1
|
Shannon DM, Richardson N, Lahondère C, Peach D. Mosquito floral visitation and pollination. CURRENT OPINION IN INSECT SCIENCE 2024; 65:101230. [PMID: 38971524 DOI: 10.1016/j.cois.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
We often consider mosquitoes through an 'anthropocentric lens' that disregards their interactions with nonhuman and nonpathogenic organisms, even though these interactions can be harnessed for mosquito control. Mosquitoes have been recognized as floral visitors, and pollinators, for more than a century. However, we know relatively little about mosquito-plant interactions, excepting some nutrition and chemical ecology-related topics, compared with mosquito-host interactions, and frequently use flawed methodology when investigating them. Recent work demonstrates mosquitoes use multimodal sensory cues to locate flowers, including ultraviolet visual cues, and we may underestimate mosquito pollination. This review focuses on current knowledge of how mosquitoes locate flowers, floral visitation assay methodology, mosquito pollination, and implications for technologies such as sterile male mosquito release through genetic control programs or Wolbachia infection.
Collapse
Affiliation(s)
- Danica M Shannon
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Nalany Richardson
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Fralin Life Science Institute Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Daniel Peach
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; Precision One Health Initiative, University of Georgia, University of Georgia, Athens, GA 30602, USA; Center for the Ecology of Infectious Diseases, University of Georgia, University of Georgia, Athens, GA 30602, USA; Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada.
| |
Collapse
|
2
|
Sobhy IS, Berry C. Chemical ecology of nectar-mosquito interactions: recent advances and future directions. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101199. [PMID: 38588943 DOI: 10.1016/j.cois.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Mosquitoes, males and females, rely on sugar-rich resources, including floral nectar as a primary source of sugar to meet their energy and nutritional needs. Despite advancements in understanding mosquito host-seeking and blood-feeding preferences, significant gaps in our knowledge of the chemical ecology mediating mosquito-nectar associations remain. The influence of such association with nectar on mosquito behavior and the resulting effects on their fitness are also not totally understood. It is significant that floral nectar frequently acts as a natural habitat for various microbes (e.g. bacteria and yeast), which substantially alter nectar characteristics, influencing the nutritional ecology of flower-visiting insects, such as mosquitoes. The role of nectar-inhabiting microbes in shaping the nectar-mosquito interactions remains, however, under-researched. This review explores recent advances in understanding the role of such multitrophic interactions on the fitness and life history traits of mosquitoes and outlines future directions for research toward their control as disease vectors.
Collapse
Affiliation(s)
- Islam S Sobhy
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Colin Berry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| |
Collapse
|
3
|
Peach DAH. Mosquito Pollination and Sugar Detection Methods: An Overview. Cold Spring Harb Protoc 2024; 2024:107666. [PMID: 36972953 DOI: 10.1101/pdb.top107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The interactions between mosquitoes and plants and, particularly, between mosquitoes and plant sugars from flowers and other structures are often overlooked and are vastly underresearched compared to mosquito-vertebrate or mosquito-pathogen interactions. Given the importance of mosquito nectar-feeding behavior, as well as its impact on vectorial capacity and its implications for vector suppression, a better understanding of mosquito-plant interactions is needed. Direct observation of mosquitoes visiting plants to obtain sugar and other nutrients can be difficult because females may leave flowers to seek a blood meal from the observer, but this can be overcome with the right experimental procedures. This article discusses methods for the detection of sugar in mosquitoes and for assessing mosquito pollination.
Collapse
Affiliation(s)
- Daniel A H Peach
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
4
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
5
|
Ravi S, Stephanos K, Carlson JC. Pairing patient photographs of arthropods with expert identification to uncover causes of bites and stings. Toxicon 2023; 236:107332. [PMID: 37939907 DOI: 10.1016/j.toxicon.2023.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
BugGuide.net is a website where arthropod photographs submitted by the public are identified by professional and amateur entomologists. In April 2023 posts containing "bitten" or "stung" were reviewed. Of 39 verified bites, 10 were blood-feeding insects. Others included 9 Heteroptera, 6 spiders, 6 lacewings. 110 posts of stings included 44 social Hymenoptera, 33 solitary Hymenoptera, 5 Heteroptera, 20 caterpillars and 4 scorpions. Injury from lacewing larvae, true bugs, solitary Hymenoptera and caterpillars was unexpectedly common.
Collapse
Affiliation(s)
- Sowmya Ravi
- Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Katarina Stephanos
- Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - John C Carlson
- Ochsner Health System, 1514 Jefferson Hwy, New Orleans, LA, 70121, USA.
| |
Collapse
|
6
|
Sasidharan R, Junker RR, Eilers EJ, Müller C. Floral volatiles evoke partially similar responses in both florivores and pollinators and are correlated with non-volatile reward chemicals. ANNALS OF BOTANY 2023; 132:1-14. [PMID: 37220889 PMCID: PMC10550281 DOI: 10.1093/aob/mcad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.
