36800528 DOI: 10.1021/acs.analchem.2c05218] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The differentiation of the distinct phenotypes of macrophages is essential for monitoring the stage of inflammatory diseases for accurate diagnosis and treatment. Recent studies revealed that the level of hypochlorite (OCl-) varies from activated M1 macrophages (killing pathogens) to M2 (resolution of inflammation) during inflammation. Thus, we developed a simple and efficient fluorescent probe for discriminating M1 from M0 and M2. Herein, fluorescent-based imaging is applied as an alternative to immunohistochemistry, which is challenging due to the tedious process and high cost. We developed a hypochlorite-specific probe PMS-T to differentiate M1 and M2, employing a metabolism-oriented live-cell distinction. This probe enables the detection of inflammatory rheumatoid arthritis in an ex vivo mouse model. Thus, it can be a potential chemical tool for monitoring inflammatory diseases, including rheumatoid arthritis, that may overcome the existing barriers of immunohistochemistry.
Collapse
Affiliation(s)
- Mousumi Baruah
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Haw-Young Kwon
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Heewon Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
4
|
Walther A, Stepula E, Ditzel N, Kassem M, Bergholt MS, Hedegaard MAB. In Vivo Longitudinal Monitoring of Disease Progression in Inflammatory Arthritis Animal Models Using Raman Spectroscopy. Anal Chem 2023; 95:3720-3728. [PMID: 36757324 PMCID: PMC9949228 DOI: 10.1021/acs.analchem.2c04743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023]
Abstract
Current techniques for monitoring disease progression and testing drug efficacy in animal models of inflammatory arthritis are either destructive, time-consuming, subjective, or require ionizing radiation. To accommodate this, we have developed a non-invasive and label-free optical system based on Raman spectroscopy for monitoring tissue alterations in rodent models of arthritis at the biomolecular level. To test different sampling geometries, the system was designed to collect both transmission and reflection mode spectra. Mice with collagen antibody-induced arthritis and controls were subject to in vivo Raman spectroscopy at the tibiotarsal joint every 3 days for 14 days. Raman-derived measures of bone content correlated well with micro-computed tomography bone mineral densities. This allowed for time-resolved quantitation of bone densities, which indicated gradual bone erosion in mice with arthritis. Inflammatory pannus formation, bone erosion, and bone marrow inflammation were confirmed by histological analysis. In addition, using library-based spectral decomposition, we quantified the progression of bone and soft tissue components. In general, the tissue components followed significantly different tendencies in mice developing arthritis compared to the control group in line with the histological analysis. In total, this demonstrates Raman spectroscopy as a versatile technique for monitoring alterations to both mineralized and soft tissues simultaneously in rodent models of musculoskeletal disorders. Furthermore, the technique presented herein allows for objective repeated within-animal measurements potentially refining and reducing the use of animals in research while improving the development of novel antiarthritic therapeutics.
Collapse
Affiliation(s)
- Anders
R. Walther
- SDU
Chemical Engineering, University of Southern
Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Elzbieta Stepula
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, UK
| | - Nicholas Ditzel
- Molecular
Endocrinology Unit (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern
Denmark, J.B. Winsløwsvej
25, 5000 Odense, Denmark
| | - Moustapha Kassem
- Molecular
Endocrinology Unit (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern
Denmark, J.B. Winsløwsvej
25, 5000 Odense, Denmark
| | - Mads S. Bergholt
- Centre
for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT London, UK
| | - Martin A. B. Hedegaard
- SDU
Chemical Engineering, University of Southern
Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
5
|
Chen Z, Hu Y, Ma L, Zhang Z, Liu C. Rational Design of ortho-Vinylhydropyridine-Assisted Amino-fluorophore as Hypochlorite Fluorescent Probe. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
6
|
Zhang K, Xu H, Li K. Molecular Imaging for Early-Stage Disease Diagnosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1199:39-58. [PMID: 37460726 DOI: 10.1007/978-981-32-9902-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
With the development of cellular biology, molecular biology, and other subjects, targeted molecular probe was combined with medical imaging technologies to launch a new scientific discipline of molecular imaging that is a research discipline to visualize, characterize, and analyze biological process at the cellular and molecular levels for real-time tracking and precision therapy, also termed as the medical imaging in the twenty-first century. An array of imaging techniques has been developed to image specific targets of living cells or tissues by molecular probes, including optical molecular imaging (OI), magnetic resonance molecular imaging, ultrasound (US) molecular imaging, nuclear medicine molecular imaging, X-ray molecular imaging, and multi-mode molecular imaging. These imaging techniques make the early diagnosis of various diseases possible by means of visualization of gene expression, interactions between proteins, signal transduction, cell metabolism, cell traces, and other physiological or pathological processes in the living system, which bridge the gap between molecular biology and clinical medicine. This chapter will lay the emphasis on the early-stage diagnosis of fatal diseases, such as malignant tumors, cardio- or cerebrovascular diseases, digestive system disease, central nervous system disease, and other diseases employing molecular imaging in a real-time visualized manner.
