1
|
Oh Y, Abid R, Dababneh S, Bakr M, Aslani T, Cook DP, Vanderhyden BC, Park JG, Munshi NV, Hui CC, Kim KH. Transcriptional regulation of the postnatal cardiac conduction system heterogeneity. Nat Commun 2024; 15:6550. [PMID: 39095365 PMCID: PMC11297185 DOI: 10.1038/s41467-024-50849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information. Integration of single-cell and spatial transcriptomics uncover region-specific markers and zonation patterns of expression. Network inference shows heterogeneous gene regulatory networks across the CCS. Notably, region-specific gene regulation is recapitulated in vitro using neonatal mouse atrial and ventricular myocytes overexpressing CCS-specific transcription factors, Tbx3 and/or Irx3. This finding is supported by ATAC-seq of different CCS regions, Tbx3 ChIP-seq, and Irx motifs. Overall, this study provides comprehensive molecular profiles of the postnatal CCS and elucidates gene regulatory mechanisms contributing to its heterogeneity.
Collapse
Affiliation(s)
- Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rimshah Abid
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marwan Bakr
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Termeh Aslani
- University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jin G Park
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
- Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chi-Chung Hui
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Kussauer S, Dilk P, Elleisy M, Michaelis C, Lichtwark S, Rimmbach C, David R, Jung J. Heart rhythm in vitro: measuring stem cell-derived pacemaker cells on microelectrode arrays. Front Cardiovasc Med 2024; 11:1200786. [PMID: 38450366 PMCID: PMC10915086 DOI: 10.3389/fcvm.2024.1200786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background Cardiac arrhythmias have markedly increased in recent decades, highlighting the urgent need for appropriate test systems to evaluate the efficacy and safety of new pharmaceuticals and the potential side effects of established drugs. Methods The Microelectrode Array (MEA) system may be a suitable option, as it provides both real-time and non-invasive monitoring of cellular networks of spontaneously active cells. However, there is currently no commercially available cell source to apply this technology in the context of the cardiac conduction system (CCS). In response to this problem, our group has previously developed a protocol for the generation of pure functional cardiac pacemaker cells from mouse embryonic stem cells (ESCs). In addition, we compared the hanging drop method, which was previously utilized, with spherical plate-derived embryoid bodies (EBs) and the pacemaker cells that are differentiated from these. Results We described the application of these pacemaker cells on the MEA platform, which required a number of crucial optimization steps in terms of coating, dissociation, and cell density. As a result, we were able to generate a monolayer of pure pacemaker cells on an MEA surface that is viable and electromechanically active for weeks. Furthermore, we introduced spherical plates as a convenient and scalable method to be applied for the production of induced sinoatrial bodies. Conclusion We provide a tool to transfer modeling and analysis of cardiac rhythm diseases to the cell culture dish. Our system allows answering CCS-related queries within a cellular network, both under baseline conditions and post-drug exposure in a reliable and affordable manner. Ultimately, our approach may provide valuable guidance not only for cardiac pacemaker cells but also for the generation of an MEA test platform using other sensitive non-proliferating cell types.
Collapse
Affiliation(s)
- Sophie Kussauer
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Patrick Dilk
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Moustafa Elleisy
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Claudia Michaelis
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Sarina Lichtwark
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Christian Rimmbach
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| | - Julia Jung
- Department of Cardiac Surgery, Rostock University Medical Centre, Rostock, Germany
- Department of Life, Light, & Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Wei N, Lee C, Duan L, Galdos FX, Samad T, Raissadati A, Goodyer WR, Wu SM. Cardiac Development at a Single-Cell Resolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:253-268. [PMID: 38884716 DOI: 10.1007/978-3-031-44087-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mammalian cardiac development is a complex, multistage process. Though traditional lineage tracing studies have characterized the broad trajectories of cardiac progenitors, the advent and rapid optimization of single-cell RNA sequencing methods have yielded an ever-expanding toolkit for characterizing heterogeneous cell populations in the developing heart. Importantly, they have allowed for a robust profiling of the spatiotemporal transcriptomic landscape of the human and mouse heart, revealing the diversity of cardiac cells-myocyte and non-myocyte-over the course of development. These studies have yielded insights into novel cardiac progenitor populations, chamber-specific developmental signatures, the gene regulatory networks governing cardiac development, and, thus, the etiologies of congenital heart diseases. Furthermore, single-cell RNA sequencing has allowed for the exquisite characterization of distinct cardiac populations such as the hard-to-capture cardiac conduction system and the intracardiac immune population. Therefore, single-cell profiling has also resulted in new insights into the regulation of cardiac regeneration and injury repair. Single-cell multiomics approaches combining transcriptomics, genomics, and epigenomics may uncover an even more comprehensive atlas of human cardiac biology. Single-cell analyses of the developing and adult mammalian heart offer an unprecedented look into the fundamental mechanisms of cardiac development and the complex diseases that may arise from it.