Collapse
Affiliation(s)
- Rohit Sasidharan
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Robert R Junker
- Department of Biology, Evolutionary Ecology of Plants, University of Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Department of Environment and Biodiversity, University of Salzburg, Kapitalgasse 4-6, 5020 Salzburg, Austria
| | - Elisabeth J Eilers
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
- CTL GmbH Bielefeld, Krackser Straße 12, 33659 Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Nikbakhtzadeh MR. A synthetic lure for Anopheles gambiae (Diptera: Culicidae) based on the attractive plant Parthenium hysterophorus. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:899-909. [PMID: 37364179 PMCID: PMC10848229 DOI: 10.1093/jme/tjad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Sugar is the sole diet for male mosquitoes and a complementary meal for females. Searching for natural sources of sugar is mediated by semiochemicals. Floral nectars, extra floral nectaries, damaged tissues of plants and rotten fruits are the most common sources of sugar in nature. I provide laboratory evidence of the high attraction of Parthenium hysterophorus L., a weed that grows in tropical climates, to Anopheles gambiae Giles. This study has tried to identify the chemicals which might be involved in the chemical attraction of A. gambiae to this plant. Using quantitative GC-MS analysis, α-pinene, camphene, 1-octen-3-ol, β-pinene, cis-β-ocimene, bornyl acetate, α-caryophyllene, hexadecanoic acid, and α-linolenic acid were identified as the main constituents of P. hysterophorus volatiles. Successive olfactory assays helped a better understanding of the more attractive chemicals of P. hysterophorus to A. gambiae which was the basis for testing a possible synthetic blend. Olfactory experiments proved this synthetic blend to be as attractive as Parthenium intact plants for A. gambiae. A minimal blend, consisting of only α-pinene, camphene, and cis-β-ocimene, was also produced and laboratory experiments indicated its relative attraction for A. gambiae. This blend can be tested in the attractive toxic sugar bait stations for sampling, surveillance, or control programs of mosquitoes in tropical Africa, where A. gambiae sensu stricto transfer malaria among residents.
Collapse
Affiliation(s)
- Mahmood R Nikbakhtzadeh
- Department of Health Science & Human Ecology, California State University, San Bernardino, San Bernardino, CA, USA
| |
Collapse
|
8
|
Dahake A, Raguso RA, Goyret J. Context and the functional use of information in insect sensory ecology. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101058. [PMID: 37217002 DOI: 10.1016/j.cois.2023.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Context-specific behaviors emerge from the interaction between an animal's internal state and its external environment. Although the importance of context is acknowledged in the field of insect sensory ecology, there is a lack of synthesis on this topic stemming from challenges in conceptualizing 'context'. We address this challenge by gleaning over the recent findings on the sensory ecology of mosquitoes and other insect pollinators. We discuss internal states and their temporal dynamics, from those lasting minutes to hours (host-seeking) to those lasting days to weeks (diapause, migration). Of the many patterns reviewed, at least three were common to all taxa studied. First, different sensory cues gain prominence depending on the insect's internal state. Second, similar sensory circuits between related species can result in different behavioral outcomes. And third, ambient conditions can dramatically alter internal states and behaviors.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Joaquin Goyret
- Department of Biological Sciences, University of Tennessee Martin, Martin, TN, USA.
| |
Collapse
|
9
|
Shah S, Ilyas M, Li R, Yang J, Yang FL. Microplastics and Nanoplastics Effects on Plant-Pollinator Interaction and Pollination Biology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6415-6424. [PMID: 37068375 DOI: 10.1021/acs.est.2c07733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Microplastics and nanoplastics (MNPs) contamination is an emerging environmental and public health concern, and these particles have been reported both in aquatic and terrestrial ecosystems. Recent studies have expanded our understanding of the adverse effects of MNPs pollution on human, terrestrial, and aquatic animals, insects, and plants. In this perspective, we describe the adverse effects of MNPs particles on pollinator and plant health and discuss the mechanisms by which MNPs disrupt the pollination process. We discuss the evidence and integrate transcriptome studies to investigate the negative effects of MNPs on the molecular biology of pollination, which may cause delay or inhibit the pollination services. We conclude by addressing challenges to plant-pollinator health from MNPs pollution and argue that such harmful effects disrupt the communication between plant and pollinator for a successful pollination process.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Muhammad Ilyas
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China
- Chinese Academy of Sciences, 100045 Beijing, China
| | - Rui Li
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666316 Menglun, China
| | - Feng-Lian Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| |
Collapse
|
10
|
Salzman S, Dahake A, Kandalaft W, Valencia-Montoya WA, Calonje M, Specht CD, Raguso RA. Cone humidity is a strong attractant in an obligate cycad pollination system. Curr Biol 2023; 33:1654-1664.e4. [PMID: 37015222 DOI: 10.1016/j.cub.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023]
Abstract
Studies of pollination biology often focus on visual and olfactory aspects of attraction, with few studies addressing behavioral responses and morphological adaptation to primary metabolic attributes. As part of an in-depth study of obligate nursery pollination of cycads, we find that Rhopalotria furfuracea weevils show a strong physiological response and behavioral orientation to the cone humidity of the host plant Zamia furfuracea in an equally sensitive manner to their responses to Z. furfuracea-produced cone volatiles. Our results demonstrate that weevils can perceive fine-scale differences in relative humidity (RH) and that individuals exhibit a strong behavioral preference for higher RH in binary choice assays. Host plant Z. furfuracea produces a localized cloud of higher than ambient humidity around both pollen and ovulate cones, and R. furfuracea weevils preferentially land at the zone of maximum humidity on ovulate cones, i.e., the cracks between rows of megasporophylls that provide access to the ovules. Moreover, R. furfuracea weevils exhibit striking antennal morphological traits associated with RH perception, suggesting the importance of humidity sensing in the evolution of this insect lineage. Results from this study suggest that humidity functions in a signal-like fashion in this highly specialized pollination system and help to characterize a key pollination-mediating trait in an ancient plant lineage.
