1
|
Suryajaya W, Biswas T, Shahabi S, Mealka M, Huxford T, Ghosh G. HDX-MS Analysis of Catalytic Activation of IKK2 in the IκB Kinase Complex. Biochemistry 2024; 63:2323-2334. [PMID: 39185716 DOI: 10.1021/acs.biochem.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The IκB Kinase (IKK) complex, containing catalytic IKK2 and noncatalytic NEMO subunits, plays essential roles in the induction of transcription factors of the NF-κB family. Catalytic activation of IKK2 via phosphorylation of its activation loop is promoted upon noncovalent association of linear or K63-linked polyubiquitin chains to NEMO within the IKK complex. The mechanisms of this activation remain speculative. To investigate interaction dynamics within the IKK complex during activation of IKK2, we conducted hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) on NEMO and IKK2 proteins in their free and complex-bound states. Altered proton exchange profiles were observed in both IKK2 and NEMO upon complex formation, and changes were consistent with the involvement of distinct regions throughout the entire length of both proteins, including previously uncharacterized segments, in direct or allosteric interactions. Association with linear tetraubiquitin (Ub4) affected multiple regions of the IKK2:NEMO complex, in addition to previously identified interaction sites on NEMO. Intriguingly, observed enhanced solvent accessibility of the IKK2 activation loop within the IKK2:NEMO:Ub4 complex, coupled with contrasting protection of surrounding segments of the catalytic subunit, suggests an allosteric role for NEMO:Ub4 in priming IKK2 for phosphorylation-dependent catalytic activation.
Collapse
Affiliation(s)
- William Suryajaya
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0357, United States
| | - Tapan Biswas
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0357, United States
| | - Shandy Shahabi
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0357, United States
| | - Matthew Mealka
- Structural Biochemistry Laboratory Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Tom Huxford
- Structural Biochemistry Laboratory Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0357, United States
| |
Collapse
|
2
|
Cortez N, Villegas C, Burgos V, Cabrera-Pardo JR, Ortiz L, González-Chavarría I, Nchiozem-Ngnitedem VA, Paz C. Adjuvant Properties of Caffeic Acid in Cancer Treatment. Int J Mol Sci 2024; 25:7631. [PMID: 39062873 PMCID: PMC11276737 DOI: 10.3390/ijms25147631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeic acid (CA) is a polyphenol belonging to the phenylpropanoid family, commonly found in plants and vegetables. It was first identified by Hlasiwetz in 1867 as a breakdown product of caffetannic acid. CA is biosynthesized from the amino acids tyrosine or phenylalanine through specific enzyme-catalyzed reactions. Extensive research since its discovery has revealed various health benefits associated with CA, including its antioxidant, anti-inflammatory, and anticancer properties. These effects are attributed to its ability to modulate several pathways, such as inhibiting NFkB, STAT3, and ERK1/2, thereby reducing inflammatory responses, and activating the Nrf2/ARE pathway to enhance antioxidant cell defenses. The consumption of CA has been linked to a reduced risk of certain cancers, mitigation of chemotherapy and radiotherapy-induced toxicity, and reversal of resistance to first-line chemotherapeutic agents. This suggests that CA could serve as a useful adjunct in cancer treatment. Studies have shown CA to be generally safe, with few adverse effects (such as back pain and headaches) reported. This review collates the latest information from Google Scholar, PubMed, the Phenol-Explorer database, and ClinicalTrials.gov, incorporating a total of 154 articles, to underscore the potential of CA in cancer prevention and overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|
3
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
4
|
Hamed AR, Nabih HK, El-Rashedy AA, Mohamed TA, Mostafa OE, K. Ali S, Efferth T, Hegazy MEF. Salvimulticanol from Salvia multicaulis suppresses LPS-induced inflammation in RAW264.7 macrophages: in vitro and in silico studies. 3 Biotech 2024; 14:144. [PMID: 38706927 PMCID: PMC11065832 DOI: 10.1007/s13205-024-03987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/07/2024] [Indexed: 05/07/2024] Open
Abstract
Sustained inflammatory responses can badly affect several vital organs and lead to chronic inflammation-related disorders, such as atherosclerosis, pneumonia, rheumatoid arthritis, obesity, diabetes, Alzheimer's disease, and cancers. Salvia multicaulis is one of the widely distributed plants that contains several biologically active phytochemicals and diterpenoids with anti-inflammatory effects. Therefore, finding alternative and safer natural plant-extracted compounds with good curative anti-inflammatory efficiencies is an urgent need for the clinical treatment of inflammation-related diseases. In the current study, S. multicaulis Vahl was used to extract and isolate two compounds identified as salvimulticanol and candesalvone B methyl ester to examine their effects against inflammation in murine macrophage RAW264.7 cells that were induced by lipopolysaccharide (LPS). Accordingly, after culturing RAW264.7 cells and induction of inflammation by LPS (100 ng/ml), cells were exposed to different concentrations (9, 18, 37.5, 75, and 150 µM) of each compound. Then, Griess assay for detection of nitric oxide (NO) levels and western blotting for the determination of inducible nitric oxide synthase (iNOS) expression were performed. Molecular docking and molecular dynamics (MD) simulation studies were employed to investigate the anti-inflammatory mechanism. Our obtained results validated that