1
|
Shi M, Zhang H, Ma L, Wang X, Sun D, Feng Z. Innovative prognostic modeling in ESCC: leveraging scRNA-seq and bulk-RNA for dendritic cell heterogeneity analysis. Front Immunol 2024; 15:1352454. [PMID: 38515748 PMCID: PMC10956130 DOI: 10.3389/fimmu.2024.1352454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Background Globally, esophageal squamous cell carcinoma (ESCC) stands out as a common cancer type, characterized by its notably high rates of occurrence and mortality. Recent advancements in treatment methods, including immunotherapy, have shown promise, yet the prognosis remains poor. In the context of tumor development and treatment outcomes, the tumor microenvironment (TME), especially the function of dendritic cells (DCs), is significantly influential. Our study aims to delve deeper into the heterogeneity of DCs in ESCC using single-cell RNA sequencing (scRNA-seq) and bulk RNA analysis. Methods In the scRNA-seq analysis, we utilized the SCP package for result visualization and functional enrichment analysis of cell subpopulations. CellChat was employed to identify potential oncogenic mechanisms in DCs, while Monocle 2 traced the evolutionary trajectory of the three DC subtypes. CopyKAT assessed the benign or malignant nature of cells, and SCENIC conducted transcription factor regulatory network analysis, offering a preliminary exploration of DC heterogeneity. In Bulk-RNA analysis, we constructed a prognostic model for ESCC prognosis and immunotherapy response, based on DC marker genes. This model was validated through quantitative PCR (qPCR) and immunohistochemistry (IHC), confirming the gene expression levels. Results In this study, through intercellular communication analysis, we identified GALECTIN and MHC-I signaling pathways as potential oncogenic mechanisms within dendritic cells. We categorized DCs into three subtypes: plasmacytoid (pDC), conventional (cDC), and tolerogenic (tDC). Our findings revealed that pDCs exhibited an increased proportion of cells in the G2/M and S phases, indicating enhanced cellular activity. Pseudotime trajectory analysis demonstrated that cDCs were in early stages of differentiation, whereas tDCs were in more advanced stages, with pDCs distributed across both early and late differentiation phases. Prognostic analysis highlighted a significant correlation between pDCs and tDCs with the prognosis of ESCC (P< 0.05), while no significant correlation was observed between cDCs and ESCC prognosis (P = 0.31). The analysis of cell malignancy showed the lowest proportion of malignant cells in cDCs (17%), followed by pDCs (29%), and the highest in tDCs (48%), with these results being statistically significant (P< 0.05). We developed a robust ESCC prognostic model based on marker genes of pDCs and tDCs in the GSE53624 cohort (n = 119), which was validated in the TCGA-ESCC cohort (n = 139) and the IMvigor210 immunotherapy cohort (n = 298) (P< 0.05). Additionally, we supplemented the study with a novel nomogram that integrates clinical features and risk assessments. Finally, the expression levels of genes involved in the model were validated using qPCR (n = 8) and IHC (n = 16), thereby confirming the accuracy of our analysis. Conclusion This study enhances the understanding of dendritic cell heterogeneity in ESCC and its impact on patient prognosis. The insights gained from scRNA-seq and Bulk-RNA analysis contribute to the development of novel biomarkers and therapeutic targets. Our prognostic models based on DC-related gene signatures hold promise for improving ESCC patient stratification and guiding treatment decisions.
