1
|
Simmonds MJ, Thamsen B, Olia SE, McNamee AP, Granegger M, Wurm H, Rajagopal K, McGiffin DC. Will blood-informed design signal the fourth generation of cardiac assist devices? J Heart Lung Transplant 2024; 43:1767-1770. [PMID: 39182799 DOI: 10.1016/j.healun.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Mechanical circulatory support devices have profoundly transformed the management of severe cardiothoracic disorders. While heart transplantation is the gold standard therapy for end-stage heart disease, long-term mechanical support devices are a viable alternative for those ineligible and/or those awaiting organ availability. Major technological advancements were made over first 5 decades of development, resulting in improved durability and survival with reduced adverse events. However, gains have tapered recently for various complications (e.g., internal bleeding, multisystem organ failure), which collectively represent a significant proportion of disability and/or mortality. Further, in light of mature ventricular assist devices failing during clinical trials or even after clinical approval (class I withdrawals), it is timely to consider: Are our preclinical assessment protocols vital in the design and development of mechanical circulatory support devices, providing a realistic and reliable profile of future clinical performance? This commentary explores this question and analyses development pathways through the lens of the various disciplines involved in the preclinical assessment of mechanical circulatory support technologies: Limitations in approaches to benchtop blood testing, computational design and simulation, and animal testing are discussed as likely contributors to some of the common hemocompatibility-related adverse events (HRAEs). While it is acknowledged that some shortcomings are pragmatic in nature, possible solutions are presented that will only be realized through truly transdisciplinary and open approaches that challenge the current nature of medical device development. We suggest that these can and must be overcome to diminish HRAEs and will potentially demarcate the fourth generation of cardiac assist devices.
Collapse
Affiliation(s)
- Michael J Simmonds
- Biorheology Research Laboratory, Griffith University, Gold Coast, Australia.
| | - Bente Thamsen
- Christian Doppler Laboratory for Mechanical Circulatory Support, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Salim E Olia
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Antony P McNamee
- Biorheology Research Laboratory, Griffith University, Gold Coast, Australia
| | - Marcus Granegger
- Christian Doppler Laboratory for Mechanical Circulatory Support, Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Wurm
- Faculty of Mechanical Engineering and Marine Technology, Institute of Turbomachinery, University of Rostock, Rostock, Germany
| | - Keshava Rajagopal
- Division of Cardiac Surgery, Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David C McGiffin
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Baylous K, Kovarovic B, Paz RR, Anam S, Helbock R, Horner M, Slepian M, Bluestein D. Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108469. [PMID: 39461118 DOI: 10.1016/j.cmpb.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND AND OBJECTIVE Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of transcatheter aortic valves. METHODS An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the ANSYS LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29 mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via ANSYS EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. RESULTS Simulated effective orifice areas for commercial valves were in reported ranges. In silico cardiac output and flow rate during the positive pressure differential period matched experimental results by approximately 93 %. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics, where platelets experienced instantaneous stresses reaching around 10 Pa. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk with the highest median SA around 70 dyn·s/cm2 - nearly double the activation threshold - despite those being clinically classified as "mild" paravalvular leaks. CONCLUSIONS Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.