the level of NO was significantly decreased in the macrophage cell suspensions as a response to salvimulticanol treatment in a dose-dependent manner (IC50: 25.1 ± 1.2 µM) as compared to the methyl ester of candesalvone B which exerted a weaker inhibition (IC50: 69.2 ± 3.0 µM). This decline in NO percentage was comparable with a down-regulation of iNOS expression by western blotting. Salvimulticanol strongly interacted with both the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complex and the inhibitor of nuclear factor kappa-B (NF-κB) kinase subunit beta (IKKβ) to disrupt their inflammatory activation due to the significant hydrogen bonds and effective interactions with amino acid residues present in the target proteins' active sites. S.multicaulis is a rich natural source of the aromatic abietane diterpenoid, salvimulticanol, which exerted a strong anti-inflammatory effect through targeting iNOS and diminishing NO production in LPS-induced RAW264.7 cells in a mechanism that is dependent on the inhibition of TLR4-MD-2 and IKKβ as activators of the classical NF-κB-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Ahmed R. Hamed
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
- Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Heba K. Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Ahmed A. El-Rashedy
- Molecular Dynamics Unit, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Olfat E. Mostafa
- Poison Control Center, Ain Shams University Hospitals, P.O. 1181, Abbasia, Cairo Egypt
| | - Sherine K. Ali
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Thomas Efferth
- Pharmaceutical Biology Department, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
5
|
DiRusso CJ, DeMaria AM, Wong J, Wang W, Jordanides JJ, Whitty A, Allen KN, Gilmore TD. A conserved core region of the scaffold NEMO is essential for signal-induced conformational change and liquid-liquid phase separation. J Biol Chem 2023; 299:105396. [PMID: 37890781 PMCID: PMC10694592 DOI: 10.1016/j.jbc.2023.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Scaffold proteins help mediate interactions between protein partners, often to optimize intracellular signaling. Herein, we use comparative, biochemical, biophysical, molecular, and cellular approaches to investigate how the scaffold protein NEMO contributes to signaling in the NF-κB pathway. Comparison of NEMO and the related protein optineurin from a variety of evolutionarily distant organisms revealed that a central region of NEMO, called the Intervening Domain (IVD), is conserved between NEMO and optineurin. Previous studies have shown that this central core region of the IVD is required for cytokine-induced activation of IκB kinase (IKK). We show that the analogous region of optineurin can functionally replace the core region of the NEMO IVD. We also show that an intact IVD is required for the formation of disulfide-bonded dimers of NEMO. Moreover, inactivating mutations in this core region abrogate the ability of NEMO to form ubiquitin-induced liquid-liquid phase separation droplets in vitro and signal-induced puncta in vivo. Thermal and chemical denaturation studies of truncated NEMO variants indicate that the IVD, while not intrinsically destabilizing, can reduce the stability of surrounding regions of NEMO due to the conflicting structural demands imparted on this region by flanking upstream and downstream domains. This conformational strain in the IVD mediates allosteric communication between the N- and C-terminal regions of NEMO. Overall, these results support a model in which the IVD of NEMO participates in signal-induced activation of the IKK/NF-κB pathway by acting as a mediator of conformational changes in NEMO.
Collapse
Affiliation(s)
| | - Anthony M DeMaria
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Judy Wong
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Wei Wang
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jack J Jordanides
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts, USA.
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Coelho MM, Bezerra EM, da Costa RF, de Alvarenga ÉC, Freire VN, Carvalho CR, Pessoa C, Albuquerque EL, Costa RA. In silico description of the adsorption of cell signaling pathway proteins ovalbumin, glutathione, LC3, TLR4, ASC PYCARD, PI3K and NF-Kβ on 7.0 nm gold nanoparticles: obtaining their Lennard-Jones-like potentials through docking and molecular mechanics. RSC Adv 2023; 13:35493-35499. [PMID: 38058560 PMCID: PMC10697183 DOI: 10.1039/d3ra06180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023] Open
Abstract
The impact of vaccination on the world's population is difficult to calculate. For developing different types of vaccines, adjuvants are substances added to vaccines to increase the magnitude and durability of the immune response and the effectiveness of the vaccine. This work explores the potential use of spherical gold nanoparticles (AuNPs) as adjuvants. Thus, we employed docking techniques and molecular mechanics to describe how a AuNP 7.0 nm in diameter interacts with cell signaling pathway proteins. Initially, we used X-ray crystallization data of the proteins ovalbumin, glutathione, LC3, TLR4, ASC PYCARD, PI3K, and NF-Kβ to study the adsorption with an AuNP through molecular docking. Therefore, interaction energies were obtained for the AuNP complexes and individual proteins, as well as the AuNP and OVA complex (AuNP@OVA) with each cellular protein, respectively. Results showed that AuNPs had the highest affinity for OVA individually, followed by glutathione, ASC PYCARD domain, LC3, PI3K, NF-Kβ, and TLR4. Furthermore, when evaluating the AuNP@OVA complex, glutathione showed a greater affinity with more potent interaction energy when compared to the other studied systems.