Collapse
Affiliation(s)
- Mengnan Shi
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
- Hebei Clinical Research Center for Digestive Diseases, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Han Zhang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Linnan Ma
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
- Hebei Clinical Research Center for Digestive Diseases, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Xiaoting Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
- Hebei Clinical Research Center for Digestive Diseases, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| | - Daqiang Sun
- Tianjin Chest Hospital, Tianjin University, Tianjin, China
| | - Zhijie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
- Hebei Clinical Research Center for Digestive Diseases, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Abe K, Kitago M, Matsuda S, Shinoda M, Yagi H, Abe Y, Oshima G, Hori S, Endo Y, Yokose T, Miura E, Kubota N, Ueno A, Masugi Y, Ojima H, Sakamoto M, Kitagawa Y. Epstein-Barr virus-associated inflammatory pseudotumor variant of follicular dendritic cell sarcoma of the liver: a case report and review of the literature. Surg Case Rep 2022; 8:220. [PMID: 36484868 PMCID: PMC9733763 DOI: 10.1186/s40792-022-01572-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Follicular dendritic cell sarcoma is a rare stromal tumor with no standard treatment. However, some reports have revealed that follicular dendritic cell sarcoma has an inflammatory pseudotumor variant associated with Epstein-Barr virus infection that has a relatively good prognosis. In this report, we present a case of a resected inflammatory pseudotumor variant of follicular dendritic cell sarcoma of the liver, and have reviewed the literature on the clinicopathological, molecular, and genomic features of this tumor. CASE PRESENTATION The inflammatory pseudotumor variant of follicular dendritic cell sarcoma originates only in the liver or spleen, causes no symptoms, and is more common in middle-aged Asian women. It has no characteristic imaging features, which partially explains why the inflammatory pseudotumor variant of follicular dendritic cell sarcoma is difficult to diagnose. Pathologically, the inflammatory pseudotumor variant of follicular dendritic cell sarcoma has spindle cells mixed with inflammatory cells and is variably positive for follicular dendritic cell markers (CD21, CD23, and CD35) and Epstein-Barr virus-encoded RNA. On genetic analysis, patients with this tumor high levels of latent membrane protein 1 gene expression and extremely low levels of host C-X-C Chemokine Receptor type 7 gene expression, indicating that the inflammatory pseudotumor variant of follicular dendritic cell sarcoma has a latent Epstein-Barr virus type 2 infection. CONCLUSIONS The inflammatory pseudotumor variant of follicular dendritic cell sarcoma is an Epstein-Barr virus-associated tumor and a favorable prognosis by surgical resection, similar to Epstein-Barr virus-associated gastric cancer.
Collapse
Affiliation(s)
- K. Abe
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - M. Kitago
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - S. Matsuda
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - M. Shinoda
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - H. Yagi
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Y. Abe
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - G. Oshima
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - S. Hori
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Y. Endo
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - T. Yokose
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - E. Miura
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - N. Kubota
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - A. Ueno
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Y. Masugi
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - H. Ojima
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - M. Sakamoto
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Y. Kitagawa
- grid.26091.3c0000 0004 1936 9959Department of Surgery, Keio University School of Medicine, Shinanomachi 35, Shinjuku-Ku, Tokyo, 160-8582 Japan
| |
Collapse
|
3
|
Functional Implications of Epstein-Barr Virus Lytic Genes in Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235780. [PMID: 36497262 PMCID: PMC9740547 DOI: 10.3390/cancers14235780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a diverse range of tumors of both lymphoid and epithelial origin. Similar to other herpesviruses, EBV displays a bipartite life cycle consisting of latent and lytic phases. Current dogma indicates that the latent genes are key drivers in the pathogenesis of EBV-associated cancers, while the lytic genes are primarily responsible for viral transmission. In recent years, evidence has emerged to show that the EBV lytic phase also plays an important role in EBV tumorigenesis, and the expression of EBV lytic genes is frequently detected in tumor tissues and cell lines. The advent of next generation sequencing has allowed the comprehensive profiling of EBV gene expression, and this has revealed the consistent expression of several lytic genes across various types of EBV-associated cancers. In this review, we provide an overview of the functional implications of EBV lytic gene expression to the oncogenic process and discuss possible avenues for future investigations.
