1
|
Huang JW, Bai YY, Wang DS, He WT, Zhang JL, Tu HX, Wang JY, Zhang YT, Wu QZ, Xu SL, Huang HH, Yang M, Jin NX, Gui ZH, Liu RQ, Jalava P, Dong GH, Lin LZ. Positive association between chlorinated paraffins and the risk of allergic diseases in children and adolescents. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134226. [PMID: 38593665 DOI: 10.1016/j.jhazmat.2024.134226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Contaminants may induce immune response polarization, leading to immune diseases, such as allergic diseases. Evidence concerning the effects of chlorinated paraffins (CPs), an emerging persistent organic pollutant, on immune system is scarce, particularly for epidemiological evidence. This study explores the association between CPs exposure and allergic diseases (allergic rhinitis, atopic eczema, and allergic conjunctivitis) in children and adolescents in the Pearl River Delta (PRD) in China. Herein, 131,304 children and adolescents from primary and secondary schools in the PRD were included and completed the questionnaire survey. The particulate matter (PM) samples were collected in the PRD and the PM2.5-bound CP concentrations were analyzed. In the multivarious adjustment mixed effect model (MEM), an IQR increase in ∑CPs was significantly associated with allergic diseases (rhinitis, eczema, and conjunctivitis) with the estimated odds ratios (ORs) for 1.11 (95% CI: 1.10, 1.13), 1.17 (95% CI: 1.15, 1.19), and 1.82 (95% CI: 1.76, 1.88), respectively. Interaction analysis indicated that overweight and obese individuals might have greater risk. Similar effect estimates were observed in several sensitivity analyses. This study provided epidemiological evidence on the immunotoxicity of CPs. More studies to confirm our findings and investigate mechanisms are needed.
Collapse
Affiliation(s)
- Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ya-Ying Bai
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dao-Sen Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Lin Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hai-Xin Tu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Yao Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Department of Environmental and School Hygiene Supervision, Public Health Service Center, Bao'an District, Shenzhen 518126, China
| | - He-Hai Huang
- Department of Occupational Health, Public Health Service Center, Bao'an District, Shenzhen 518126, China
| | - Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Nan-Xiang Jin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Flor LS, Anderson JA, Ahmad N, Aravkin A, Carr S, Dai X, Gil GF, Hay SI, Malloy MJ, McLaughlin SA, Mullany EC, Murray CJL, O'Connell EM, Okereke C, Sorensen RJD, Whisnant J, Zheng P, Gakidou E. Health effects associated with exposure to secondhand smoke: a Burden of Proof study. Nat Med 2024; 30:149-167. [PMID: 38195750 PMCID: PMC10803272 DOI: 10.1038/s41591-023-02743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Despite a gradual decline in smoking rates over time, exposure to secondhand smoke (SHS) continues to cause harm to nonsmokers, who are disproportionately children and women living in low- and middle-income countries. We comprehensively reviewed the literature published by July 2022 concerning the adverse impacts of SHS exposure on nine health outcomes. Following, we quantified each exposure-response association accounting for various sources of uncertainty and evaluated the strength of the evidence supporting our analyses using the Burden of Proof Risk Function methodology. We found all nine health outcomes to be associated with SHS exposure. We conservatively estimated that SHS increases the risk of ischemic heart disease, stroke, type 2 diabetes and lung cancer by at least around 8%, 5%, 1% and 1%, respectively, with the evidence supporting these harmful associations rated as weak (two stars). The evidence supporting the harmful associations between SHS and otitis media, asthma, lower respiratory infections, breast cancer and chronic obstructive pulmonary disease was weaker (one star). Despite the weak underlying evidence for these associations, our results reinforce the harmful effects of SHS on health and the need to prioritize advancing efforts to reduce active and passive smoking through a combination of public health policies and education initiatives.