Collapse
Affiliation(s)
- Monique M Coelho
- Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ) São João del-Rei MG CEP 36301-160 Brazil
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais (UFMG) Belo Horizonte MG CEP 31270-910 Brazil
| | - Eveline M Bezerra
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) Mossoró RN CEP 59625-900 Brazil
| | - Roner F da Costa
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) Mossoró RN CEP 59625-900 Brazil
- Departamento de Ciências, Matemática e Estatística, Universidade Federal Rural do Semi-Árido (UFERSA) Mossoró RN CEP 59625-900 Brazil
| | - Érika C de Alvarenga
- Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ) São João del-Rei MG CEP 36301-160 Brazil
| | - Valder N Freire
- Departamento de Física, Universidade Federal do Ceará (UFC) Fortaleza CE 60455-760 Brazil
| | - Cláudia R Carvalho
- Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ) São João del-Rei MG CEP 36301-160 Brazil
- Departamento de Morfologia, Universidade Federal de Minas Gerais (UFMG) Belo Horizonte MG CEP 31270-910 Brazil
| | - Claudia Pessoa
- Programa de Pós-Graduação em Biotecnologia, Rede Nordeste de Biotecnologia (RENORBIO, ), Universidade Federal do Ceará (UFC) Fortaleza CE CEP 60020-181 Brazil
| | - Eudenilson L Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte (UFRN) Natal RN CEP 59064-741 Brazil
| | - Raquel A Costa
- Departamento de Ciências Naturais, Universidade Federal de São João del Rei (UFSJ) São João del-Rei MG CEP 36301-160 Brazil
| |
Collapse
|
7
|
DiRusso CJ, DeMaria AM, Wong J, Jordanides JJ, Whitty A, Allen KN, Gilmore TD. A Conserved Core Region of the Scaffold NEMO is Essential for Signal-induced Conformational Change and Liquid-liquid Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542299. [PMID: 37292615 PMCID: PMC10245932 DOI: 10.1101/2023.05.25.542299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scaffold proteins help mediate interactions between protein partners, often to optimize intracellular signaling. Herein, we use comparative, biochemical, biophysical, molecular, and cellular approaches to investigate how the scaffold protein NEMO contributes to signaling in the NF-κB pathway. Comparison of NEMO and the related protein optineurin from a variety of evolutionarily distant organisms revealed that a central region of NEMO, called the Intervening Domain (IVD), is conserved between NEMO and optineurin. Previous studies have shown that this central core region of the IVD is required for cytokine-induced activation of IκB kinase (IKK). We show that the analogous region of optineurin can functionally replace the core region of the NEMO IVD. We also show that an intact IVD is required for the formation of disulfide-bonded dimers of NEMO. Moreover, inactivating mutations in this core region abrogate the ability of NEMO to form ubiquitin-induced liquid-liquid phase separation droplets in vitro and signal-induced puncta in vivo. Thermal and chemical denaturation studies of truncated NEMO variants indicate that the IVD, while not intrinsically destabilizing, can reduce the stability of surrounding regions of NEMO, due to the conflicting structural demands imparted on this region by flanking upstream and downstream domains. This conformational strain in the IVD mediates allosteric communication between N- and C-terminal regions of NEMO. Overall, these results support a model in which the IVD of NEMO participates in signal-induced activation of the IKK/NF-κB pathway by acting as a mediator of conformational changes in NEMO.