Collapse
|
4
|
Wyżewski Z, Mielcarska MB, Gregorczyk-Zboroch KP, Myszka A. Virus-Mediated Inhibition of Apoptosis in the Context of EBV-Associated Diseases: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137265. [PMID: 35806271 PMCID: PMC9266970 DOI: 10.3390/ijms23137265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
- Correspondence: ; Tel.: +48-728-208-338
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
| |
Collapse
|
5
|
Viral Manipulation of the Host Epigenome as a Driver of Virus-Induced Oncogenesis. Microorganisms 2021; 9:microorganisms9061179. [PMID: 34070716 PMCID: PMC8227491 DOI: 10.3390/microorganisms9061179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Tumorigenesis due to viral infection accounts for a high fraction of the total global cancer burden (15–20%) of all human cancers. A comprehensive understanding of the mechanisms by which viral infection leads to tumor development is extremely important. One of the main mechanisms by which viruses induce host cell proliferation programs is through controlling the host’s epigenetic machinery. In this review, we dissect the epigenetic pathways through which oncogenic viruses can integrate their genome into host cell chromosomes and lead to tumor progression. In addition, we highlight the potential use of drugs based on histone modifiers in reducing the global impact of cancer development due to viral infection.
Collapse
|
6
|
Bayda N, Tilloy V, Chaunavel A, Bahri R, Halabi MA, Feuillard J, Jaccard A, Ranger-Rogez S. Comprehensive Epstein-Barr Virus Transcriptome by RNA-Sequencing in Angioimmunoblastic T Cell Lymphoma (AITL) and Other Lymphomas. Cancers (Basel) 2021; 13:610. [PMID: 33557089 PMCID: PMC7913808 DOI: 10.3390/cancers13040610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
The Epstein-Barr virus (EBV) is associated with angioimmunoblastic T cell lymphoma (AITL) in more than 80% of cases. Few studies have focused on this association and it is not clear now what role the virus plays in this pathology. We used next-generation sequencing (NGS) to study EBV transcriptome in 14 AITLs compared to 21 other lymphoma samples and 11 cell lines including 4 lymphoblastoid cell lines (LCLs). Viral transcripts were recovered using capture probes and sequencing was performed on Illumina. Bam-HI A rightward transcripts (BARTs) were the most latency transcripts expressed in AITLs, suggesting they may play a role in this pathology. Thus, BARTs, already described as highly expressed in carcinoma cells, are also very present in AITLs and other lymphomas. They were poorly expressed in cell lines other than LCLs. AITLs showed a latency IIc, with BNLF2a gene expression. For most AITLs, BCRF1, which encodes a homologous protein of human interleukin 10, vIL-10, was in addition expressed. This co-expression can contribute to immune escape and survival of infected cells. Considering these results, it can be assumed that EBV plays a pathogenic role in AITLs.
Collapse
Affiliation(s)
- Nader Bayda
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Department of Infectious Disease Control, Faculty of Public Health, Jinan University, Tripoli 1300, Lebanon
| | - Valentin Tilloy
- National Reference Center for Herpesviruses, Bioinformatics, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Alain Chaunavel
- Pathology Department, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Racha Bahri
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Mohamad Adnan Halabi
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
| | - Jean Feuillard
- Biological Hematology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France;
| | - Arnaud Jaccard
- Clinical Hematology Department, UMR CNRS 7276, INSERM U1262, University Hospital Dupuytren, 87042 Limoges, France;
| | - Sylvie Ranger-Rogez
- Microbiology Department, UMR CNRS 7276, INSERM U1262, Faculty of Pharmacy, 87025 Limoges, France; (N.B.); (R.B.); (M.A.H.)
