1
|
Johari K, Tabari F. HD-tACS over the left frontal aslant tract entrains theta activity associated with speech motor control. Brain Res 2024; 1850:149434. [PMID: 39743033 DOI: 10.1016/j.brainres.2024.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Transient disruption or permanent damage to the left Frontal Aslant Tract (FAT) is associated with deficits in speech production. The present study examined the application of theta (4 Hz) high-definition transcranial alternating current stimulation (HD-tACS) over the left SMA and IFG -as a part of FAT- as a potential multisite protocol to modulate neural and behavioral correlates of speech motor control. Twenty-one young adults participated in three counterbalanced sessions in which they received in-phase, anti-phase, and sham theta HD-tACS. In each session, 4 Hz stimulation was applied over the left IFG and SMA, and subsequently EEG data was recorded while participants performed a speech Go/No-Go task. Relative to sham and anti-phase, in-phase HD-tACS significantly improved speech reaction time. Neural data showed an increase in the power of frontal theta activity prior to speech initiation for the in-phase condition compared to sham. Moreover, in-phase stimulation increased the phase synchrony of theta activity between the left central and frontal electrodes. For speech inhibition, the power of theta activity increased following the in-phase condition over frontocentral electrodes. Furthermore, the in-phase condition enhanced the connectivity between the left central and frontal electrodes. Overall findings suggest that in-phase theta HD-tACS of FAT enhanced the neural markers of cognitive control required for motor preparation and inhibition during a speech task and have translational implications.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Louisiana State University, Baton Rouge, LA, USA.
| | - Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Lab, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
2
|
Chan HH, Fisher BM, Oimoen MA, Chintada L, Khanna H, Sonneborn CA, Hogue O, Machado AG, Baker KB. Carry-Over Effect of Deep Cerebellar Stimulation-Mediated Motor Recovery in a Rodent Model of Traumatic Brain Injury. Neurorehabil Neural Repair 2024; 38:808-819. [PMID: 39215643 PMCID: PMC11567800 DOI: 10.1177/15459683241277194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND We previously demonstrated that deep brain stimulation (DBS) of lateral cerebellar nucleus (LCN) can enhance motor recovery and functional reorganization of perilesional cortex in rodent models of stroke or TBI. OBJECTIVE Considering the treatment-related neuroplasticity observed at the perilesional cortex, we hypothesize that chronic LCN DBS-enhanced motor recovery observed will carry-over even after DBS has been deactivated. METHODS Here, we directly tested the enduring effects of LCN DBS in male Long Evans rats that underwent controlled cortical impact (CCI) injury targeting sensorimotor cortex opposite their dominant forepaw followed by unilateral implantation of a macroelectrode into the LCN opposite the lesion. Animals were randomized to DBS or sham treatment for 4 weeks during which the motor performance were characterize by behavioral metrics. After 4 weeks, stimulation was turned off, with assessments continuing for an additional 2 weeks. Afterward, all animals were euthanized, and tissue was harvested for further analyses. RESULTS Treated animals showed significantly greater motor improvement across all behavioral metrics relative to untreated animals during the 4-week treatment, with functional gains persisting across 2-week post-treatment. This motor recovery was associated with the increase in CaMKIIα and BDNF positive cell density across perilesional cortex in treated animals. CONCLUSIONS LCN DBS enhanced post-TBI motor recovery, the effect of which was persisted up to 2 weeks beyond stimulation offset. Such evidence should be considered in relation to future translational efforts as, unlike typical DBS applications, treatment may only need to be provided until such time as a new function plateau is achieved.