Collapse
Affiliation(s)
- Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| | - Haiyan Xu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Kai Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
Diagnostic Evaluation of Rheumatoid Arthritis (RA) in Finger Joints Based on the Third-Order Simplified Spherical Harmonics (SP3) Light Propagation Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This work focuses on the evaluation of third-order simplified spherical harmonics (SP3) model-based image reconstruction with respect to its clinical utility to diagnose rheumatoid arthritis (RA). The existing clinical data of 219 fingers was reconstructed for both absorption and scattering maps in fingers by using the reduced-Hessian sequential quadratic programming (rSQP) algorithm that employs the SP3 model of light propagation. The k-fold cross validation method was used for feature extraction and classification of SP3-based tomographic images. The performance of the SP3 model was compared to the DE and ERT models with respect to diagnostic accuracy and computational efficiency. The results presented here show that the SP3 model achieves clinically relevant sensitivity (88%) and specificity (93%) that compare favorably to the ERT while maintaining significant computational advantage over the ERT (i.e., the SP3 model is 100 times faster than the ERT). Furthermore, it is also shown that the SP3 is similar in speed but superior in diagnostic accuracy to the DE. Therefore, it is expected that the method presented here can greatly aid in the early diagnosis of RA with clinically relevant accuracy in near real-time at a clinical setting.
Collapse
|
8
|
Michie MS, Xu B, Sudlow G, Springer LE, Pham CT, Achilefu S. Side-chain modification of collagen-targeting peptide prevents dye aggregation for improved molecular imaging of arthritic joints. J Photochem Photobiol A Chem 2022; 424:113624. [PMID: 36406204 PMCID: PMC9673490 DOI: 10.1016/j.jphotochem.2021.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Near-infrared (NIR) dye-peptide conjugates are widely used for tissue-targeted molecular fluorescence imaging of pathophysiologic conditions. However, the significant contribution of both dye and peptide to the net mass of these bioconjugates implies that small changes in either component could alter their photophysical and biological properties. Here, we synthesized and conjugated a type I collagen targeted peptide, RRANAALKAGELYKCILY, to either a hydrophobic (LS1000) or hydrophilic (LS1006) NIR fluorescent dye. Spectroscopic analysis revealed rapid self-assembly of both LS1000 and LS1006 in aqueous media to form stable dimeric/H aggregates, regardless of the free dye's solubility in water. We discovered that replacing the cysteine residue in LS1000 and LS1006 with acetamidomethyl cysteine to afford LS1001 and LS1107, respectively, disrupted the peptide's self-assembly and activated the previously quenched dye's fluorescence in aqueous conditions. These results highlight the dominant role of the octadecapeptide, but not the dye molecules, in controlling the photophysical properties of these conjugates by likely sequestering or extruding the hydrophobic or hydrophilic dyes, respectively. Application of the compounds for imaging collagen-rich tissue in an animal model of inflammatory arthritis showed enhanced uptake of all four conjugates, which retained high collagen-binding affinity, in inflamed joints. Moreover, LS1001 and LS1107 improved the arthritic joint-to-background contrast, suggesting that reduced aggregation enhanced the clearance of these compounds from non-target tissues. Our results highlight a peptide-driven strategy to alter the aggregation states of molecular probes in aqueous solutions, irrespective of the water-solubilizing properties of the dye molecules. The interplay between the monomeric and aggregated forms of the conjugates using simple thiol-modifiers lends the peptide-driven approach to diverse applications, including the effective imaging of inflammatory arthritis joints.