Collapse
Affiliation(s)
- Luisa S Flor
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.
| | - Jason A Anderson
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Noah Ahmad
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Aleksandr Aravkin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Sinclair Carr
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Xiaochen Dai
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Gabriela F Gil
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew J Malloy
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Susan A McLaughlin
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Erin C Mullany
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Christopher J L Murray
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Erin M O'Connell
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Chukwuma Okereke
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Reed J D Sorensen
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Joanna Whisnant
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Emmanuela Gakidou
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Le HHTC, Le An P, Vinh NN, Ware RS, Phung D, Thai PK, Ranganathan S, Dang TN, Dung PHT, Thuong DTH, Phung H, Hien TT, Sly PD. Burden of asthma-like symptoms and a lack of recognition of asthma in Vietnamese children. J Asthma 2023; 60:516-524. [PMID: 35427209 DOI: 10.1080/02770903.2022.2066002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Lack of recognition of asthma in childhood results in unmet asthma treatment needs and leads to the risk of sub-optimal respiratory health. The present study assessed the prevalence of asthmatic under-recognition in middle school children in Vietnam. METHODS We conducted a school-based survey among 15,112 Vietnamese children. Most of them are aged from 13 to 14. Schools and students were recruited using multi-stage sampling. Respiratory symptoms were collected via self-report using a standardized tool from the International Study of Asthma and Allergies in Childhood. Under-recognition of asthma was defined as a presence of at least one asthma-like symptom but a negative response to having ever asthma. Associations were investigated using logistic regression. RESULTS Prevalence of asthma-like symptoms was 27.3% and prevalence of physician-diagnosed asthma was 8.5%. Over 80% of symptomatic children were not diagnosed with asthma. Under-recognition of asthma was found more in girls (adjusted odds ratio; aOR = 1.75; 95%CI: 1.54 to 1.98). CONCLUSIONS Asthma is significantly under-recognized in Vietnamese middle-school children. Urgent action is required to improve the recognition of asthma in Vietnam.
Collapse
Affiliation(s)
- Hong H T C Le
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia.,Children's Health and Environment Program, Centre for Children's Health Research, Brisbane, QLD, Australia
| | - Pham Le An
- Centre for the Training of Family Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Nhu Vinh
- Centre for the Training of Family Medicine, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Robert S Ware
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| | - Dung Phung
- School of Public Health, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, St Lucia, QLD, Australia
| | | | - Tran Ngoc Dang
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phan Hoang Thuy Dung
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Do Thi Hoai Thuong
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hai Phung
- School of Public Health, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - To Thi Hien
- University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Peter D Sly
- Children's Health and Environment Program, Centre for Children's Health Research, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Sio YY, Chew FT. Risk factors of asthma in the Asian population: a systematic review and meta-analysis. J Physiol Anthropol 2021; 40:22. [PMID: 34886907 PMCID: PMC8662898 DOI: 10.1186/s40101-021-00273-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background and objective An increasing trend of asthma prevalence was observed in Asia; however, contributions of environmental and host-related risk factors to the development of this disease remain uncertain. This study aimed to perform a systematic review and meta-analysis for asthma-associated risk factors reported in Asia. Methods We systematically searched three public databases (Web of Science, PubMed, and Scopus) in Feb 2021. We only included articles that reported environmental and host-related risk factors associated with asthma in the Asian population. Random-effect meta-analyses were conducted for frequently reported asthma-associated risk factors to provide an overall risk estimate of asthma development. Results Of 4030 records obtained from public databases, 289 articles were selected for review. The most frequently reported asthma-associated risk factor was the family history of allergy-related conditions. The random-effect asthma risk estimates (pooled odds ratio, OR) were 4.66 (95% confidence interval (CI): 3.73–5.82) for the family history of asthma, 3.50 (95% CI: 2.62–4.67) for the family history of atopy, 3.57 (95% CI: 3.03–4.22) for the family history of any allergic diseases, 1.96 (95% CI: 1.47–2.61) for the family history of allergic rhinitis, and 2.75 (95% CI: 1.12–6.76) for the family history of atopic dermatitis. For housing-related factors, including the presence of mold, mold spots, mold odor, cockroach, water damage, and incense burning, the random-effect pooled OR ranged from 1.43 to 1.73. Other risk factors with significant pooled OR for asthma development included male gender (1.30, 95% CI: 1.23–1.38), cigarette smoke exposure (1.44, 95% CI: 1.30–1.60), cigarette smoking (1.66, 95% CI: 1.44–1.90), body mass index (BMI)–related parameters (pooled OR ranged from 1.06 to 2.02), various types of air pollution (NO2, PM10, and O3; pooled OR ranged from 1.03 to 1.22), and pre- and perinatal factors (low birth weight, preterm birth, and cesarean section; pooled OR ranged from 1.14 to 1.32). Conclusions The family history of asthma was the most frequently reported risk factor for asthma development in Asia with the highest risk estimate for asthma development. This suggests a major role of the genetic component in asthma pathogenesis. Further study on asthma genetics is required to improve the current understanding of asthma etiology. Supplementary Information The online version contains supplementary material available at 10.1186/s40101-021-00273-x.