Collapse
Affiliation(s)
- Hugh H. Chan
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Brittany M. Fisher
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Margaret A. Oimoen
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Latavya Chintada
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Hemen Khanna
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Claire A. Sonneborn
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | - Olivia Hogue
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
| | | | - Kenneth B. Baker
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland Ohio
- Neurological Institute, Cleveland Clinic
| |
Collapse
|
3
|
Wansbrough K, Marinovic W, Fujiyama H, Vallence AM. Beta tACS of varying intensities differentially affect resting-state and movement-related M1-M1 connectivity. Front Neurosci 2024; 18:1425527. [PMID: 39371612 PMCID: PMC11450697 DOI: 10.3389/fnins.2024.1425527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Due to the interconnected nature of the brain, changes in one region are likely to affect other structurally and functionally connected regions. Emerging evidence indicates that single-site transcranial alternating current stimulation (tACS) can modulate functional connectivity between stimulated and interconnected unstimulated brain regions. However, our understanding of the network response to tACS is incomplete. Here, we investigated the effect of beta tACS of different intensities on phase-based connectivity between the left and right primary motor cortices in 21 healthy young adults (13 female; mean age 24.30 ± 4.84 years). Participants underwent four sessions of 20 min of 20 Hz tACS of varying intensities (sham, 0.5 mA, 1.0 mA, or 1.5 mA) applied to the left primary motor cortex at rest. We recorded resting-state and event-related electroencephalography (EEG) before and after tACS, analyzing changes in sensorimotor beta (13-30 Hz) imaginary coherence (ImCoh), an index of functional connectivity. Event-related EEG captured movement-related beta activity as participants performed self-paced button presses using their right index finger. For resting-state connectivity, we observed intensity-dependent changes in beta ImCoh: sham and 0.5 mA stimulation resulted in an increase in beta ImCoh, while 1.0 mA and 1.5 mA stimulation decreased beta ImCoh. For event-related connectivity, 1.5 mA stimulation decreased broadband ImCoh (4-90 Hz) during movement execution. None of the other stimulation intensities significantly modulated event-related ImCoh during movement preparation, execution, or termination. Interestingly, changes in ImCoh during movement preparation following 1.0 mA and 1.5 mA stimulation were significantly associated with participants' pre-tACS peak beta frequency, suggesting that the alignment of stimulation frequency and peak beta frequency affected the extent of neuromodulation. Collectively, these results suggest that beta tACS applied to a single site influences connectivity within the motor network in a manner that depends on the intensity and frequency of stimulation. These findings have significant implications for both research and clinical applications.
Collapse
Affiliation(s)
- Kym Wansbrough
- School of Psychology, College of Health and Education, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Welber Marinovic
- School of Population Health, Curtin University, Perth, WA, Australia
| | - Hakuei Fujiyama
- School of Psychology, College of Health and Education, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Ann-Maree Vallence
- School of Psychology, College of Health and Education, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
| |
Collapse
|
4
|
Ghahri Lalaklou Z, Haghighat-Manesh E, Montazeri Ghahjavarestani A, Ahmadi E. The effect of transcranial alternating current stimulation on cognitive flexibility and attention of children with intellectual disability: a case report. J Med Case Rep 2024; 18:310. [PMID: 38965608 PMCID: PMC11225214 DOI: 10.1186/s13256-024-04625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Intellectual disability is a neurodevelopmental disorder characterized by significant impairments in intellectual functioning and adaptive behavior. Cognitive flexibility and attention are crucial cognitive domains often affected in children with intellectual disability. This case report explores the novel use of transcranial alternating current stimulation, a noninvasive brain stimulation technique, to enhance these cognitive functions. The study's novelty lies in its focus on alpha-wave frequency transcranial alternating current stimulation targeting specific Brodmann areas and its potential sustained impact on cognitive flexibility and attention in the pediatric population with intellectual disability. CASE PRESENTATION The case study involved two elementary school students, both 7 years old with mild intellectual disability, one male and one female, both with Turkic ethnicity, from Shahid Fahmideh School for Exceptional Children in Khosrowshah, Iran. Both participants underwent a 2-week intervention with daily 20-minute sessions of transcranial alternating current stimulation at an alpha-wave frequency (10 Hz), targeting Brodmann areas F3 and P3. Cognitive flexibility and attention were assessed using the Wisconsin Card Sorting Test and the Clock Test, administered at four time points: pre-intervention, week 1, week 2, and 1 month post-intervention. Statistical analysis showed significant improvements in both Wisconsin Card Sorting Test and Clock Test scores for both participants compared with baseline, with sustained enhancement over time. CONCLUSION The findings from this case report indicate that transcranial alternating current stimulation may be a promising intervention for improving cognitive flexibility and attention in children with intellectual disability. The significant and sustained improvements observed suggest that transcranial alternating current stimulation could have a meaningful clinical impact on the cognitive development of this population. However, further research is needed to confirm the efficacy of transcranial alternating current stimulation and to explore its broader applicability and long-term effects in larger, more diverse populations.