Collapse
Affiliation(s)
- Megan S. Michie
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baogang Xu
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gail Sudlow
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Luke E. Springer
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christine T.N. Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Optical Radiology Laboratory, Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
9
|
Wang S, Hou Y, Li X, Meng X, Zhang Y, Wang X. Practical Implementation of Artificial Intelligence-Based Deep Learning and Cloud Computing on the Application of Traditional Medicine and Western Medicine in the Diagnosis and Treatment of Rheumatoid Arthritis. Front Pharmacol 2022; 12:765435. [PMID: 35002704 PMCID: PMC8733656 DOI: 10.3389/fphar.2021.765435] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease of unknown etiology, is a serious threat to the health of middle-aged and elderly people. Although western medicine, traditional medicine such as traditional Chinese medicine, Tibetan medicine and other ethnic medicine have shown certain advantages in the diagnosis and treatment of RA, there are still some practical shortcomings, such as delayed diagnosis, improper treatment scheme and unclear drug mechanism. At present, the applications of artificial intelligence (AI)-based deep learning and cloud computing has aroused wide attention in the medical and health field, especially in screening potential active ingredients, targets and action pathways of single drugs or prescriptions in traditional medicine and optimizing disease diagnosis and treatment models. Integrated information and analysis of RA patients based on AI and medical big data will unquestionably benefit more RA patients worldwide. In this review, we mainly elaborated the application status and prospect of AI-assisted deep learning and cloud computation-oriented western medicine and traditional medicine on the diagnosis and treatment of RA in different stages. It can be predicted that with the help of AI, more pharmacological mechanisms of effective ethnic drugs against RA will be elucidated and more accurate solutions will be provided for the treatment and diagnosis of RA in the future.
Collapse
Affiliation(s)
- Shaohui Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuanhao Li
- Chengdu Second People's Hospital, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Han YR, Lee DS, Lee SB, Jeon HJ, Lee S, Sung SE, Lee CH, Cho SJ, Kim KS, Kim DS, Jeon YH. Discovery of novel phenaleno isoquinolinium-based fluorescence imaging agents for sentinel lymph node mapping. J Mater Chem B 2021; 9:9946-9950. [PMID: 34852032 DOI: 10.1039/d1tb02146j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence imaging agents have recently received huge attention due to their important role in disease diagnostics. However, the intrinsic problems of these probes, such as complex synthetic routes and high molecular weight, remain challenging. Here, we developed novel phenaleno isoquinolinium-based fluorescent agents, Medical Fluorophores 37-41 (MF37-41), applicable to the quantitative and sensitive detection of sentinel lymph nodes (SLNs). These imaging agents showed no adverse effects on the proliferation of immune and normal cells and did not induce in vivo toxicity. In vivo fluorescence lifetime imaging demonstrated the accumulation of phenaleno isoquinolinium salts in the SLNs of nude mice within 15 min postinjection, consistent with our biodistribution findings. These results suggest that phenaleno isoquinolinium salts are feasible fluorescence imaging agents that can be used as potential lymphatic tracers.