Collapse
Affiliation(s)
- Shayla Salzman
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA.
| | - Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - William Kandalaft
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | | | - Chelsea D Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Dahake A, Jain P, Vogt CC, Kandalaft W, Stroock AD, Raguso RA. A signal-like role for floral humidity in a nocturnal pollination system. Nat Commun 2022; 13:7773. [PMID: 36522313 PMCID: PMC9755274 DOI: 10.1038/s41467-022-35353-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Previous studies have considered floral humidity to be an inadvertent consequence of nectar evaporation, which could be exploited as a cue by nectar-seeking pollinators. By contrast, our interdisciplinary study of a night-blooming flower, Datura wrightii, and its hawkmoth pollinator, Manduca sexta, reveals that floral relative humidity acts as a mutually beneficial signal in this system. The distinction between cue- and signal-based functions is illustrated by three experimental findings. First, floral humidity gradients in Datura are nearly ten-fold greater than those reported for other species, and result from active (stomatal conductance) rather than passive (nectar evaporation) processes. These humidity gradients are sustained in the face of wind and are reconstituted within seconds of moth visitation, implying substantial physiological costs to these desert plants. Second, the water balance costs in Datura are compensated through increased visitation by Manduca moths, with concomitant increases in pollen export. We show that moths are innately attracted to humid flowers, even when floral humidity and nectar rewards are experimentally decoupled. Moreover, moths can track minute changes in humidity via antennal hygrosensory sensilla but fail to do so when these sensilla are experimentally occluded. Third, their preference for humid flowers benefits hawkmoths by reducing the energetic costs of flower handling during nectar foraging. Taken together, these findings suggest that floral humidity may function as a signal mediating the final stages of floral choice by hawkmoths, complementing the attractive functions of visual and olfactory signals beyond the floral threshold in this nocturnal plant-pollinator system.
Collapse
Affiliation(s)
- Ajinkya Dahake
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA.
| | - Piyush Jain
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Caleb C Vogt
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - William Kandalaft
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Abraham D Stroock
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Raguso
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Tucker KR, Steele CH, McDermott EG. Aedes aegypti (L.) and Anopheles stephensi Liston (Diptera: Culicidae) Susceptibility and Response to Different Experimental Formulations of a Sodium Ascorbate Toxic Sugar Bait. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1710-1720. [PMID: 35861727 DOI: 10.1093/jme/tjac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Attractive toxic sugar baits (ATSBs) require target insects to locate, orient toward, and feed on an insecticidal sugar solution to control populations. Formulating these baits with different attractants and phagostimulants can increase their efficacy by causing insects to choose the ATSB over competing natural sugar sources, and to ingest more of the bait solution. We tested formulations of a 20% sodium ascorbate (SA) ATSB solution using different sugars, adenosine triphosphate (ATP), gallic acid, and six plant volatile compounds to determine their effect on adult Aedes aegypti (L.) and Anopheles stephensi Liston mortality. Baits formulated with fructose or sucrose had no effect on either species, neither did the addition of ATP. Gallic acid increased the survival of Ae. aegypti. Four of the six volatile compounds increased mortality in at least one species. We also examined An. stephensi response to baits formulated with each of the six volatile compounds. Anisaldehyde significantly increased the number of mosquitoes responding toward the SA-ATSB, but increasing the amount had no effect. Addition of anisaldehyde also significantly increased An. stephensi feeding rates on the SA-ATSB, though mosquitoes will avoid the toxic bait if a nontoxic sugar source is available. Formulation of SA-ATSBs with synthetic blends of attractive compounds can increase bait efficacy and consistency, though further research is needed to assess their performance in the field in the presence of natural sugar sources.