Collapse
Affiliation(s)
- Zahra Ghahri Lalaklou
- Faculty of Psychology and Educational Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Elahe Haghighat-Manesh
- Department of Basic Sciences, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | | | - Ezzatollah Ahmadi
- Faculty of Psychology and Educational Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
5
|
Dantas AM, Sack AT, Bruggen E, Jiao P, Schuhmann T. Modulating risk-taking behavior with theta-band tACS. Neuroimage 2023; 283:120422. [PMID: 37884165 DOI: 10.1016/j.neuroimage.2023.120422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Although risk is prevalent in decision-making, the specific neural processes underlying risk-taking behavior remain unclear. Previous studies have suggested that frontal theta-band activity plays a crucial role in modulating risk-taking behavior. The functional relevance of theta in risk-taking behavior is yet to be clearly established and studies using noninvasive brain stimulation have yielded inconsistent findings. We aimed to investigate this relevance using transcranial alternating current stimulation (tACS) over right or left dorsolateral prefrontal cortex (DLPFC). We also studied the influence of stimulation intensity on risk-taking behavior and electrophysiological effects. We applied theta-band (6.5 Hz) tACS over the left (F3) and right (F4) DLPFC with lower (1.5 mA) and higher (3 mA) tACS intensities. We employed a single-blinded, sham-controlled, within-subject design and combined tACS with electroencephalography (EEG) measurements and the Maastricht Gambling Task (MGT) to elicit and evaluate risk-taking behavior. Our results show an increase in risk-taking behavior after left DLPFC stimulation at both intensities and a reduction of risk-taking behavior after 3 mA (and not 1.5 mA) right DLPFC stimulation compared to sham. Further analyses showed a negative correlation between resting-state frontal theta-power and risk-taking behavior. Overall, frontal theta-power was increased after left, but not right, theta-band tACS independent of stimulation intensity. Our findings confirm the functional relevance of frontal theta-band activity in decision-making under risk and the differential role of left and right DLPFC. We also were able to show that stimulation intensity did have an effect on behavioral responses, namely risk-taking behavior. Significant right hemisphere stimulation effects were observed only after high-intensity stimulation. Nevertheless, electrophysiological effects were only significant after left DLPFC stimulation, regardless of tACS intensity. Furthermore, the results indicate the role of the baseline frontal theta-power in the direction of behavioral effects after theta-band tACS.
Collapse
Affiliation(s)
- Aline M Dantas
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Brain+Nerve Center, Maastricht University Medical Center+ (MUMC+). P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands.
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Brain+Nerve Center, Maastricht University Medical Center+ (MUMC+). P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands
| | - Elisabeth Bruggen
- Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University. P.O. Box 616, 6200 MD, Maastricht, the Netherlands; BISS - Brightlands Institute for Smart Society, Maastricht University, Heerlen, the Netherlands; Netspar - Network for Studies on Pension, Aging and Retirement
| | - Peiran Jiao
- Department of Finance, School of Business and Economics, Maastricht University. P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands
| |
Collapse
|
6
|
McAleer J, Stewart L, Shepard R, Sheena M, Stange JP, Leow A, Klumpp H, Ajilore O. Neuromodulatory effects of transcranial electrical stimulation on emotion regulation in internalizing psychopathologies. Clin Neurophysiol 2023; 145:62-70. [PMID: 36442377 PMCID: PMC9772290 DOI: 10.1016/j.clinph.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We hypothesize offset theta-tACS (transcranial alternating current stimulation) improves emotion regulation (ER) and psychopathology more than transcranial direct current stimulation (tDCS) in participants with internalizing psychopathologies (IPs). METHODS This pilot study utilized a double-blind, pseudo-counterbalanced, sham-controlled design with participants with IPs. Participants were assigned to receive tDCS or tACS, underwent four stimulation sessions (two sham), and completed an emotion regulation task (ERT) during or after stimulation. Participants completed the Beck Depression Inventory before/after the study, the Spielberger State and Trait Anxiety Index after each ERT, and rated their arousal, valence, and perceived reappraisal ability during the ERT. RESULTS Participants receiving either stimulation type showed a reduction in anxiety, depression, and valence and arousal ratings. We additionally discovered an effect demonstrating those who received sham stimulation first displayed little-to-no change in any score across the study, but tACS participants who received verum stimulation first showed significant improvements in each metric. CONCLUSIONS Improving ER capabilities via theta tACS has the potential to yield beneficial clinical effects. SIGNIFICANCE This study adds validity to the use of non-invasive neuromodulatory methods, especially tACS, to alleviate IPs. Additional research is needed to better understand the effects of sham stimulation. Careful consideration of sham incorporation should be made in future studies.