Collapse
Affiliation(s)
| | | | - Judy Wong
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Karen N. Allen
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
8
|
Gao Y, Jiang X, Wei Z, Long H, Lai W. The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: A genetic perspective. Front Genet 2023; 14:1168538. [PMID: 37077539 PMCID: PMC10106650 DOI: 10.3389/fgene.2023.1168538] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Non-syndromic tooth agenesis (NSTA) is one of the most common dental developmental malformations affected by genetic factors predominantly. Among all 36 candidate genes reported in NSTA individuals, EDA, EDAR, and EDARADD play essential roles in ectodermal organ development. As members of the EDA/EDAR/NF-κB signaling pathway, mutations in these genes have been implicated in the pathogenesis of NSTA, as well as hypohidrotic ectodermal dysplasia (HED), a rare genetic disorder that affects multiple ectodermal structures, including teeth. This review provides an overview of the current knowledge on the genetic basis of NSTA, with a focus on the pathogenic effects of the EDA/EDAR/NF-κB signaling pathway and the role of EDA, EDAR, and EDARADD mutations in developmental tooth defects. We also discuss the phenotypic overlap and genetic differences between NSTA and HED. Ultimately, this review highlights the importance of genetic analysis in diagnosing and managing NSTA and related ectodermal disorders, and the need for ongoing research to improve our understanding of these conditions.
Collapse
Affiliation(s)
- Yanzi Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaohui Jiang
- Human Sperm Bank, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Wenli Lai,
| |
Collapse
|
9
|
Phelan T, Lawler C, Pichlmair A, Little MA, Bowie AG, Brady G. Molluscum Contagiosum Virus Protein MC008 Targets NF-κB Activation by Inhibiting Ubiquitination of NEMO. J Virol 2023; 97:e0010823. [PMID: 36916940 PMCID: PMC10062130 DOI: 10.1128/jvi.00108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Molluscum contagiosum virus (MCV) is a human-adapted poxvirus that causes a common and persistent yet mild infection characterized by distinct, contagious, papular skin lesions. These lesions are notable for having little or no inflammation associated with them and can persist for long periods without an effective clearance response from the host. Like all poxviruses, MCV encodes potent immunosuppressive proteins that perturb innate immune pathways involved in virus sensing, the interferon response, and inflammation, which collectively orchestrate antiviral immunity and clearance, with several of these pathways converging at common signaling nodes. One such node is the regulator of canonical nuclear factor kappa B (NF-κB) activation, NF-κB essential modulator (NEMO). Here, we report that the MCV protein MC008 specifically inhibits NF-κB through its interaction with NEMO, disrupting its early ubiquitin-mediated activation and subsequent downstream signaling. MC008 is the third NEMO-targeting inhibitor to be described in MCV to date, with each inhibiting NEMO activation in distinct ways, highlighting strong selective pressure to evolve multiple ways of disabling this key signaling protein. IMPORTANCE Inflammation lies at the heart of most human diseases. Understanding the pathways that drive this response is the key to new anti-inflammatory therapies. Viruses evolve to target inflammation; thus, understanding how they do this reveals how inflammation is controlled and, potentially, how to disable it when it drives disease. Molluscum contagiosum virus (MCV) has specifically evolved to infect humans and displays an unprecedented ability to suppress inflammation in our tissue. We have identified a novel inhibitor of human innate signaling from MCV, MC008, which targets NEMO, a core regulator of proinflammatory signaling. Furthermore, MC008 appears to inhibit early ubiquitination, thus interrupting later events in NEMO activation, thereby validating current models of IκB kinase (IKK) complex regulation.
Collapse
Affiliation(s)
- Thomas Phelan
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Clara Lawler
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | | | - Mark A. Little
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| | - Andrew G. Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Gareth Brady
- Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College Dublin, St. James’ Hospital Campus, Dublin, Ireland
| |
Collapse
|
10
|
DiRusso CJ, Dashtiahangar M, Gilmore TD. Scaffold proteins as dynamic integrators of biological processes. J Biol Chem 2022; 298:102628. [PMID: 36273588 PMCID: PMC9672449 DOI: 10.1016/j.jbc.2022.102628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/15/2022] Open
Abstract
Scaffold proteins act as molecular hubs for the docking of multiple proteins to organize efficient functional units for signaling cascades. Over 300 human proteins have been characterized as scaffolds, acting in a variety of signaling pathways. While the term scaffold implies a static, supportive platform, it is now clear that scaffolds are not simply inert docking stations but can undergo conformational changes that affect their dependent signaling pathways. In this review, we catalog scaffold proteins that have been shown to undergo actionable conformational changes, with a focus on the role that conformational change plays in the activity of the classic yeast scaffold STE5, as well as three human scaffold proteins (KSR, NEMO, SHANK3) that are integral to well-known signaling pathways (RAS, NF-κB, postsynaptic density). We also discuss scaffold protein conformational changes vis-à-vis liquid-liquid phase separation. Changes in scaffold structure have also been implicated in human disease, and we discuss how aberrant conformational changes may be involved in disease-related dysregulation of scaffold and signaling functions. Finally, we discuss how understanding these conformational dynamics will provide insight into the flexibility of signaling cascades and may enhance our ability to treat scaffold-associated diseases.