Collapse
Affiliation(s)
- Kyle Baylous
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rodrigo R Paz
- ANSYS Inc., 7374 Las Positas Rd., Livermore, CA 94551, USA; CONICET (IMIT), Argentina
| | - Salwa Anam
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ryan Helbock
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Marvin Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
3
|
Baylous K, Kovarovic B, Anam S, Helbock R, Slepian M, Bluestein D. Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach. ARXIV 2024:arXiv:2406.12156v1. [PMID: 38947915 PMCID: PMC11213151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background and Objective Prosthetic heart valve interventions such as TAVR have surged over the past decade, but the associated complication of long-term, life-threatening thrombotic events continues to undermine patient outcomes. Thus, improving thrombogenic risk analysis of TAVR devices is crucial. In vitro studies for thrombogenicity are typically difficult to perform. However, revised ISO testing standards include computational testing for thrombogenic risk assessment of cardiovascular implants. We present a fluid-structure interaction (FSI) approach for assessing thrombogenic risk of prosthetic heart valves. Methods An FSI framework was implemented via the incompressible computational fluid dynamics multi-physics solver of the Ansys LS-DYNA software. The numerical modeling approach for flow analysis was validated by comparing the derived flow rate of the 29-mm CoreValve device from benchtop testing and orifice areas of commercial TAVR valves in the literature to in silico results. Thrombogenic risk was analyzed by computing stress accumulation (SA) on virtual platelets seeded in the flow fields via Ansys EnSight. The integrated FSI-thrombogenicity methodology was subsequently employed to examine hemodynamics and thrombogenic risk of TAVR devices with two approaches: 1) engineering optimization and 2) clinical assessment. Results The simulated effective orifice areas of the commercial devices were in the range reported in the literature. The flow rates from the in vitro flow testing matched well with the in silico results. The approach was used to analyze the effect of various TAVR leaflet designs on hemodynamics. Platelets experienced different magnitudes of SA along their trajectories as they flowed past each design. Post-TAVR deployment hemodynamics in patient-specific bicuspid aortic valve anatomies revealed varying degrees of thrombogenic risk for these patients, despite being clinically defined as "mild" paravalvular leak. Conclusions Our methodology can be used to improve the thromboresistance of prosthetic valves from the initial design stage to the clinic. It allows for unparalleled optimization of devices, uncovering key TAVR leaflet design parameters that can be used to mitigate thrombogenic risk, in addition to patient-specific modeling to evaluate device performance. This work demonstrates the utility of advanced in silico analysis of TAVR devices that can be utilized for thrombogenic risk assessment of other blood recirculating devices.
Collapse
Affiliation(s)
- Kyle Baylous
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| | - Salwa Anam
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| | - Ryan Helbock
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| | - Marvin Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ 85721
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA 11794
| |
Collapse
|
4
|
Kovarovic B, Helbock R, Baylous K, Rotman OM, Slepian MJ, Bluestein D. Visions of TAVR Future: Development and Optimization of a Second Generation Novel Polymeric TAVR. J Biomech Eng 2022; 144:1139726. [PMID: 35318480 DOI: 10.1115/1.4054149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Tissue-based transcatheter aortic valve (AV) replacement (TAVR) devices have been a breakthrough approach for treating aortic valve stenosis. However, with the expansion of TAVR to younger and lower risk patients, issues of long-term durability and thrombosis persist. Recent advances in polymeric valve technology facilitate designing more durable valves with minimal in vivo adverse reactions. We introduce our second-generation polymeric transcatheter aortic valve (TAV) device, designed and optimized to address these issues. We present the optimization process of the device, wherein each aspect of device deployment and functionality was optimized for performance, including unique considerations of polymeric technologies for reducing the volume of the polymer material for lower crimped delivery profiles. The stent frame was optimized to generate larger radial forces with lower material volumes, securing robust deployment and anchoring. The leaflet shape, combined with varying leaflets thickness, was optimized for reducing the flexural cyclic stresses and the valve's hydrodynamics. Our first-generation polymeric device already demonstrated that its hydrodynamic performance meets and exceeds tissue devices for both ISO standard and patient-specific in vitro scenarios. The valve already reached 900 × 106 cycles of accelerated durability testing, equivalent to over 20 years in a patient. The optimization framework and technology led to the second generation of polymeric TAV design- currently undergoing in vitro hydrodynamic testing and following in vivo animal trials. As TAVR use is rapidly expanding, our rigorous bio-engineering optimization methodology and advanced polymer technology serve to establish polymeric TAV technology as a viable alternative to the challenges facing existing tissue-based TAV technology.