Collapse
Affiliation(s)
- Ye Ri Han
- New Drug Development Center Daegu-Gyeongbuk Medical Innovation Foundation Daegu 700-721, South Korea
| | - Da-Sol Lee
- Laboratory Animal Center Daegu-Gyeongbuk Medical Innovation Foundation Daegu 700-721, South Korea.
| | - Sang Bong Lee
- Vaccine Commercialization Center, Gyeongbuk Institute for Bio industry, 88 Saneopdanji-gil, pungsan-eup, Andong-si, Gyeongbuk, 33618, South Korea
| | - Hui-Jeon Jeon
- New Drug Development Center Daegu-Gyeongbuk Medical Innovation Foundation Daegu 700-721, South Korea
| | - Sijoon Lee
- Laboratory Animal Center Daegu-Gyeongbuk Medical Innovation Foundation Daegu 700-721, South Korea.
| | - Soo-Eun Sung
- Laboratory Animal Center Daegu-Gyeongbuk Medical Innovation Foundation Daegu 700-721, South Korea.
| | - Chang-Hee Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center Daegu-Gyeongbuk Medical Innovation Foundation Daegu 700-721, South Korea
| | - Kil Soo Kim
- Laboratory Animal Center Daegu-Gyeongbuk Medical Innovation Foundation Daegu 700-721, South Korea. .,College of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Dong-Su Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong, Daejeon 31414, South Korea.
| | - Yong Hyun Jeon
- Laboratory Animal Center Daegu-Gyeongbuk Medical Innovation Foundation Daegu 700-721, South Korea. .,Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
11
|
Rahimizadeh P, Rezaieyazdi Z, Behzadi F, Hajizade A, Lim SI. Nanotechnology as a promising platform for rheumatoid arthritis management: Diagnosis, treatment, and treatment monitoring. Int J Pharm 2021; 609:121137. [PMID: 34592396 DOI: 10.1016/j.ijpharm.2021.121137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that develops in about 5 per 1000 people. Over the past years, substantial progresses in knowledge of the disease's pathophysiology, effective diagnosis methods, early detection, and efficient treatment strategies have been made. Notably, nanotechnology has emerged as a game-changer in the efficacious management of many diseases, especially for RA. Joint replacement, photothermal therapy (PTT), photodynamic therapy (PDT), RA diagnosis, and treatment monitoring are nano-based avenues in RA management. Here, we present a brief overview of the pathogenesis of RA, risk factors, conventional diagnostic methods and treatment approaches, and then discuss the role of nanomedicine in RA diagnosis, treatment, and treatment monitoring with an emphasis on functional characteristics distinctive from other RA therapeutics.
Collapse
Affiliation(s)
- Parastou Rahimizadeh
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Zahra Rezaieyazdi
- Rheumatic Disease Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Faezeh Behzadi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran.
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
12
|
Tsen SWD, Springer LE, Sharmah Gautam K, Tang R, Liang K, Sudlow G, Kucharski A, Pham CTN, Achilefu S. Non-invasive monitoring of arthritis treatment response via targeting of tyrosine-phosphorylated annexin A2 in chondrocytes. Arthritis Res Ther 2021; 23:265. [PMID: 34696809 PMCID: PMC8543875 DOI: 10.1186/s13075-021-02643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The development and optimization of therapies for rheumatoid arthritis (RA) is currently hindered by a lack of methods for early non-invasive monitoring of treatment response. Annexin A2, an inflammation-associated protein whose presence and phosphorylation levels are upregulated in RA, represents a potential molecular target for tracking RA treatment response. METHODS LS301, a near-infrared dye-peptide conjugate that selectively targets tyrosine 23-phosphorylated annexin A2 (pANXA2), was evaluated for its utility in monitoring disease progression, remission, and early response to drug treatment in mouse models of RA by fluorescence imaging. The intraarticular distribution and localization of LS301 relative to pANXA2 was determined by histological and immunohistochemical methods. RESULTS In mouse models of spontaneous and serum transfer-induced inflammatory arthritis, intravenously administered LS301 showed selective accumulation in regions of joint pathology including paws, ankles, and knees with positive correlation between fluorescent signal and disease severity by clinical scoring. Whole-body near-infrared imaging with LS301 allowed tracking of spontaneous disease remission and the therapeutic response after dexamethasone treatment. Histological analysis showed preferential accumulation of LS301 within the chondrocytes and articular cartilage in arthritic mice, and colocalization was observed between LS301 and pANXA2 in the joint tissue. CONCLUSIONS We demonstrate that fluorescence imaging with LS301 can be used to monitor the progression, remission, and early response to drug treatment in mouse models of RA. Given the ease of detecting LS301 with portable optical imaging devices, the agent may become a useful early treatment response reporter for arthritis diagnosis and drug evaluation.