Collapse
|
11
|
Hameedi MA, T Prates E, Garvin MR, Mathews II, Amos BK, Demerdash O, Bechthold M, Iyer M, Rahighi S, Kneller DW, Kovalevsky A, Irle S, Vuong VQ, Mitchell JC, Labbe A, Galanie S, Wakatsuki S, Jacobson D. Structural and functional characterization of NEMO cleavage by SARS-CoV-2 3CLpro. Nat Commun 2022; 13:5285. [PMID: 36075915 PMCID: PMC9453703 DOI: 10.1038/s41467-022-32922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like protease (3CLpro) can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.50 Å resolution crystal structure of 3CLpro C145S bound to NEMO226-234 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro-NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for, in the pathology of COVID-19.
Collapse
Affiliation(s)
- Mikhail A Hameedi
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Structural Molecular Biology, Menlo Park, CA, 94025, USA
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Biosciences, Menlo Park, CA, 94025, USA
- Department of Structural Biology, Stanford University, Stanford, CA, 94305, USA
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
| | - Erica T Prates
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Michael R Garvin
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Irimpan I Mathews
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Structural Molecular Biology, Menlo Park, CA, 94025, USA
| | - B Kirtley Amos
- Department of Horticulture, University of Kentucky, Lexington, KY, USA
| | - Omar Demerdash
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mark Bechthold
- Department of Structural Biology, Stanford University, Stanford, CA, 94305, USA
| | - Mamta Iyer
- Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Simin Rahighi
- Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Daniel W Kneller
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Andrey Kovalevsky
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephan Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Van-Quan Vuong
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Julie C Mitchell
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Audrey Labbe
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephanie Galanie
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Soichi Wakatsuki
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Structural Molecular Biology, Menlo Park, CA, 94025, USA.
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Biosciences, Menlo Park, CA, 94025, USA.
- Department of Structural Biology, Stanford University, Stanford, CA, 94305, USA.
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA.
| | - Daniel Jacobson
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
12
|
Sangweni NF, Gabuza K, Huisamen B, Mabasa L, van Vuuren D, Johnson R. Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: a graphical representation. Arch Toxicol 2022; 96:1541-1550. [PMID: 35333943 PMCID: PMC9095530 DOI: 10.1007/s00204-022-03262-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
A breakthrough in oncology research was the discovery of doxorubicin (Dox) in the 1960's. Unlike other chemotherapy drugs, Dox was determined to have a greater therapeutic index. Since its discovery, Dox has, in part, contributed to the 5-10-year survival increase in cancer patient outcomes. Unfortunately, despite its efficacy, both in adult and pediatric cancers, the clinical significance of Dox is tainted by its adverse side effects, which usually manifest as cardiotoxicity. The issue stems from Dox's lack of specificity which prevents it from accurately distinguishing between cancer cells and healthy cell lines, like cardiomyocytes. In addition, the high binding affinity of Dox to topoisomerases, which are abundantly found in cancer and cardiac cells in different isoforms, potentiates DNA damage. In both cell lines, Dox induces cytotoxicity by stimulating the production of pro-oxidants whilst inhibiting antioxidant enzymatic activity. Given that the cardiac muscle has an inherently low antioxidant capacity makes it susceptible to oxidative damage thereby, allowing the accumulation of Dox within the myocardium. Subsequently, Dox drives the activation of cell death pathways, such as ferroptosis, necroptosis and apoptosis by triggering numerous cellular responses that have been implicated in diseases. To date, the exact mechanism by which Dox induces the cardiotoxicity remains an aspect of much interest in cardio-oncology research. Hence, the current review summarizes the proposed mechanisms that are associated with the onset and progression of DIC.
Collapse
Affiliation(s)
- Nonhlakanipho F. Sangweni
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, P.O. Box 19070, Cape Town, 7505 South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| | - Kwazi Gabuza
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, P.O. Box 19070, Cape Town, 7505 South Africa
| | - Barbara Huisamen
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, P.O. Box 19070, Cape Town, 7505 South Africa
| | - Derick van Vuuren
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, P.O. Box 19070, Cape Town, 7505 South Africa
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505 South Africa
| |
Collapse
|
13
|
Al Hamrashdi M, Brady G. Regulation of IRF3 activation in Human Antiviral Signalling Pathways. Biochem Pharmacol 2022; 200:115026. [PMID: 35367198 DOI: 10.1016/j.bcp.2022.115026] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
The interferon regulatory factor (IRF) family of transcription factors play a vital role in the human innate antiviral immune responses with production of interferons (IFNs) as a hallmark outcome of activation. In recent years, IRF3 has been considered a principal early regulator of type I IFNs (TI-IFNs) directly downstream of intracellular virus sensing. Despite decades of research on IRF-activating pathways, many questions remain on the regulation of IRF3 activation. The kinases IκB kinase epsilon (IKKε) and TANK-binding kinase-1 (TBK1) and the scaffold proteins TRAF family member-associated NF-kappa-B activator (TANK), NF-kappa-B-activating kinase-associated protein 1 (NAP1) and TANK-binding kinase 1-binding protein 1 (TBKBP1)/similar to NAP1 TBK1 adaptor (SINTBAD) are believed to be core components of an IRF3-activation complex yet their contextual involvement and complex composition are still unclear. This review will give an overview of antiviral signaling pathways leading to the activation of IRF3 and discuss recent developments in our understanding of its proximal regulation.