Collapse
Affiliation(s)
- Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, T8-050 Health Sciences Center, Stony Brook, NY 11794-8084
| | - Ryan Helbock
- Department of Biomedical Engineering, Stony Brook University, T8-050 Health Sciences Center, Stony Brook, NY 11794-8084
| | - Kyle Baylous
- Department of Biomedical Engineering, Stony Brook University, T8-050 Health Sciences Center, Stony Brook, NY 11794-8084
| | - Oren M Rotman
- Department of Biomedical Engineering, Stony Brook University, T8-050 Health Sciences Center, Stony Brook, NY 11794-8084
| | - Marvin J Slepian
- Department of Medicine and Biomedical Engineering Sarver Heart Center, University of Arizona, Tucson, AZ 85721
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, T8-050 Health Sciences Center, Stony Brook, NY 11794-8084
| |
Collapse
|
5
|
Blum C, Groß-Hardt S, Steinseifer U, Neidlin M. An Accelerated Thrombosis Model for Computational Fluid Dynamics Simulations in Rotary Blood Pumps. Cardiovasc Eng Technol 2022; 13:638-649. [PMID: 35031981 PMCID: PMC9499893 DOI: 10.1007/s13239-021-00606-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
Purpose Thrombosis ranks among the major complications in blood-carrying medical devices and a better understanding to influence the design related contribution to thrombosis is desirable. Over the past years many computational models of thrombosis have been developed. However, numerically cheap models able to predict localized thrombus risk in complex geometries are still lacking. The aim of the study was to develop and test a computationally efficient model for thrombus risk prediction in rotary blood pumps. Methods We used a two-stage approach to calculate thrombus risk. The first stage involves the computation of velocity and pressure fields by computational fluid dynamic simulations. At the second stage, platelet activation by mechanical and chemical stimuli was determined through species transport with an Eulerian approach. The model was compared with existing clinical data on thrombus deposition within the HeartMate II. Furthermore, an operating point and model parameter sensitivity analysis was performed. Results Our model shows good correlation (R2 > 0.93) with clinical data and identifies the bearing and outlet stator region of the HeartMate II as the location most prone to thrombus formation. The calculation of thrombus risk requires an additional 10–20 core hours of computation time. Conclusion The concentration of activated platelets can be used as a surrogate and computationally low-cost marker to determine potential risk regions of thrombus deposition in a blood pump. Relative comparisons of thrombus risk are possible even considering the intrinsic uncertainty in model parameters and operating conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s13239-021-00606-y.
Collapse
Affiliation(s)
- Christopher Blum
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
6
|
Sweedo A, Wise LM, Roka-Moiia Y, Arce FT, Saavedra SS, Sheriff J, Bluestein D, Slepian MJ, Purdy JG. Shear-Mediated Platelet Activation is Accompanied by Unique Alterations in Platelet Release of Lipids. Cell Mol Bioeng 2021; 14:597-612. [PMID: 34900013 PMCID: PMC8630256 DOI: 10.1007/s12195-021-00692-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Platelet activation by mechanical means such as shear stress exposure, is a vital driver of thrombotic risk in implantable blood-contacting devices used in the treatment of heart failure. Lipids are essential in platelets activation and have been studied following biochemical activation. However, little is known regarding lipid alterations occurring with mechanical shear-mediated platelet activation. METHODS Here, we determined if shear-activation of platelets induced lipidome changes that differ from those associated with biochemically-mediated platelet activation. We performed high-resolution lipidomic analysis on purified platelets from four healthy human donors. For each donor, we compared the lipidome of platelets that were non-activated or activated by shear, ADP, or thrombin treatment. RESULTS We found that shear activation altered cell-associated lipids and led to the release of lipids into the extracellular environment. Shear-activated platelets released 21 phospholipids and sphingomyelins at levels statistically higher than platelets activated by biochemical stimulation. CONCLUSIONS We conclude that shear-mediated activation of platelets alters the basal platelet lipidome. Further, these alterations differ and are unique in comparison to the lipidome of biochemically activated platelets. Many of the released phospholipids contained an arachidonic acid tail or were phosphatidylserine lipids, which have known procoagulant properties. Our findings suggest that lipids released by shear-activated platelets may contribute to altered thrombosis in patients with implanted cardiovascular therapeutic devices. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00692-x.