Collapse
Affiliation(s)
- Shaw-Wei D Tsen
- Departments of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Luke E Springer
- Division of Rheumatology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Krishna Sharmah Gautam
- Departments of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Rui Tang
- Departments of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Kexian Liang
- Departments of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gail Sudlow
- Departments of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Amir Kucharski
- Departments of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Christine T N Pham
- Division of Rheumatology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Samuel Achilefu
- Departments of Radiology, Washington University School of Medicine, St Louis, MO, 63110, USA.
- Departments of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, 63110, USA.
- Departments of Biomedical Engineering, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Wu P, Zhu Y, Chen L, Tian Y, Xiong H. A Fast-Responsive OFF-ON Near-Infrared-II Fluorescent Probe for In Vivo Detection of Hypochlorous Acid in Rheumatoid Arthritis. Anal Chem 2021; 93:13014-13021. [PMID: 34524814 DOI: 10.1021/acs.analchem.1c02831] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune inflammatory disease, and its etiology is closely related to the overproduction of hypochlorous acid (HClO). However, early detection of RA using an activatable near-infrared-II (NIR-II, 1000-1700 nm) fluorescent probe remains challenging. Herein, we first report an "OFF-ON" NIR-II fluorescent probe named PTA (phenothiazine triphenylamine) for imaging HClO in deep-seated early RA. Electron-rich phenothiazine in the core of PTA was utilized as both an HClO-recognition moiety and a precursor of electron acceptors, displaying a typical donor-acceptor-donor structure with excellent NIR-II emission at 936/1237 nm once reacted with HClO. The probe PTA exhibited good water solubility, high photostability, and rapid response capability toward HClO within 30 s. Moreover, it was able to sensitively and specifically detect exogenous and endogenous HClO in living cells in both visible and NIR-II windows. Notably, PTA enabled the sensitive and rapid visualization of HClO generation in an inflammatory RA mouse model, showing a 4.3-fold higher NIR-II fluorescence intensity than that in normal hindlimb joints. These results demonstrate that PTA holds great promise as a robust platform for diagnosis of HOCl-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lulu Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Liu N, Chen X, Kimm MA, Stechele M, Chen X, Zhang Z, Wildgruber M, Ma X. In vivo optical molecular imaging of inflammation and immunity. J Mol Med (Berl) 2021; 99:1385-1398. [PMID: 34272967 DOI: 10.1007/s00109-021-02115-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Inflammation is the phenotypic form of various diseases. Recent development in molecular imaging provides new insights into the diagnostic and therapeutic evaluation of different inflammatory diseases as well as diseases involving inflammation such as cancer. While conventional imaging techniques used in the clinical setting provide only indirect measures of inflammation such as increased perfusion and altered endothelial permeability, optical imaging is able to report molecular information on diseased tissue and cells. Optical imaging is a quick, noninvasive, nonionizing, and easy-to-use diagnostic technology which has been successfully applied for preclinical research. Further development of optical imaging technology such as optoacoustic imaging overcomes the limitations of mere fluorescence imaging, thereby enabling pilot clinical applications in humans. By means of endogenous and exogenous contrast agents, sites of inflammation can be accurately visualized in vivo. This allows for early disease detection and specific disease characterization, enabling more rapid and targeted therapeutic interventions. In this review, we summarize currently available optical imaging techniques used to detect inflammation, including optical coherence tomography (OCT), bioluminescence, fluorescence, optoacoustics, and Raman spectroscopy. We discuss advantages and disadvantages of the different in vivo imaging applications with a special focus on targeting inflammation including immune cell tracking.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Chemistry, Technical University of Munich, 85747, Garching, Germany
| | - Xiao Chen
- Klinik und Poliklinik IV, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Melanie A Kimm
- Department of Radiology, University Hospital, LMU Munich, 81337, Munich, Germany
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, 81337, Munich, Germany
| | - Xueli Chen
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zhimin Zhang
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, 81337, Munich, Germany
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China.