Collapse
Affiliation(s)
- Mariya Al Hamrashdi
- Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus, Dublin, Ireland.
| | - Gareth Brady
- Trinity Translational Medicine Institute, Trinity College Dublin, St. James' Hospital Campus, Dublin, Ireland.
| |
Collapse
|
14
|
Surucu Yilmaz N, Bilgic Eltan S, Kayaoglu B, Geckin B, Heredia RJ, Sefer AP, Kiykim A, Nain E, Kasap N, Dogru O, Yucelten AD, Cinel L, Karasu G, Yesilipek A, Sozeri B, Kaya GG, Yilmaz IC, Baydemir I, Aydin Y, Cansen Kahraman D, Haimel M, Boztug K, Karakoc-Aydiner E, Gursel I, Ozen A, Baris S, Gursel M. Low Density Granulocytes and Dysregulated Neutrophils Driving Autoinflammatory Manifestations in NEMO Deficiency. J Clin Immunol 2022; 42:582-596. [PMID: 35028801 DOI: 10.1007/s10875-021-01176-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
NF-κB essential modulator (NEMO, IKK-γ) deficiency is a rare combined immunodeficiency caused by mutations in the IKBKG gene. Conventionally, patients are afflicted with life threatening recurrent microbial infections. Paradoxically, the spectrum of clinical manifestations includes severe inflammatory disorders. The mechanisms leading to autoinflammation in NEMO deficiency are currently unknown. Herein, we sought to investigate the underlying mechanisms of clinical autoinflammatory manifestations in a 12-years old male NEMO deficiency (EDA-ID, OMIM #300,291) patient by comparing the immune profile of the patient before and after hematopoietic stem cell transplantation (HSCT). Response to NF-kB activators were measured by cytokine ELISA. Neutrophil and low-density granulocyte (LDG) populations were analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMC) transcriptome before and after HSCT and transcriptome of sorted normal-density neutrophils and LDGs were determined using the NanoString nCounter gene expression panels. ISG15 expression and protein ISGylation was based on Immunoblotting. Consistent with the immune deficiency, PBMCs of the patient were unresponsive to toll-like and T cell receptor-activators. Paradoxically, LDGs comprised 35% of patient PBMCs and elevated expression of genes such as MMP9, LTF, and LCN2 in the granulocytic lineage, high levels of IP-10 in the patient's plasma, spontaneous ISG15 expression and protein ISGylation indicative of a spontaneous type I interferon (IFN) signature were observed, all of which normalized after HSCT. Collectively, our results suggest that type I IFN signature observed in the patient, dysregulated LDGs and spontaneously activated neutrophils, potentially contribute to tissue damage in NEMO deficiency.
Collapse
Affiliation(s)
- Naz Surucu Yilmaz
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Basak Kayaoglu
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Busranur Geckin
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kiykim
- Faculty of Medicine, Pediatric Allergy and Immunology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ercan Nain
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Kasap
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Omer Dogru
- Division of Pediatric Hematology-Oncology, Marmara University, Istanbul, Turkey
| | | | - Leyla Cinel
- Division of Pathology, Marmara University, Istanbul, Turkey
| | - Gulsun Karasu
- Goztepe Medicalpark Hospital, Pediatric Stem Cell Transplantation Unit, İstanbul, Turkey
| | - Akif Yesilipek
- Goztepe Medicalpark Hospital, Pediatric Stem Cell Transplantation Unit, İstanbul, Turkey
| | - Betul Sozeri
- Division of Pediatric Rheumatology, University of Health Sciences, Umraniye Research and Training Hospital, Istanbul, Turkey
| | - Goksu Gokberk Kaya
- Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800, Ankara, Turkey
| | - Ismail Cem Yilmaz
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Ilayda Baydemir
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Yagmur Aydin
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey
| | - Deniz Cansen Kahraman
- KanSiL, Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Matthias Haimel
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ihsan Gursel
- Therapeutic ODN Research Lab, Department of Molecular Biology and Genetics, Bilkent University, Bilkent, 06800, Ankara, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey.,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, Marmara University, Fevzi Çakmak Mah. No: 41, Istanbul, Turkey. .,Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey. .,The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| | - Mayda Gursel
- Department of Biological Sciences, Middle East Technical University, B-58, Üniversiteler Mah. Dumlupınar Bulvarı No:1, Ankara, Turkey.