Collapse
Affiliation(s)
- Jessica McAleer
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Lindsey Stewart
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Robert Shepard
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Michelle Sheena
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Jonathan P Stange
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Alex Leow
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Heide Klumpp
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Beta rhythmicity in human motor cortex reflects neural population coupling that modulates subsequent finger coordination stability. Commun Biol 2022; 5:1375. [PMID: 36522455 PMCID: PMC9755311 DOI: 10.1038/s42003-022-04326-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Human behavior is not performed completely as desired, but is influenced by the inherent rhythmicity of the brain. Here we show that anti-phase bimanual coordination stability is regulated by the dynamics of pre-movement neural oscillations in bi-hemispheric primary motor cortices (M1) and supplementary motor area (SMA). In experiment 1, pre-movement bi-hemispheric M1 phase synchrony in beta-band (M1-M1 phase synchrony) was online estimated from 129-channel scalp electroencephalograms. Anti-phase bimanual tapping preceded by lower M1-M1 phase synchrony exhibited significantly longer duration than tapping preceded by higher M1-M1 phase synchrony. Further, the inter-individual variability of duration was explained by the interaction of pre-movement activities within the motor network; lower M1-M1 phase synchrony and spectral power at SMA were associated with longer duration. The necessity of cortical interaction for anti-phase maintenance was revealed by sham-controlled repetitive transcranial magnetic stimulation over SMA in another experiment. Our results demonstrate that pre-movement cortical oscillatory coupling within the motor network unknowingly influences bimanual coordination performance in humans after consolidation, suggesting the feasibility of augmenting human motor ability by covertly monitoring preparatory neural dynamics.
Collapse
|
8
|
Van Hoornweder S, A Caulfield K, Nitsche M, Thielscher A, L J Meesen R. Addressing transcranial electrical stimulation variability through prospective individualized dosing of electric field strength in 300 participants across two samples: the 2-SPED approach. J Neural Eng 2022; 19:056045. [PMID: 36240729 PMCID: PMC9855635 DOI: 10.1088/1741-2552/ac9a78] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
Objective. Transcranial electrical stimulation (tES) is a promising method for modulating brain activity and excitability with variable results to date. To minimize electric (E-)field strength variability, we introduce the 2-sample prospective E-field dosing (2-SPED) approach, which uses E-field strengths induced by tES in a first population to individualize stimulation intensity in a second population.Approach. We performed E-field modeling of three common tES montages in 300 healthy younger adults. First, permutation analyses identified the sample size required to obtain a stable group average E-field in the primary motor cortex (M1), with stability being defined as the number of participants where all group-average E-field strengths ± standard deviation did not leave the population's 5-95 percentile range. Second, this stable group average was used to individualize tES intensity in a second independent population (n = 100). The impact of individualized versus fixed intensity tES on E-field strength variability was analyzed.Main results. In the first population, stable group average E-field strengths (V/m) in M1 were achieved at 74-85 participants, depending on the tES montage. Individualizing the stimulation intensity (mA) in the second population resulted in uniform M1 E-field strength (all p < 0.001) and significantly diminished peak cortical E-field strength variability (all p < 0.01), across all montages.Significance. 2-SPED is a feasible way to prospectively induce more uniform E-field strengths in a region of interest. Future studies might apply 2-SPED to investigate whether decreased E-field strength variability also results in decreased physiological and behavioral variability in response to tES.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States of America
| | - Michael Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bürkle de la Camp-Platz, Bochum, Germany
| | - Axel Thielscher
- Section for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Raf L J Meesen
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Leunissen I, Van Steenkiste M, Heise KF, Monteiro TS, Dunovan K, Mantini D, Coxon JP, Swinnen SP. Effects of beta-band and gamma-band rhythmic stimulation on motor inhibition. iScience 2022; 25:104338. [PMID: 35602965 PMCID: PMC9117874 DOI: 10.1016/j.isci.2022.104338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