| |
Collapse
|
15
|
Irwin RW, Escobedo AR, Shih JC. Near-Infrared Monoamine Oxidase Inhibitor Biodistribution in a Glioma Mouse Model. Pharm Res 2021; 38:461-471. [PMID: 33709330 DOI: 10.1007/s11095-021-03012-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The biodistribution imaging kinetics of near-infrared monoamine oxidase inhibitor (NMI) are reported here. METHODS NMI was administered intravenously or orally to mice and detected by NIR fluorescence optical imaging within minutes and the longitudinal signal distribution was measured for up to 1 week after a single dose. RESULTS NMI rapidly reached 3.7-fold higher ventral and 3.2-fold higher brain region fluorescent signal intensity compared to oral route at 24 h. Similar patterns of NMI biodistribution were found in mice with or without intracranial implanted GL26 brain tumors. NMI was highly associated with tumors in contrast to adjacent non-tumor brain, confirming diagnostic utility. NMI 5 mg/kg imaging signal in brain at 48 h was optimal (tumor/non-tumor ratio > 3.5) with minimum off-target distribution. Intravenous NMI imaging signal peaked between 24 h and 48 h for lung, liver, kidney, blood, brain, and most other tissues. Clearance (signal weaker, but still present) from most tissues occurred by day 7. Intravenous low dose (0.5 mg/kg) minimally labeled tumor and other tissues, 5 mg/kg showed optimal imaging signal in glioma at a dose we previously reported as efficacious, and 50 mg/kg was tolerable but saturated the tissue signals beyond tumor specificity. Gel electrophoresis showed two major bands present in brain tumor and tissue protein lysates. CONCLUSIONS Intravenous 5 mg/kg was optimal dose to target brain tumor and identified off-target organs of concern: lungs, liver, and kidneys. These results demonstrate the biodistribution and optimal dose range of NMI for treatment and diagnostic monitoring of glioma.
Collapse
Affiliation(s)
- Ronald W Irwin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Alesi R Escobedo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA. .,USC-Taiwan Center for Translational Research, Los Angeles, California, USA.
| |
Collapse
|
16
|
Ebenhan T, Kleynhans J, Zeevaart JR, Jeong JM, Sathekge M. Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents. Eur J Nucl Med Mol Imaging 2020; 48:1414-1433. [PMID: 32918574 DOI: 10.1007/s00259-020-04975-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-invasive imaging techniques (especially single-photon emission tomography and positron emission tomography) apply several RGD-based imaging ligands developed during a vast number of preclinical and clinical investigations. The RGD (Arg-Gly-Asp) sequence is a binding moiety for a large selection of adhesive extracellular matrix and cell surface proteins. Since the first identification of this sequence as the shortest sequence required for recognition in fibronectin during the 1980s, fundamental research regarding the molecular mechanisms of integrin action have paved the way for development of several pharmaceuticals and radiopharmaceuticals with clinical applications. Ligands recognizing RGD may be developed for use in the monitoring of these interactions (benign or pathological). Although RGD-based molecular imaging has been actively investigated for oncological purposes, their utilization towards non-oncology applications remains relatively under-exploited. METHODS AND SCOPE This review highlights the new non-oncologic applications of RGD-based tracers (with the focus on single-photon emission tomography and positron emission tomography). The focus is on the last 10 years of scientific literature (2009-2020). It is proposed that these imaging agents will be used for off-label indications that may provide options for disease monitoring where there are no approved tracers available, for instance Crohn's disease or osteoporosis. Fundamental science investigations have made progress in elucidating the involvement of integrin in various diseases not pertaining to oncology. Furthermore, RGD-based radiopharmaceuticals have been evaluated extensively for safety during clinical evaluations of various natures. CONCLUSION Clinical translation of non-oncological applications for RGD-based radiopharmaceuticals and other imaging tracers without going through time-consuming extensive development is therefore highly plausible. Graphical abstract.