Collapse
Affiliation(s)
- Katherine R Tucker
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cassandra H Steele
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Emily G McDermott
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
13
|
Renyard A, Gries R, Cooper SL, Gooding CE, Breen JC, Alamsetti SK, Munoz A, Gries G. Floral and Bird Excreta Semiochemicals Attract Western Carpenter Ants. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.923871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ant colonies have vast and diverse nutritional needs but forager ants have limited mobility to meet these needs. Forager ants would accrue significant energy savings if they were able to sense and orient toward odor plumes of both carbohydrate and protein food sources. Moreover, if worker ants, like other flightless insects, had reduced olfactory acuity, they would not recognize the specific odor signatures of diverse carbohydrate and protein sources, but they may be able to orient toward those odorants that are shared between (macronutrient) food sources. Using the Western carpenter ant, Camponotus modoc, as a model species, we tested the hypotheses that (1) food sources rich in carbohydrates (aphid honeydew, floral nectar) and rich in proteins (bird excreta, house mouse carrion, cow liver infested or not with fly maggots) all prompt long-distance, anemotactic attraction of worker ants, and (2) attraction of ants to plant inflorescences (fireweed, Chamaenerion angustifolium; thimbleberry, Rubus parviflorus; and hardhack, Spiraea douglasii) is mediated by shared floral odorants. In moving-air Y-tube olfactometer bioassays, ants were attracted to two of four carbohydrate sources (thimbleberry and fireweed), and one of four protein sources (bird excreta). Headspace volatiles of these three attractive sources were analyzed by gas chromatography-mass spectrometry, and synthetic odor blends of thimbleberry (7 components), fireweed (23 components), and bird excreta (38 components) were prepared. In Y-tube olfactometer bioassays, synthetic blends of thimbleberry and fireweed but not of bird excreta attracted ants, indicating that only the two floral blends contained all essential attractants. A blend of components shared between thimbleberry and fireweed was not attractive to ants. Our data support the conclusion that C. modoc worker ants can sense and orient toward both carbohydrate and protein food sources. As ants were selective in their responses to carbohydrate and protein resources, it seems that they can discern between specific food odor profiles and that they have good, rather than poor, olfactory acuity.
Collapse
|
14
|
Hutcheson RP, Ebrahimi B, Njiru BN, Foster WA, Jany W. Attraction of the Mosquitoes Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to a 3-Part Phytochemical Blend in a Mesocosm. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:440-445. [PMID: 34919131 PMCID: PMC8924971 DOI: 10.1093/jme/tjab195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 06/14/2023]
Abstract
Aedes aegypti (L.) and Aedes albopictus (Skuse) mosquitoes of both sexes were attracted to a 3-part volatile synthetic phytochemical blend but differed according to their component ratios, 7:3:2 or 1:1:1, and their initial concentrations. These arbovirus vectors were presented with the blends as baits in paired baited and blank CFG traps in a large greenhouse mesocosm. Ae. aegypti attraction was highest at a 7:3:2 blend ratio, but at a concentration half that found most effective for an anopheline mosquito species in outdoor screenhouses. Both lower and higher concentrations yielded substantially lower attraction scores for Ae. aegypti. By contrast, the few tests conducted on Ae. albopictus showed that it was not as sensitive to concentration, but again it was more responsive to the 7:3:2 ratio of components than to the 1:1:1 ratio. The two sexes of both species were represented equally in the trap catches, indicating the potential value of this and similar attractive blends for population surveillance and control of Aedes mosquitoes.
Collapse
Affiliation(s)
- Robert P Hutcheson
- Department of Entomology and Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, OH, 43210, USA
| | - Babak Ebrahimi
- Department of Entomology and Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, OH, 43210, USA
| | - Basilio N Njiru
- Thomas Odhiambo Campus, International Centre of Insect Physiology and Ecology, Mbita Point, Nyanza, Kenya
| | - Woodbridge A Foster
- Department of Entomology and Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, OH, 43210, USA
| | - William Jany
- Clarke International LLC, St. Charles, IL, 60174, USA
| |
Collapse
|
15
|
Amos BA, Hoffmann AA, Staunton KM, Lau MJ, Burkot TR, Ross PA. Long-Range But Not Short-Range Attraction of Male Aedes aegypti (Diptera: Culicidae) Mosquitoes to Humans. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:83-88. [PMID: 34559241 DOI: 10.1093/jme/tjab164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Female Aedes aegypti (Linnaeus) mosquitoes integrate multiple sensory cues to locate human hosts for blood meals. Although male Ae. aegypti swarm around and land on humans in nature to mate, direct evidence of attraction to humans is limited. Male mosquito attraction to human host cues is often undetectable in confined laboratory assays, leading to a misconception that male mosquitoes are not attracted to humans. We used semifield experiments to demonstrate robust attraction of male Ae. aegypti to humans. Human-baited traps captured up to 25% of released males within 15 min, whereas control traps without humans as bait failed to capture males. Rapid attraction to humans was further demonstrated through videography. Males swarmed around and landed on human subjects, with no activity recorded in paired unbaited controls. Finally, we confirm the lack of discernible male attraction to humans in small laboratory cages. Our experiments demonstrate that both male and female Ae. aegypti show attraction to humans, but with clear sex-specific behavioral differences at short-range. Male mosquito attraction to humans is likely to be important for mating success in wild populations and its basis should be further explored. Our results highlight the importance of arena size and assay design for mosquito behavioral research. A better understanding of host cues that attract males could help us to improve mosquito surveillance and control.