Collapse
Affiliation(s)
- Alice Sweedo
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ USA
| | - Lisa M. Wise
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, PO Box 245221, Tucson, AZ 85724 USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA
| | - Yana Roka-Moiia
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ USA
| | - Fernando Teran Arce
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ USA
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ USA
| | - S. Scott Saavedra
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY USA
| | - Marvin J. Slepian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY USA
- Department of Material Sciences and Engineering, University of Arizona, Tucson, AZ USA
| | - John G. Purdy
- Department of Immunobiology, University of Arizona, 1656 E. Mabel Street, PO Box 245221, Tucson, AZ 85724 USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA
| |
Collapse
|
7
|
Shad R, Kong S, Fong R, Quach N, Kasinpila P, Bowles C, Lee A, Hiesinger W. Computational Fluid Dynamics Simulations to Predict False Lumen Enlargement After Surgical Repair of Type-A Aortic Dissection. Semin Thorac Cardiovasc Surg 2021; 34:443-448. [PMID: 34091015 DOI: 10.1053/j.semtcvs.2021.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022]
Abstract
We aim to use computational fluid dynamics to investigate the hemodynamic conditions that may predispose to false lumen enlargement in this patient population. Nine patients who received surgical repairs of their type-A aortic dissections between 2017-2018 were retrospectively identified. Multiple contrast-enhanced post-operative CT scans were used to construct 3D models of aortic geometries. Computational fluid dynamics simulations of the models were run on a high-performance computing cluster using SimVascular - an open-source simulation package. Physiological pulsatile flow conditions (4.9 L/min) were used at the aortic true lumen inlet, and physiological vascular resistances were applied at the distal vascular ends. Exploratory analyses showed no correlation between rate of false lumen growth and blood pressure, immediate post-op aortic diameter, or the number of fenestrations (p = 0.2). 1-year post-operative CT scans showed a median false lumen growth rate of 4.31 (3.66, 14.67) mm/year Median (Interquartile range) peak systolic, mid-diastolic, and late diastolic velocity magnitudes were 0.90 (1.40); 0.10 (0.16); and 0.06 (0.06) cm/s respectively. Spearman's ranked correlations between fenestration velocity and 1-year false lumen growth rates were found to be statistically significant: Velocity magnitude at peak systolic (p = 0.025; rho = 0.75), mid diastolic (p = 0.025; rho = 0.75) and late diastolic phases of the cardiac cycle (p = 0.006; rho = 0.85). We have shown that false lumen growth is strongly correlated to fenestration flow velocity, which has potential implications for post-operative surveillance and risk stratification.
Collapse
Affiliation(s)
- Rohan Shad
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California
| | - Sandra Kong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California
| | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California
| | - Nicolas Quach
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California
| | - Patpilai Kasinpila
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California
| | - Cayley Bowles
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California
| | - Anson Lee
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California
| | - William Hiesinger
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, California.
| |
Collapse
|
8
|
Neidlin M, Liao S, Li Z, Simpson B, Kaye DM, Steinseifer U, Gregory S. Understanding the influence of left ventricular assist device inflow cannula alignment and the risk of intraventricular thrombosis. Biomed Eng Online 2021; 20:47. [PMID: 33975591 PMCID: PMC8114696 DOI: 10.1186/s12938-021-00884-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Adverse neurological events associated with left ventricular assist devices (LVADs) have been suspected to be related to thrombosis. This study aimed to understand the risks of thrombosis with variations in the implanted device orientation. A severely dilated pulsatile patient-specific left ventricle, modelled with computational fluid dynamics, was utilised to identify the risk of thrombosis for five cannulation angles. With respect to the inflow cannula axis directed towards the mitral valve, the other angles were 25° and 20° towards the septum and 20° and 30° towards the free wall. RESULTS Inflow cannula angulation towards the free wall resulted in longer blood residence time within the ventricle, slower ventricular washout and reduced pulsatility indices along the septal wall. Based on the model, the ideal inflow cannula alignment to reduce the risk of thrombosis was angulation towards the mitral valve and up to parallel to the septum, avoiding the premature clearance of incoming blood. CONCLUSIONS This study indicates the potential effects of inflow cannulation angles and may guide optimised implantation configurations; however, the ideal approach will be influenced by other patient factors and is suspected to change over the course of support.