Collapse
Affiliation(s)
- Yang Yie Sio
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Department of Biological Sciences, National University of Singapore, Block S2, Level 5, 14 Science Drive 4, off Lower Kent Ridge Road, 117543, Singapore, Singapore
| | - Fook Tim Chew
- Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Department of Biological Sciences, National University of Singapore, Block S2, Level 5, 14 Science Drive 4, off Lower Kent Ridge Road, 117543, Singapore, Singapore.
| |
Collapse
|
5
|
Ngo-Minh X, Tang-Thi-Thao T, Doan-Thi-Quynh N, Craig TJ, Duong-Quy S. Study of the role of exhaled nitric oxide (NO) in predicting controlled or uncontrolled asthma in asthmatic children. Multidiscip Respir Med 2020; 15:656. [PMID: 32431811 PMCID: PMC7232017 DOI: 10.4081/mrm.2020.656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Background Exhaled nitric oxide (NO), especially fractional concentration of exhaled NO (FENO) has been used to predict the responsiveness to inhaled corticosteroid (ICS) in children with asthma. However, the use of exhaled NO for predicting asthma control in children is still controversial. Methods This was a perspective observational study. Asthmatic children who were naïve to inhaled corticosteroid (ICS) were included in the present study. The measurements of FENO and CANO (concentration of NO in the gas phase of the alveolar), spirometry, blood eosinophil counts (BEC), and total IgE levels were done for each asthmatic child. All study subjects started proper asthma treatment after the enrollment. Results Ninety three asthmatic children (9±3 years) with moderate (63.4%) to severe (36.6%) asthma were included and finished the 3-month study. The levels of FENO and CANO at inclusion were 37±11 ppb and 5.8±1.4 ppb, respectively; the mean of BEC was 617±258 cells/μL; the level of total IgE was 1563±576 UI/mL; 89% of subjects were positive for at least one respiratory allergen. The percentage of severe asthma was reduced significantly after 3 months (P<0.001). Well controlled asthma subjects at 3 months had higher levels of FENO and lower levels of CANO at inclusion (P<0.05 and P<0.05). FENO<20 ppb or CANO>5ppb had a risk of uncontrolled asthma at 3 months (OR: 1.7, CI 95% [(0.8) - (3.3)], P<0.05; OR: 1.9, CI 95% [(0.9) - (2.7)], P<0.05; respectively). FENO>35 ppb at inclusion had a positive predictive value for asthma control at 3 months (OR: 3.5, CI 95% [2.2-5.9], P<0.01). Conclusions Exhaled NO is a biomarker of asthma which may have a potential role to predict the control of asthma in short-term follow up in asthmatic children.
Collapse
Affiliation(s)
- Xuan Ngo-Minh
- Department of Medicine, Pham Ngoc Thach University, Ho Chi Minh city, Vietnam
| | | | | | - Timothy J Craig
- Division of Immuno-Allergology, Hershey Medical Center, Penn State Medical College, Hershey, PA, USA
| | - Sy Duong-Quy
- Department of Medicine, Pham Ngoc Thach University, Ho Chi Minh city, Vietnam.,Clinical Research Center, Lam Dong Medical College, Dalat city, Vietnam.,Division of Immuno-Allergology, Hershey Medical Center, Penn State Medical College, Hershey, PA, USA
| |
Collapse
|
6
|
Ardura-Garcia C, Kuehni CE. Reducing childhood respiratory morbidity and mortality in low and middle income countries: a current challenge. Eur Respir J 2019; 54:54/1/1900987. [PMID: 31296784 DOI: 10.1183/13993003.00987-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023]
Affiliation(s)
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland .,Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| |
Collapse
|