Collapse
Affiliation(s)
- Brogan A Amos
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kyran M Staunton
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas R Burkot
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Ortega-Insaurralde I, Barrozo RB. The closer the better: Sensory tools and host-association in blood-sucking insects. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104346. [PMID: 34896372 DOI: 10.1016/j.jinsphys.2021.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Many hematophagous insects acquire medical and veterinary relevance because they transmit disease causing pathogens to humans. Hematophagy is only fulfilled once a blood feeder successfully locates a vertebrate host by means of fine sensory systems. In nature, blood-sucking insects can exploit environments with differential association with their hosts. Given the relevance of the sensory systems during host searching, we review the current state of knowledge of the sensory machinery of four blood-sucking insects: human lice, bed bugs, kissing bugs and mosquitoes. Each one is representative of highly anthropophilic behaviours and a different degree of association with human hosts. We compare the number, arrangement and functional type of cuticular sensory structures dispersed on the main sensory organs. We also compare the genetic machinery potentially involved in the detection of host stimuli. Finally, we discuss the sensory diversity of the insects studied here.
Collapse
Affiliation(s)
- Isabel Ortega-Insaurralde
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto Biodiversidad y Biología Experimental y Aplicada (IBBEA, UBA-CONICET), Departamento Biodiversidad y Biología Experimental (DBBE), Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Romina B Barrozo
- Grupo de Neuroetología de Insectos Vectores, Laboratorio Fisiología de Insectos, Instituto Biodiversidad y Biología Experimental y Aplicada (IBBEA, UBA-CONICET), Departamento Biodiversidad y Biología Experimental (DBBE), Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Meraj S, Mohr E, Ketabchi N, Bogdanovic A, Lowenberger C, Gries G. Time- and tissue-specific antimicrobial activity of the common bed bug in response to blood feeding and immune activation by bacterial injection. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104322. [PMID: 34644597 DOI: 10.1016/j.jinsphys.2021.104322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Unlike almost all hematophagous insects, common bed bugs, Cimex lectularius, are not known to transmit pathogens to humans. To help unravel the reasons for their lack of vector competence, we studied the time- and tissue-dependent expression of innate immune factors after blood feeding or immune activation through the intrathoracic injection of bacteria. We used minimum inhibitory concentration (MIC1) bioassays and the Kirby-Bauer protocol to evaluate antimicrobial peptide (AMP2) activity in tissue extracts from the midguts or 'rest of body' (RoB3) tissues (containing hemolymph and fat body AMPs) against Gram-positive and Gram-negative bacteria. We compared AMP activity between blood-fed female bed bugs and yellow fever mosquitoes, Aedes aegypti and determined how female and male bed bugs respond to immune challenges, and how long AMP gene expression remains elevated in bed bugs following a blood meal. Blood meal-induced AMP activity is 4-fold stronger in female bed bugs than in female mosquitoes. Male bed bugs have elevated AMP activity within 8 h of a blood meal or an intrathoracic injection with bacteria, with the strongest activity expressed in RoB tissue 24 h after the immune challenge. Female bed bugs have a stronger immune response than males within 24 h of a blood meal. The effects of blood meal-induced elevated AMP activity lasts longer against the Gram-positive bacterium, Bacillus subtilis, than against the Gram-negative bacterium Escherichia coli. Unravelling the specific immune pathways that are activated in the bed bugs' immune responses and identifying the bed bug-unique AMPs might help determine why these insects are not vectors of human parasites.
Collapse
Affiliation(s)
- Sanam Meraj
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada.
| | - Emerson Mohr
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Negin Ketabchi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Anastasia Bogdanovic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| |
Collapse
|
18
|
Peach DAH, Carroll C, Meraj S, Gomes S, Galloway E, Balcita A, Coatsworth H, Young N, Uriel Y, Gries R, Lowenberger C, Moore M, Gries G. Nectar-dwelling microbes of common tansy are attractive to its mosquito pollinator, Culex pipiens L. BMC Ecol Evol 2021; 21:29. [PMID: 33593286 PMCID: PMC7885224 DOI: 10.1186/s12862-021-01761-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 11/14/2022] Open
Abstract
Background There is widespread interkingdom signalling between insects and microbes. For example, microbes found in floral nectar may modify its nutritional composition and produce odorants that alter the floral odor bouquet which may attract insect pollinators. Mosquitoes consume nectar and can pollinate flowers. We identified microbes isolated from nectar of common tansy, Tanacetum vulgare, elucidated the microbial odorants, and tested their ability to attract the common house mosquito, Culex pipiens. Results We collected 19 microbial isolates from T. vulgare nectar, representing at least 12 different taxa which we identified with 16S or 26S rDNA sequencing as well as by biochemical and physiological tests. Three microorganisms (Lachancea thermotolerans, Micrococcus lactis, Micrococcus luteus) were grown on culture medium and tested in bioassays. Only the yeast L. thermotolerans grown on nectar, malt extract agar, or in synthetic nectar broth significantly attracted Cx. pipiens females. The odorant profile produced by L. thermotolerans varied with the nutritional composition of the culture medium. All three microbes grown separately, but presented concurrently, attracted fewer Cx. pipiens females than L. thermotolerans by itself. Conclusions Floral nectar of T. vulgare contains various microbes whose odorants contribute to the odor profile of inflorescences. In addition, L. thermotolerans produced odorants that attract Cx. pipiens females. As the odor profile of L. thermotolerans varied with the composition of the culture medium, we hypothesize that microbe odorants inform nectar-foraging mosquitoes about the availability of certain macro-nutrients which, in turn, affect foraging decisions by mosquitoes.