| |
Collapse
|
15
|
Kwok A, Camacho IS, Winter S, Knight M, Meade RM, Van der Kamp MW, Turner A, O'Hara J, Mason JM, Jones AR, Arcus VL, Pudney CR. A Thermodynamic Model for Interpreting Tryptophan Excitation-Energy-Dependent Fluorescence Spectra Provides Insight Into Protein Conformational Sampling and Stability. Front Mol Biosci 2021; 8:778244. [PMID: 34926581 PMCID: PMC8681860 DOI: 10.3389/fmolb.2021.778244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
It is now over 30 years since Demchenko and Ladokhin first posited the potential of the tryptophan red edge excitation shift (REES) effect to capture information on protein molecular dynamics. While there have been many key efforts in the intervening years, a biophysical thermodynamic model to quantify the relationship between the REES effect and protein flexibility has been lacking. Without such a model the full potential of the REES effect cannot be realized. Here, we present a thermodynamic model of the tryptophan REES effect that captures information on protein conformational flexibility, even with proteins containing multiple tryptophan residues. Our study incorporates exemplars at every scale, from tryptophan in solution, single tryptophan peptides, to multitryptophan proteins, with examples including a structurally disordered peptide, de novo designed enzyme, human regulatory protein, therapeutic monoclonal antibodies in active commercial development, and a mesophilic and hyperthermophilic enzyme. Combined, our model and data suggest a route forward for the experimental measurement of the protein REES effect and point to the potential for integrating biomolecular simulation with experimental data to yield novel insights.
Collapse
Affiliation(s)
- A Kwok
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - I S Camacho
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, London, United Kingdom
| | - S Winter
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - R M Meade
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - M W Van der Kamp
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | | | - J M Mason
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - A R Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, London, United Kingdom
| | - V L Arcus
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - C R Pudney
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.,BLOC Laboratories Limited, Bath, United Kingdom
| |
Collapse
|
16
|
Angom RS, Zhu J, Wu ATH, Sumitra MR, Pham V, Dutta S, Wang E, Madamsetty VS, Perez-Cordero GD, Huang HS, Mukhopadhyay D, Wang Y. LCC-09, a Novel Salicylanilide Derivative, Exerts Anti-Inflammatory Effect in Vascular Endothelial Cells. J Inflamm Res 2021; 14:4551-4565. [PMID: 34526801 PMCID: PMC8436973 DOI: 10.2147/jir.s305168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Endothelial cell (EC) activation facilitates leukocyte adhesion to vascular walls, which is implicated in a variety of cardiovascular diseases and is a target for prevention and treatment. Despite the development of anti-inflammatory medications, cost-effective therapies with significant anti-inflammatory effects and lower organ toxicity remain elusive. The goal of this study is to identify novel synthetic compounds that inhibit EC inflammatory response with minimal organ toxicity. METHODS AND RESULTS In this study, we discovered LCC-09, a salicylanilide derivative consisting of the functional fragment of magnolol, 2,4-difluorophenyl, and paeonol moiety of salicylate, as a novel anti-inflammatory compound in cultured ECs and zebrafish model. LCC-09 was shown to inhibit pro-inflammatory cytokine tumor necrosis factor-α (TNFα)-induced expression of adhesion molecules and inflammatory cytokines, leading to reduced leukocyte adhesion to ECs. Mechanistically, LCC-09 inhibits the phosphorylation of signal transducer and activator of transcription 1 (STAT1), TNFα-induced degradation of NF-κ-B Inhibitor-α (IκBα) and phosphorylation of NFκB p65, resulting in reduced NFκB transactivation activity and binding to E-selectin promoter. Additionally, LCC-09 attenuated TNFα-induced generation of reactive oxygen species in ECs. Molecular docking models suggest the binding of LCC-09 to NFκB essential modulator (NEMO) and Janus tyrosine kinase (JAK) may lead to dual inhibition of NFκB and STAT1. Furthermore, the anti-inflammatory effect of LCC-09 was validated in the lipopolysaccharides (LPS)-induced inflammation model in zebrafish. Our results demonstrated that LCC-09 significantly reduced the LPS-induced leukocyte recruitment and mortality of zebrafish embryos. Finally, LCC-09 was administered to cultured ECs and zebrafish embryos and showed minimal toxicities. CONCLUSION Our results support that LCC-09 inhibits EC inflammatory response but does not elicit significant toxicity.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jian Zhu
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People’s Republic of China
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Maryam Rachmawati Sumitra
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Victoria Pham
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Gabriel D Perez-Cordero
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hsu-Shan Huang
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ying Wang
- Department of Cardiovascular Medicine, College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
17
|
ElGamacy M, Hernandez Alvarez B. Expanding the versatility of natural and de novo designed coiled coils and helical bundles. Curr Opin Struct Biol 2021; 68:224-234. [PMID: 33964630 DOI: 10.1016/j.sbi.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Natural helical bundles (HBs) constitute a ubiquitous class of protein folds built of two or more longitudinally arranged α-helices. They adopt topologies that include symmetric, highly regular assemblies all the way to asymmetric, loosely packed domains. The diverse functional spectrum of HBs ranges from structural scaffolds to complex and dynamic effectors as molecular motors, signaling and sensing molecules, enzymes, and molecular switches. Symmetric HBs, particularly coiled coils, offer simple model systems providing an ideal entry point for protein folding and design studies. Herein, we review recent progress unveiling new structural features and functional mechanisms in natural HBs and cover staggering advances in the de novo design of HBs, giving rise to exotic structures and the creation of novel functions.