Collapse
Affiliation(s)
- Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Sam Liao
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
| | - Zhiyong Li
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
| | - Benjamin Simpson
- Department of Engineering, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - David M Kaye
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074, Aachen, Germany
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Shaun Gregory
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- Cardio-Respiratory Engineering and Technology Laboratory (CREATElab), Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| |
Collapse
|
9
|
Slepian MJ, Italiano J, Bluestein D, Sheriff J, Roka-Moiia Y. Evolving perspectives on mechanical circulatory support biocompatibility and interfaces. Ann Cardiothorac Surg 2021; 10:396-398. [PMID: 34159123 DOI: 10.21037/acs-2020-cfmcs-247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marvin J Slepian
- Deparment of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, USA.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Joseph Italiano
- Brigham and Woman's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Yana Roka-Moiia
- Deparment of Medicine and Biomedical Engineering, Sarver Heart Center, University of Arizona, Tucson, USA
| |
Collapse
|
10
|
Wang S, Griffith BP, Wu ZJ. Device-Induced Hemostatic Disorders in Mechanically Assisted Circulation. Clin Appl Thromb Hemost 2021; 27:1076029620982374. [PMID: 33571008 PMCID: PMC7883139 DOI: 10.1177/1076029620982374] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanically assisted circulation (MAC) sustains the blood circulation in the body of a patients undergoing cardiac surgery with cardiopulmonary bypass (CPB) or on ventricular assistance with a ventricular assist device (VAD) or on extracorporeal membrane oxygenation (ECMO) with a pump-oxygenator system. While MAC provides short-term (days to weeks) support and long-term (months to years) for the heart and/or lungs, the blood is inevitably exposed to non-physiological shear stress (NPSS) due to mechanical pumping action and in contact with artificial surfaces. NPSS is well known to cause blood damage and functional alterations of blood cells. In this review, we discussed shear-induced platelet adhesion, platelet aggregation, platelet receptor shedding, and platelet apoptosis, shear-induced acquired von Willebrand syndrome (AVWS), shear-induced hemolysis and microparticle formation during MAC. These alterations are associated with perioperative bleeding and thrombotic events, morbidity and mortality, and quality of life in MCS patients. Understanding the mechanism of shear-induce hemostatic disorders will help us develop low-shear-stress devices and select more effective treatments for better clinical outcomes.
Collapse
Affiliation(s)
- Shigang Wang
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P Griffith
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J Wu
- Department of Surgery, 12264University of Maryland School of Medicine, Baltimore, MD, USA.,Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
11
|
Pushin DM, Salikhova TY, Zlobina KE, Guria GT. Platelet activation via dynamic conformational changes of von Willebrand factor under shear. PLoS One 2020; 15:e0234501. [PMID: 32525962 PMCID: PMC7289367 DOI: 10.1371/journal.pone.0234501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
Shear-induced conformational changes of von Willebrand factor (VWF) play an important role in platelet activation. A novel approach describing VWF unfolding on the platelet surface under dynamic shear stress is proposed. Cumulative effect of dynamic shear on platelet activation via conformational changes of VWF is analysed. The critical condition of shear-induced platelet activation is formulated. The explicit expression for the threshold value of cumulative shear stress as a function of VWF multimer size is derived. The results open novel prospects for pharmacological regulation of shear-induced platelet activation through control of VWF multimers size distribution.
Collapse
Affiliation(s)
- Denis M. Pushin
- National Research Center for Hematology, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Georgy Th. Guria
- National Research Center for Hematology, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- * E-mail:
| |
Collapse
|