Collapse
Affiliation(s)
- D A H Peach
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada. .,The University of British Columbia, 2329 West Mall, Vancouver, BC, Canada.
| | - C Carroll
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - S Meraj
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - S Gomes
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - E Galloway
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - A Balcita
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.,University of Saskatchewan, 129-72 Campus Drive, Saskatoon, SK, Canada
| | - H Coatsworth
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.,Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL, USA
| | - N Young
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Y Uriel
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - R Gries
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - C Lowenberger
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - M Moore
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - G Gries
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| |
Collapse
|
19
|
An updated antennal lobe atlas for the yellow fever mosquito Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0008729. [PMID: 33079925 PMCID: PMC7575095 DOI: 10.1371/journal.pntd.0008729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti is a prolific vector of arboviral and filarial diseases that largely relies on its sense of smell to find humans. To facilitate in-depth analysis of the neural circuitry underlying Ae. aegypti olfactory-driven behaviors, we generated an updated in vitro atlas for the antennal lobe olfactory brain region of this disease vector using two independent neuronal staining methods. We performed morphological reconstructions with replicate fixed, dissected and stained brain samples from adult male and female Ae. aegypti of the LVPib12 genome reference strain and determined that the antennal lobe in both sexes is comprised of approximately 80 discrete glomeruli. Guided by landmark features in the antennal lobe, we found 63 of these glomeruli are stereotypically located in spatially invariant positions within these in vitro preparations. A posteriorly positioned, mediodorsal glomerulus denoted MD1 was identified as the largest spatially invariant glomerulus in the antennal lobe. Spatial organization of glomeruli in a recently field-derived strain of Ae. aegypti from Puerto Rico was conserved, despite differences in antennal lobe shape relative to the inbred LVPib12 strain. This model in vitro atlas will serve as a useful community resource to improve antennal lobe annotation and anatomically map projection patterns of neurons expressing target genes in this olfactory center. It will also facilitate the development of chemotopic maps of odor representation in the mosquito antennal lobe to decode the molecular and cellular basis of Ae. aegypti attraction to human scent and other chemosensory cues. The olfactory system of the yellow fever mosquito Aedes aegypti is highly tuned for the detection of human odorants, as well as other chemical cues influencing host and food-search behavior, egg-laying and mating. To provide insights into the neuroanatomical organization of the olfactory system of this globally important disease vector, we have generated an updated in vitro atlas for the primary smell processing center of the Ae. aegypti brain, called the antennal lobe. These new guide maps facilitate systematic interrogation of antennal lobe morphology and naming of associated substructures in dissected brain samples of this species labeled with two common neural staining methods. We report that landmark features of the Ae. aegypti antennal lobe morphology and spatial organization appear conserved between mosquito sexes and across geographically divergent strains of this mosquito species. An improved understanding of Ae. aegypti antennal lobe neuroanatomy and how attractive or repellent odorant stimuli are encoded in this brain center has the potential to rapidly accelerate reverse engineering of synthetic chemical blends that effectively lure, confuse or repel this major disease vector.
Collapse
|
20
|
Kemibala EE, Mafra-Neto A, Saroli J, Silva R, Philbert A, Ng'habi K, Foster WA, Dekker T, Mboera LEG. Is Anopheles gambiae attraction to floral and human skin-based odours and their combination modulated by previous blood meal experience? Malar J 2020; 19:318. [PMID: 32873302 PMCID: PMC7466419 DOI: 10.1186/s12936-020-03395-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/26/2020] [Indexed: 11/21/2022] Open
Abstract
Background Mosquitoes use odours to find energy resources, blood hosts and oviposition sites. While these odour sources are normally spatio-temporally segregated in a mosquito’s life history, here this study explored to what extent a combination of flower- and human-mimicking synthetic volatiles would attract the malaria vector Anopheles gambiae sensu stricto (s.s.) Methods In the laboratory and in large (80 m2) outdoor cages in Tanzania, nulliparous and parous A. gambiae s.s. were offered choices between a blend of human skin volatiles (Skin Lure), a blend of floral volatiles (Vectrax), or a combination thereof. The blends consisted of odours that induce distinct, non-overlapping activation patterns in the olfactory circuitry, in sensory neurons expressing olfactory receptors (ORs) and ionotropic receptors (IRs), respectively. Catches were compared between treatments. Results In the laboratory nulliparous and parous mosquitoes preferred skin odours and combinations thereof over floral odours. However, in semi-field settings nulliparous were significantly more caught with floral odours, whereas no differences were observed for parous females. Combining floral and human volatiles did not augment attractiveness. Conclusions Nulliparous and parous A. gambiae s.s. are attracted to combinations of odours derived from spatio-temporally segregated resources in mosquito life-history (floral and human volatiles). This is favourable as mosquito populations are comprised of individuals whose nutritional and developmental state steer them to diverging odours sources, baits that attract irrespective of mosquito status could enhance overall effectiveness and use in monitoring and control. However, combinations of floral and skin odours did not augment attraction in semi-field settings, in spite of the fact that these blends activate distinct sets of sensory neurons. Instead, mosquito preference appeared to be modulated by blood meal experience from floral to a more generic attraction to odour blends. Results are discussed both from an odour coding, as well as from an application perspective.