Collapse
Affiliation(s)
- Nicholas Wei
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Carissa Lee
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | - Lauren Duan
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | - Tahmina Samad
- Stanford University, Cardiovascular Institute, Stanford, CA, USA
| | | | | | - Sean M Wu
- Stanford University, Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
4
|
Gromova T, Gehred ND, Vondriska TM. Single-cell transcriptomes in the heart: when every epigenome counts. Cardiovasc Res 2023; 119:64-78. [PMID: 35325060 PMCID: PMC10233279 DOI: 10.1093/cvr/cvac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The response of an organ to stimuli emerges from the actions of individual cells. Recent cardiac single-cell RNA-sequencing studies of development, injury, and reprogramming have uncovered heterogeneous populations even among previously well-defined cell types, raising questions about what level of experimental resolution corresponds to disease-relevant, tissue-level phenotypes. In this review, we explore the biological meaning behind this cellular heterogeneity by undertaking an exhaustive analysis of single-cell transcriptomics in the heart (including a comprehensive, annotated compendium of studies published to date) and evaluating new models for the cardiac function that have emerged from these studies (including discussion and schematics that depict new hypotheses in the field). We evaluate the evidence to support the biological actions of newly identified cell populations and debate questions related to the role of cell-to-cell variability in development and disease. Finally, we present emerging epigenomic approaches that, when combined with single-cell RNA-sequencing, can resolve basic mechanisms of gene regulation and variability in cell phenotype.
Collapse
Affiliation(s)
- Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natalie D Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Bhattacharyya S, Kollipara RK, Orquera-Tornakian G, Goetsch S, Zhang M, Perry C, Li B, Shelton JM, Bhakta M, Duan J, Xie Y, Xiao G, Evers BM, Hon GC, Kittler R, Munshi NV. Global chromatin landscapes identify candidate noncoding modifiers of cardiac rhythm. J Clin Invest 2023; 133:e153635. [PMID: 36454649 PMCID: PMC9888383 DOI: 10.1172/jci153635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Comprehensive cis-regulatory landscapes are essential for accurate enhancer prediction and disease variant mapping. Although cis-regulatory element (CRE) resources exist for most tissues and organs, many rare - yet functionally important - cell types remain overlooked. Despite representing only a small fraction of the heart's cellular biomass, the cardiac conduction system (CCS) unfailingly coordinates every life-sustaining heartbeat. To globally profile the mouse CCS cis-regulatory landscape, we genetically tagged CCS component-specific nuclei for comprehensive assay for transposase-accessible chromatin-sequencing (ATAC-Seq) analysis. Thus, we established a global CCS-enriched CRE database, referred to as CCS-ATAC, as a key resource for studying CCS-wide and component-specific regulatory functions. Using transcription factor (TF) motifs to construct CCS component-specific gene regulatory networks (GRNs), we identified and independently confirmed several specific TF sub-networks. Highlighting the functional importance of CCS-ATAC, we also validated numerous CCS-enriched enhancer elements and suggested gene targets based on CCS single-cell RNA-Seq data. Furthermore, we leveraged CCS-ATAC to improve annotation of existing human variants related to cardiac rhythm and nominated a potential enhancer-target pair that was dysregulated by a specific SNP. Collectively, our results established a CCS-regulatory compendium, identified novel CCS enhancer elements, and illuminated potential functional associations between human genomic variants and CCS component-specific CREs.