Collapse
Affiliation(s)
- Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa. .,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.
| | - Janke Kleynhans
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.,DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| | - Jae Min Jeong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehangno Jongno-gu, Seoul, 110-744, South Korea
| | - Mike Sathekge
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
17
|
Xu L, Liu S. Forecasting structure of natural products through color formation process by thin layer chromatography. Food Chem 2020; 334:127496. [PMID: 32711264 DOI: 10.1016/j.foodchem.2020.127496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
With booming of computer technology, it is feasible to quantitatively extract valuable information from readily available image of objects, which dramatically reduces the cost and improves the efficiency. In this work, a structural classification method, based on data extracted from color formation process on thin layer chromatography (TLC) plates through computer processing, was established for natural products. Representative natural products exhibited good clustering and separation according to the extracted color feature, and structure of natural products can be classified by the distribution region in the color system. This method provides structural information for typical types of natural products directly from the formed color on TLC, which is very efficient and make portable device-based structure analysis of natural products possible. In addition, a general mechanism of color formation was proposed. This method is free from special instrument, high-throughput, and would facilitate large-scale screening of bioactives from natural sources.
Collapse
Affiliation(s)
- Lujing Xu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Songbai Liu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
18
|
Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. Pharmacol Ther 2020; 211:107550. [PMID: 32325067 DOI: 10.1016/j.pharmthera.2020.107550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications.
Collapse
|
19
|
Yanina IY, Navolokin NA, Bucharskaya AB, Мaslyakova GN, Tuchin VV. Skin and subcutaneous fat morphology alterations under the LED or laser treatment in rats in vivo. JOURNAL OF BIOPHOTONICS 2019; 12:e201900117. [PMID: 31454458 DOI: 10.1002/jbio.201900117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/26/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
The main objective of this work is to quantify the impact of photodynamic/photothermal treatment by using visible LED and NIR laser irradiation through the skin of subcutaneous fat in vivo followed up by tissue sampling and histology. The optical method may provide reduction of regional or site-specific accumulations of abdominal or subcutaneous adipose tissue precisely and least-invasively by inducing cell apoptosis and controlled necrosis of fat tissue. As photodynamic/photothermal adipose tissue sensitizers Brilliant Green (BG) or Indocyanine Green (ICG) dyes were injected subcutaneously in rats. The CW LED device (625 nm) or CW diode laser (808 nm) were used as light sources, respectively. Biopsies of skin together with subcutaneous tissues were taken for histology. The combined action BG-staining and LED-irradiation (BG + LED) or ICG-staining and NIR-laser irradiation (ICG + NIR) causes pronounced signs of damage of adipose tissue characterized by a strong stretching, thinning, folding and undulating of cell membranes and appearance of necrotic areas. As a posttreatment after 14 days only connective tissue was observed at the site of necrotic areas. The data obtained are important for safe light treatment of site-specific fat accumulations, including cellulite. This work provides a basis for the development of fat lipolysis technologies and to move them to clinical applications. Schematics of animal experiment.
Collapse
Affiliation(s)
- Irina Y Yanina
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
| | - Nikita A Navolokin
- Department of Pathological Anatomy, Saratov State Medical University, Saratov, Russia
| | - Alla B Bucharskaya
- Department of Pathological Anatomy, Saratov State Medical University, Saratov, Russia
| | - Galina N Мaslyakova
- Department of Pathological Anatomy, Saratov State Medical University, Saratov, Russia
| | - Valery V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russia
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|