Collapse
Affiliation(s)
- Elison E Kemibala
- Ministry of Health, Community Development, Gender, Elderly and Children, Vector Control Training Centre, P.O. Box 136, Muheza, Tanzania. .,University of Dar es Salaam, Dar es Salaam, Tanzania.
| | | | - Jesse Saroli
- ISCA Technologies, 1230, West Spring St, Riverside, CA, 92507, USA
| | - Rodrigo Silva
- ISCA Technologies, 1230, West Spring St, Riverside, CA, 92507, USA
| | | | - Kija Ng'habi
- University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Woodbridge A Foster
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Department of Entomology, The Ohio State University, Columbus, OH, USA
| | - Teun Dekker
- Swedish University of Agricultural Sciences, Alnarp, Uppsala, Sweden.,BioInnovate AB, Lund, Sweden
| | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
21
|
Abstract
Pollination is the transfer of pollen grains from the stamens to the stigma, an essential requirement of sexual reproduction in flowering plants. Cross-pollination increases genetic diversity and is favored by selection in the majority of situations. Flowering plants have evolved a wide variety of traits that influence pollination success, including those involved in optimization of self-pollination, attraction of animal pollinators, and the effective use of wind pollination. In this review we discuss our current understanding of the molecular basis of the development and production of these various traits. We conclude that recent integration of molecular developmental studies with population genetic approaches is improving our understanding of how selection acts on key floral traits in taxonomically diverse species, and that further work in nonmodel systems promises to provide exciting insights in the years to come.
Collapse
Affiliation(s)
- Róisín Fattorini
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| |
Collapse
|
22
|
Wooding M, Naudé Y, Rohwer E, Bouwer M. Controlling mosquitoes with semiochemicals: a review. Parasit Vectors 2020; 13:80. [PMID: 32066499 PMCID: PMC7027039 DOI: 10.1186/s13071-020-3960-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
The use of semiochemicals in odour-based traps for surveillance and control of vector mosquitoes is deemed a new and viable component for integrated vector management programmes. Over 114 semiochemicals have been identified, yet implementation of these for management of infectious diseases such as malaria, dengue, chikungunya and Rift Valley fever is still a major challenge. The difficulties arise due to variation in how different mosquito species respond to not only single chemical compounds but also complex chemical blends. Additionally, mosquitoes respond to different volatile blends when they are looking for a mating partner, oviposition sites or a meal. Analytically the challenge lies not only in correctly identifying these semiochemical signals and cues but also in developing formulations that effectively mimic blend ratios that different mosquito species respond to. Only then can the formulations be used to enhance the selectivity and efficacy of odour-based traps. Understanding how mosquitoes use semiochemical cues and signals to survive may be key to unravelling these complex interactions. An overview of the current studies of these chemical messages and the chemical ecology involved in complex behavioural patterns is given. This includes an updated list of the semiochemicals which can be used for integrated vector control management programmes. A thorough understanding of these semiochemical cues is of importance for the development of new vector control methods that can be integrated into established control strategies.
Collapse
Affiliation(s)
- Madelien Wooding
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Yvette Naudé
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Egmont Rohwer
- Department of Chemistry, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Marc Bouwer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
23
|
Silva JOS, Costa MLE, Paixão BS, Macêdo JDB, Rodrigues PMS, Lins-Neto EMF. Natural Vs Managed Habitat: Effect Over the Seed-Predator Pachymerus nucleorum and Its Natural Enemies. NEOTROPICAL ENTOMOLOGY 2020; 49:131-138. [PMID: 31728910 DOI: 10.1007/s13744-019-00727-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The licuri palm, Syagrus coronata (Martius) Beccari (Arecaceae), is widely distributed throughout the Brazilian Caatinga and has high cultural, socioeconomical, and ecological importance. The palm tree logging is prohibited by the Brazilian law, and thus isolated individuals are a common sight on managed pastures in the Brazilian semi-arid region. We aimed to compare the insect seed-predator Pachymerus nucleorum (Fabricius) (Bruchinae) abundance and its predation levels on S. coronata seeds between managed (pasture) and natural (Caatinga vegetation) habitats. We also monitored the parasitoid Heterospilus prosopodis (Viereck) (Braconidae) abundance and other P. nucleorum potential natural enemies (generalist predators and microhymenopterans). We tested the hypothesis that more complex and heterogenous habitats (i.e., with higher plant diversity) support higher abundance of potential P. nucleorum natural enemies. For such, we collected 600 fruits from each habitat and evaluated the seed predation level by P. nucleorum, as well as the P. nucleorum parasitism by H. prosopodis. The P. nucleorum abundance and its potential natural enemies were estimated using 122 sticky traps placed on the S. coronata individuals' crown. Neither the P. nucleorum and generalist predators abundance differed between habitats, whereas the H. prosopodis and microhymenopterans abundance was higher in the natural habitat. Consequently, P. nucleorum parasitism levels by H. prosopodis were also higher in the natural habitat. Our study indicated that habitat with higher plant diversity supported more natural enemies, thus confirming that increased habitat homogenization leads to decreased parasitism levels by the less parasitoids number in managed habitats. Our results may subsidize conservationist management practices in the managed habitats aiming to improve fruit exploitation techniques sustainability and land-use practices, which would thereafter allow for the S. coronata population conservation in the Brazilian Caatinga.