Collapse
Affiliation(s)
| | | | | | - Sean Goetsch
- Department of Internal Medicine, Division of Cardiology
| | - Minzhe Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Cameron Perry
- Department of Internal Medicine, Division of Cardiology
| | - Boxun Li
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | | | - Minoti Bhakta
- Department of Internal Medicine, Division of Cardiology
| | - Jialei Duan
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
| | - Yang Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
- Department of Bioinformatics
| | - Bret M. Evers
- Department of Internal Medicine, Division of Cardiology
| | - Gary C. Hon
- Laboratory of Regulatory Genomics, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology
- Department of Bioinformatics
- Hamon Center for Regenerative Science and Medicine, and
| | - Ralf Kittler
- McDermott Center for Human Growth and Development
| | - Nikhil V. Munshi
- Department of Internal Medicine, Division of Cardiology
- McDermott Center for Human Growth and Development
- Hamon Center for Regenerative Science and Medicine, and
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Chapski DJ, Vondriska TM. Unwind to the beat: chromatin and cardiac conduction. J Clin Invest 2023; 133:165663. [PMID: 36719369 PMCID: PMC9888370 DOI: 10.1172/jci165663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
How chromatin accessibility and structure endow highly specialized cells with their unique phenotypes is an area of intense investigation. In the mammalian heart, an exclusive subset of cardiac cells comprise the conduction system. Many molecular components of this system are well studied and genetic variation in some of the components induces abnormal cardiac conduction. However, genetic risk for cardiac arrhythmias in human populations also occurs in noncoding regions. A study by Bhattacharyya, Kollipara, et al. in this issue of the JCI examines how chromatin accessibility and structure may explain the mechanisms by which noncoding variants increase susceptibility to cardiac arrhythmias. We discuss the implications of these findings for cell type-specific gene regulation and highlight potential therapeutic strategies to engineer locus-specific epigenomic remodeling in vivo.
Collapse
Affiliation(s)
| | - Thomas M. Vondriska
- Department of Anesthesiology and Perioperative Medicine,,Department of Medicine, and,Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Wang L, Bhakta M, Fernandez-Perez A, Munshi NV. Inducible cardiomyocyte injury within the atrioventricular conduction system uncovers latent regenerative capacity in mice. J Clin Invest 2021; 131:138637. [PMID: 34596051 DOI: 10.1172/jci138637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
The cardiac conduction system (CCS) ensures regular contractile function, and injury to any of its components can cause cardiac dysrhythmia. Although all cardiomyocytes (CMs) originate from common progenitors, the CCS is composed of biologically distinct cell types with unique functional and developmental characteristics. In contrast to ventricular cardiomyocytes, which continue to proliferate after birth, most CCS cells terminally exit the cell cycle during fetal development. Although the CCS should thus provide a poor substrate for postnatal injury repair, its regenerative capacity remains untested. Here, we describe a genetic system for ablating CMs that reside within the atrioventricular conduction system (AVCS). Adult mouse AVCS ablation resulted in regenerative failure characterized by persistent atrioventricular conduction defects and contractile dysfunction. In contrast, AVCS injury in neonatal mice led to recovery in a subset of these mice, thus providing evidence for CCS plasticity. Furthermore, CM proliferation did not appear to completely account for the observed functional recovery, suggesting that mechanisms regulating recovery from dysrhythmia are likely to be distinct from cardiac regeneration associated with ventricular injury. Taken together, we anticipate that our results will motivate further mechanistic studies of CCS plasticity and enable the exploration of rhythm restoration as an alternative therapeutic strategy.