Collapse
Affiliation(s)
- Mohammad ElGamacy
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, Tübingen, 72076, Germany; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller-Strasse 10, Tübingen, 72076, Germany; Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany.
| |
Collapse
|
18
|
Ko MS, Biswas T, Mulero MC, Bobkov AA, Ghosh G, Huxford T. Structurally plastic NEMO and oligomerization prone IKK2 subunits define the behavior of human IKK2:NEMO complexes in solution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140526. [PMID: 32853772 DOI: 10.1016/j.bbapap.2020.140526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
The human IκB Kinase (IKK) is a multisubunit protein complex of two kinases and one scaffolding subunit that controls induction of transcription factor NF-κB activity. IKK behaves as an entity of aberrantly high apparent molecular weight in solution. Recent X-ray crystallographic and cryo-electron microscopy structures of individual catalytic subunits (IKK1/IKKα and IKK2/IKKβ) reveal that they are both stably folded dimeric proteins that engage in extensive homo-oligomerization through unique surfaces that are required for activation of their respective catalytic activities. The NEMO/IKKγ subunit is a predominantly coiled coil protein that is required for activation of IKK through the canonical NF-κB signaling pathway. Here we report size-exclusion chromatography, multi-angle light scattering, analytical centrifugation, and thermal denaturation analyses of full-length human recombinant NEMO as well as deletion and disease-linked variants. We observe that NEMO is predominantly a dimer in solution, although by virtue of its modular coiled coil regions NEMO exhibits complicated solution dynamics involving portions that are mutually antagonistic toward homodimerization. This behavior causes NEMO to behave as a significantly larger sized particle in solution. Analyses of NEMO in complex with IKK2 indicate that NEMO preserves this structurally dynamic character within the multisubuit complex and provides the complex-bound IKK2 further propensity toward homo-oligomerization. These observations provide critical information on the structural plasticity of NEMO subunit dimers which helps clarify its role in diseases and in IKK regulation through oligomerization-dependent phosphorylation of catalytic IKK2 subunit dimers.
Collapse
Affiliation(s)
- Myung Soo Ko
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, United States; Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States
| | - Tapan Biswas
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States
| | | | - Andrey A Bobkov
- Sanford Burnham Prebys Medical Discovery Institute, United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, United States.
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, United States.
| |
Collapse
|
19
|
Ko D, Kim J, Rhee K, Choi HJ. Identification of a Structurally Dynamic Domain for Oligomer Formation in Rootletin. J Mol Biol 2020; 432:3915-3932. [DOI: 10.1016/j.jmb.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/10/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
|
20
|
Barczewski AH, Ragusa MJ, Mierke DF, Pellegrini M. Production, Crystallization, and Structure Determination of the IKK-binding Domain of NEMO. J Vis Exp 2019. [PMID: 31929506 DOI: 10.3791/60339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
NEMO is a scaffolding protein which plays an essential role in the NF-κB pathway by assembling the IKK-complex with the kinases IKKα and IKKβ. Upon activation, the IKK complex phosphorylates the IκB molecules leading to NF-κB nuclear translocation and activation of target genes. Inhibition of the NEMO/IKK interaction is an attractive therapeutic paradigm for the modulation of NF-κB pathway activity, making NEMO a target for inhibitors design and discovery. To facilitate the process of discovery and optimization of NEMO inhibitors, we engineered an improved construct of the IKK-binding domain of NEMO that would allow for structure determination of the protein in the apo form and while bound to small molecular weight inhibitors. Here, we present the strategy utilized for the design, expression and structural characterization of the IKK-binding domain of NEMO. The protein is expressed in E. coli cells, solubilized under denaturing conditions and purified through three chromatographic steps. We discuss the protocols for obtaining crystals for structure determination and describe data acquisition and analysis strategies. The protocols will find wide applicability to the structure determination of complexes of NEMO and small molecule inhibitors.
Collapse
|