- Virology Department, UMR CNRS 7276, INSERM U1262, Centre de Biologie Recherche et Santé, 87000 Limoges, France
| |
Collapse
|
7
|
Simoni Y, Becht E, Li S, Loh CY, Yeong JPS, Lim TKH, Takano A, Tan DSW, Newell EW. Partial absence of PD-1 expression by tumor-infiltrating EBV-specific CD8 + T cells in EBV-driven lymphoepithelioma-like carcinoma. Clin Transl Immunology 2020; 9:e1175. [PMID: 32995000 PMCID: PMC7503213 DOI: 10.1002/cti2.1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Lymphoepithelioma‐like carcinoma (LELC) is an uncommon lung cancer, typically observed in young, non‐smoking Asian populations. LELC is associated with Epstein–Barr virus (EBV) infection of lung tumor cells of epithelial origin, suggesting a carcinogenic role of EBV as observed in nasopharyngeal carcinoma (NPC). Here, we studied the antigen specificity and phenotype of EBV‐specific CD8+ T cells in blood and tumor of one LELC patient positive for EBV infection in lung tumor cells. Methods Using multiplex MHC class I tetramers, mass cytometry and mRNA sequencing, we studied EBV‐specific CD8+ T cells at the transcriptomic and phenotypic levels in blood and tumor tissues of the LELC patient. Results Lymphoepithelioma‐like carcinoma lung tumor cells were positive for EBV infection. In both blood and tumor tissues, we detected two populations of EBV‐specific CD8+ T cells targeting the EBV lytic cycle proteins: BRLF1 and BMLF1. Transcriptomic analyses of these two populations in the tumor, which can be considered as tumor‐specific, revealed their distinct exhausted profile and polyclonal TCR repertoire. High‐dimensional phenotypical analysis revealed the distinct phenotype of these cells between blood and tumor tissues. In tumor tissue, EBV‐specific CD8+ TILs were phenotypically heterogeneous, but consistently expressed CD39. Unexpectedly, although the LELC tumor cells expressed abundant PD‐L1, these tumor‐specific CD8+ tumor‐infiltrating lymphocytes (TILs) mostly did not express PD‐1. Conclusion Epstein–Barr virus‐specific CD8+ TILs in EBV‐driven tumor are heterogeneous and partially lack PD‐1 expression, suggesting that anti‐PD1/PD‐L1 immunotherapy may not be an appropriate strategy for disinhibiting EBV‐specific cells in the treatment of LELC patients.
Collapse
Affiliation(s)
- Yannick Simoni
- Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center Seattle WA USA.,Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore.,ImmunoScape Pte Ltd Singapore
| | - Etienne Becht
- Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center Seattle WA USA.,Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore
| | - Shamin Li
- Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center Seattle WA USA.,Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore
| | - Chiew Yee Loh
- Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore
| | - Joe Poh Sheng Yeong
- Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore.,Department of Anatomical Pathology Singapore General Hospital Singapore General Hospital Singapore
| | - Tony Kiat Hon Lim
- Department of Anatomical Pathology Singapore General Hospital Singapore General Hospital Singapore
| | - Angela Takano
- Department of Anatomical Pathology Singapore General Hospital Singapore General Hospital Singapore
| | - Daniel Shao Weng Tan
- Division of Medical Oncology National Cancer Centre Singapore (NCCS) Singapore.,Agency for Science, Technology and Research (ASTAR) Genome Institute of Singapore (GIS) Singapore
| | - Evan W Newell
- Vaccine and Infectious Disease Division Fred Hutchinson Cancer Research Center Seattle WA USA.,Agency for Science, Technology and Research Singapore (ASTAR) Singapore Immunology Network (SIgN) Singapore.,Senior Corresponding Author
| |
Collapse
|
8
|
Miliotis CN, Slack FJ. Multi-layered control of PD-L1 expression in Epstein-Barr virus-associated gastric cancer. ACTA ACUST UNITED AC 2020; 6. [PMID: 34212113 PMCID: PMC8244904 DOI: 10.20517/2394-4722.2020.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide. In approximately 10% of GC cases, cancer cells show ubiquitous and monoclonal Epstein-Barr virus (EBV) infection. A significant feature of EBV-associated GC (EBVaGC) is high lymphocytic infiltration and high expression of immune checkpoint proteins, including programmed death-ligand 1 (PD-L1). This highlights EBVaGC as a strong candidate for immune checkpoint blockade therapy. Indeed, several recent studies have shown that EBV positivity in GC correlates with positive response to programmed cell death protein 1 (PD-1)/PD-L1 blockade therapy. Understanding the mechanisms that control PD-L1 expression in EBVaGC can indicate new predictive biomarkers for immunotherapy, as well as therapeutic targets for combination therapy. Various mechanisms have been implicated in PD-L1 expression regulation, including structural variations, post-transcriptional control, oncogenic activation of intrinsic signaling pathways, and increased sensitivity to extrinsic signals. This review provides the most recent updates on the multilayered control of PD-L1 expression in EBVaGC.