Collapse
Affiliation(s)
- Lin Wang
- Department of Internal Medicine (Cardiology Division)
| | - Minoti Bhakta
- Department of Internal Medicine (Cardiology Division)
| | | | - Nikhil V Munshi
- Department of Internal Medicine (Cardiology Division).,Department of Molecular Biology.,McDermott Center for Human Growth and Development, and.,Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Mantri S, Wu SM, Goodyer WR. Molecular Profiling of the Cardiac Conduction System: the Dawn of a New Era. Curr Cardiol Rep 2021; 23:103. [PMID: 34196831 DOI: 10.1007/s11886-021-01536-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Recent technological advances have led to an increased ability to define the gene expression profile of the cardiac conduction system (CCS). Here, we review the most salient studies to emerge in recent years and discuss existing gaps in our knowledge as well as future areas of investigation. RECENT FINDINGS Molecular profiling of the CCS spans several decades. However, the advent of high-throughput sequencing strategies has allowed for the discovery of unique transcriptional programs of the many diverse CCS cell types. The CCS, a diverse structure with significant inter- and intra-component cellular heterogeneity, is essential to the normal function of the heart. Progress in transcriptomic profiling has improved the resolution and depth of characterization of these unique and clinically relevant CCS cell types. Future studies leveraging this big data will play a crucial role in improving our understanding of CCS development and function as well as translating these findings into tangible translational tools for the improved detection, prevention, and treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- Sruthi Mantri
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sean M Wu
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William R Goodyer
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA. .,Division of Pediatric Cardiology, Electrophysiology, Department of Pediatrics, Lucile Packard Children's Hospital, Stanford University School of Medicine, Room G1105 Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Bhattacharyya S, Munshi NV. Development of the Cardiac Conduction System. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037408. [PMID: 31988140 DOI: 10.1101/cshperspect.a037408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.
Collapse
Affiliation(s)
| | - Nikhil V Munshi
- Department of Internal Medicine, Division of Cardiology.,McDermott Center for Human Growth and Development.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, Dallas, Texas 75390, USA
| |
Collapse
|
10
|
An offset ON-OFF receptive field is created by gap junctions between distinct types of retinal ganglion cells. Nat Neurosci 2020; 24:105-115. [PMID: 33230322 PMCID: PMC7769921 DOI: 10.1038/s41593-020-00747-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023]
Abstract
In the vertebrate retina, the location of a neuron's receptive field in visual space closely corresponds to the physical location of synaptic input onto its dendrites, a relationship called the retinotopic map. We report the discovery of a systematic spatial offset between the ON and OFF receptive subfields in F-mini-ON retinal ganglion cells (RGCs). Surprisingly, this property does not come from spatially offset ON and OFF layer dendrites, but instead arises from a network of electrical synapses via gap junctions to RGCs of a different type, the F-mini-OFF. We show that the asymmetric morphology and connectivity of these RGCs can explain their receptive field offset, and we use a multicell model to explore the effects of receptive field offset on the precision of edge-location representation in a population. This RGC network forms a new electrical channel combining the ON and OFF feedforward pathways within the output layer of the retina.
Collapse
|
11
|
Suryawanshi H, Clancy R, Morozov P, Halushka MK, Buyon JP, Tuschl T. Cell atlas of the foetal human heart and implications for autoimmune-mediated congenital heart block. Cardiovasc Res 2020; 116:1446-1457. [PMID: 31589297 PMCID: PMC7314636 DOI: 10.1093/cvr/cvz257] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
AIMS Investigating human heart development and applying this to deviations resulting in disease is incomplete without molecular characterization of the cell types required for normal functioning. We investigated foetal human heart single-cell transcriptomes from mid-gestational healthy and anti-SSA/Ro associated congenital heart block (CHB) samples. METHODS AND RESULTS Three healthy foetal human hearts (19th to 22nd week of gestation) and one foetal heart affected by autoimmune-associated CHB (21st week of gestation) were subjected to enzymatic dissociation using the Langendorff preparation to obtain single-cell suspensions followed by 10× Genomics- and Illumina-based single-cell RNA-sequencing (scRNA-seq). In addition to the myocytes, fibroblasts, immune cells, and other minor cell types, previously uncharacterized diverse sub-populations of endothelial cells were identified in the human heart. Differential gene expression analysis revealed increased and heterogeneous interferon responses in varied cell types of the CHB heart compared with the healthy controls. In addition, we also identified matrisome transcripts enriched in CHB stromal cells that potentially contribute to extracellular matrix deposition and subsequent fibrosis. CONCLUSION These data provide an information-rich resource to further our understanding of human heart development, which, as illustrated by comparison to a heart exposed to a maternal autoimmune environment, can be leveraged to provide insight into the pathogenesis of disease.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Robert Clancy
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jill P Buyon
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| |
Collapse
|