Collapse
Affiliation(s)
- J O S Silva
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco (UNIVASF), Senhor do Bonfim, BA, 48970-000, Brasil.
- Programa de Pós-Graduação em Ciências da Saúde e Biológicas - PPGCSB, Universidade Federal do Vale do São Francisco (UNIVASF), Senhor do Bonfim, Brasil.
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Estadual de Feira de Santana, Feira de Santana (UEFS), Feira de Santana, Brasil.
| | - M L E Costa
- Programa de Pós-Graduação em Ciências da Saúde e Biológicas - PPGCSB, Universidade Federal do Vale do São Francisco (UNIVASF), Senhor do Bonfim, Brasil
| | - B S Paixão
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco (UNIVASF), Senhor do Bonfim, BA, 48970-000, Brasil
| | - J D B Macêdo
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco (UNIVASF), Senhor do Bonfim, BA, 48970-000, Brasil
- Ciência e Tecnologia Baiano Campus, Instituto Federal de Educação, Senhor do Bonfim, BA, Brasil
| | - P M S Rodrigues
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco (UNIVASF), Senhor do Bonfim, BA, 48970-000, Brasil
| | - E M F Lins-Neto
- Colegiado de Ecologia, Universidade Federal do Vale do São Francisco (UNIVASF), Senhor do Bonfim, BA, 48970-000, Brasil
- Programa de Pós-Graduação em Ciências da Saúde e Biológicas - PPGCSB, Universidade Federal do Vale do São Francisco (UNIVASF), Senhor do Bonfim, Brasil
| |
Collapse
|
24
|
Peach DAH, Ko E, Blake AJ, Gries G. Ultraviolet inflorescence cues enhance attractiveness of inflorescence odour to Culex pipiens mosquitoes. PLoS One 2019; 14:e0217484. [PMID: 31163041 PMCID: PMC6548384 DOI: 10.1371/journal.pone.0217484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/13/2019] [Indexed: 12/23/2022] Open
Abstract
Inflorescence patterns of ultraviolet (UV) absorption and UV-reflection are attractive to many insect pollinators. To understand whether UV inflorescence cues affect the attraction of nectar-foraging mosquitoes, we worked with the common house mosquito, Culex pipiens and with two plant species exhibiting floral UV cues: the tansy, Tanacetum vulgare, and the common hawkweed Hieraciumm lachenalii. Electroretinograms revealed that Cx. pipiens eyes can sense UV wavelengths, with peak sensitivity at 335 nm. Behavioural bioassays divulged that UV inflorescence cues enhance the attractiveness of inflorescence odour. In the presence of natural floral odour, female Cx. pipiens were attracted to floral patterns of UV-absorption and UV-reflection but preferred uniformly UV-dark inflorescences. Moreover, Cx. pipiens females preferred UV-dark and black inflorescence models to UV-dark and yellow inflorescence models. With feathers and pelts of many avian and mammalian hosts also being UV-dark and dark-coloured, foraging Cx. pipiens females may respond to analogous visual cues when they seek nectar and vertebrate blood resources.
Collapse
Affiliation(s)
- Daniel A. H. Peach
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- * E-mail:
| | - Elton Ko
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Adam J. Blake
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
25
|
Peach DAH, Gries R, Young N, Lakes R, Galloway E, Alamsetti SK, Ko E, Ly A, Gries G. Attraction of Female Aedes aegypti (L.) to Aphid Honeydew. INSECTS 2019; 10:insects10020043. [PMID: 30717169 PMCID: PMC6409638 DOI: 10.3390/insects10020043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/19/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
Plant sugar is an essential dietary constituent for mosquitoes, and hemipteran honeydew is one of the many forms of plant sugar that is important to mosquitoes. Many insects rely on volatile honeydew semiochemicals to locate aphids or honeydew itself. Mosquitoes exploit volatile semiochemicals to locate sources of plant sugar but their attraction to honeydew has not previously been investigated. Here, we report the attraction of female yellow fever mosquitoes, Aedes aegypti, to honeydew odorants from the green peach aphid, Myzus persicae, and the pea aphid, Acyrthosiphon pisum, feeding on fava bean, Vicia faba. We used solid phase micro-extraction and gas chromatography-mass spectrometry to collect and analyze headspace odorants from the honeydew of A. pisum feeding on V. faba. An eight-component synthetic blend of these odorants and synthetic odorant blends of crude and sterile honeydew that we prepared according to literature data all attracted female A. aegypti. The synthetic blend containing microbial odor constituents proved more effective than the blend without these constituents. Our study provides the first evidence for anemotactic attraction of mosquitoes to honeydew and demonstrates a role for microbe-derived odorants in the attraction of mosquitoes to essential plant sugar resources.
Collapse
Affiliation(s)
- Daniel A H Peach
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Regine Gries
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Nathan Young
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Robyn Lakes
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Erin Galloway
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Santosh Kumar Alamsetti
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Elton Ko
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Amy Ly
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Gerhard Gries
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|