Collapse
Affiliation(s)
- Christos N Miliotis
- HMS Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Sadato D, Ogawa M, Hirama C, Hishima T, Horiguchi S, Harada Y, Shimoyama T, Itokawa M, Ohashi K, Oboki K. Potential prognostic impact of EBV RNA-seq reads in gastric cancer: a reanalysis of The Cancer Genome Atlas cohort. FEBS Open Bio 2020; 10:455-467. [PMID: 31991047 PMCID: PMC7050242 DOI: 10.1002/2211-5463.12803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC), whose prognosis remains controversial, is diagnosed by in situ hybridization of EBV-derived EBER1/2 small RNAs. In The Cancer Genome Atlas (TCGA) Stomach Adenocarcinoma (STAD) project, the EBV molecular subtype was determined through a combination of multiple next-generation sequencing methods, but not by the gold standard in situ hybridization method. This leaves unanswered questions regarding the discordance of EBV positivity detected by different approaches and the threshold of sequencing reads. Therefore, we reanalyzed the TCGA-STAD RNA sequencing (RNA-seq) dataset including 375 tumor and 32 normal samples, using our analysis pipeline. We defined a reliable threshold for EBV-derived next-generation sequencing reads by mapping them to the EBV genome with three different random arbitrary alignments. We analyzed the prognostic impact of EBV status on the histopathological subtypes of gastric cancer. EBV-positive cases identified by reanalysis comprised nearly half of the cases (49.6%) independent from infiltrating lymphocyte signatures, and showed significantly longer overall survival for adenocarcinomas of the 'not-otherwise-specified' type [P = 0.016 (log-rank test); hazard ratios (HR): 0.476; 95% CI: 0.260-0.870, P = 0.016 (Cox univariate analysis)], but shorter overall survival for the tubular adenocarcinoma type [P = 0.005 (log-rank test); HR: 3.329; 95% CI: 1.406-7.885, P = 0.006 (Cox univariate analysis)]. These results demonstrate that the EBV positivity rates were higher when determined by RNA-seq than when determined by EBER1/2 in situ hybridization. The RNA-seq-based EBV positivity demonstrated distinct results for gastric cancer prognosis depending on the histopathological subtype, suggesting its potential to be used in clinical prognoses.
Collapse
Affiliation(s)
- Daichi Sadato
- Division of HematologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
- Divisions of Clinical Research SupportTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo-kuJapan
| | - Mina Ogawa
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
- Divisions of Clinical Research SupportTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo-kuJapan
- Department of Medical OncologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Chizuko Hirama
- Division of HematologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
- Divisions of Clinical Research SupportTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo-kuJapan
| | - Tsunekazu Hishima
- Department of PathologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Shin‐Ichiro Horiguchi
- Department of PathologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Yuka Harada
- Divisions of Clinical Research SupportTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo-kuJapan
| | - Tatsu Shimoyama
- Department of Medical OncologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Masanari Itokawa
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
| | - Kazuteru Ohashi
- Division of HematologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalBunkyo‐kuJapan
| | - Keisuke Oboki
- Center for Medical Research CooperationTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuJapan
| |
Collapse
|