To investigate whether beta oscillations are causally related to motor inhibition, thirty-six participants underwent two concurrent transcranial alternating current stimulation (tACS) and electroencephalography (EEG) sessions during which either beta (20 Hz) or gamma (70 Hz) stimulation was applied while participants performed a stop-signal task. In addition, we acquired magnetic resonance images to simulate the electric field during tACS. 20 Hz stimulation targeted at the pre-supplementary motor area enhanced inhibition and increased beta oscillatory power around the time of the stop-signal in trials directly following stimulation. The increase in inhibition on stop trials followed a dose-response relationship with the strength of the individually simulated electric field. Computational modeling revealed that 20 and 70 Hz stimulation had opposite effects on the braking process. These results highlight that the effects of tACS are state-dependent and demonstrate that fronto-central beta activity is causally related to successful motor inhibition, supporting its use as a functional biomarker. Beta tACS over preSMA improved motor inhibition Gamma tACS slowed down the stop process but primarily affected movement execution Beta tACS resulted in higher beta spectral power around the time of the stop-signal Effects of tACS showed a dose-response relationship with electric field strength
Collapse
Affiliation(s)
- Inge Leunissen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6200MD, Maastricht, the Netherlands
| | - Manon Van Steenkiste
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Kirstin-Friederike Heise
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, 3000, Leuven, Belgium
| | - Thiago Santos Monteiro
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, 3000, Leuven, Belgium
| | - Kyle Dunovan
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126, Venice, Italy
| | - James P Coxon
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC 3800, Australia
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
10
|
Heise KF, Rueda-Delgado L, Chalavi S, King BR, Monteiro TS, Edden RAE, Mantini D, Swinnen SP. The interaction between endogenous GABA, functional connectivity, and behavioral flexibility is critically altered with advanced age. Commun Biol 2022; 5:426. [PMID: 35523951 PMCID: PMC9076638 DOI: 10.1038/s42003-022-03378-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
The flexible adjustment of ongoing behavior challenges the nervous system's dynamic control mechanisms and has shown to be specifically susceptible to age-related decline. Previous work links endogenous gamma-aminobutyric acid (GABA) with behavioral efficiency across perceptual and cognitive domains, with potentially the strongest impact on those behaviors that require a high level of dynamic control. Our analysis integrated behavior and modulation of interhemispheric phase-based connectivity during dynamic motor-state transitions with endogenous GABA concentration in adult human volunteers. We provide converging evidence for age-related differences in the preferred state of endogenous GABA concentration for more flexible behavior. We suggest that the increased interhemispheric connectivity observed in the older participants represents a compensatory neural mechanism caused by phase-entrainment in homotopic motor cortices. This mechanism appears to be most relevant in the presence of a less optimal tuning of the inhibitory tone as observed during healthy aging to uphold the required flexibility of behavioral action. Future work needs to validate the relevance of this interplay between neural connectivity and GABAergic inhibition for other domains of flexible human behavior.
Collapse
Affiliation(s)
- Kirstin-Friederike Heise
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.
- KU Leuven Brain Institute, Leuven, Belgium.
| | - Laura Rueda-Delgado
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- School of Psychology, Trinity College Dublin, Dublin, 2, Ireland
| | - Sima Chalavi
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Bradley R King
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
- Department of Health & Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Thiago Santos Monteiro
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Richard A E Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dante Mantini
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
11
|
Parietal but not temporoparietal alpha-tACS modulates endogenous visuospatial attention. Cortex 2022; 154:149-166. [DOI: 10.1016/j.cortex.2022.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Accepted: 01/03/2022] [Indexed: 11/18/2022]
|
12
|
Janssens SEW, Oever ST, Sack AT, de Graaf TA. "Broadband Alpha Transcranial Alternating Current Stimulation": Exploring a new biologically calibrated brain stimulation protocol. Neuroimage 2022; 253:119109. [PMID: 35306159 DOI: 10.1016/j.neuroimage.2022.119109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) can be used to study causal contributions of oscillatory brain mechanisms to cognition and behavior. For instance, individual alpha frequency (IAF) tACS was reported to enhance alpha power and impact visuospatial attention performance. Unfortunately, such results have been inconsistent and difficult to replicate. In tACS, stimulation generally involves one frequency, sometimes individually calibrated to a peak value observed in an M/EEG power spectrum. Yet, the 'peak' actually observed in such power spectra often contains a broader range of frequencies, raising the question whether a biologically calibrated tACS protocol containing this fuller range of alpha-band frequencies might be more effective. Here, we introduce 'Broadband-alpha-tACS', a complex individually calibrated electrical stimulation protocol. We band-pass filtered left posterior resting-state EEG data around the IAF (± 2 Hz), and converted that time series into an electrical waveform for tACS stimulation of that same left posterior parietal cortex location. In other words, we stimulated a brain region with a 'replay' of its own alpha-band frequency content, based on spontaneous activity. Within-subjects (N = 24), we compared to a sham tACS session the effects of broadband-alpha tACS, power-matched spectral inverse ('alpha-removed') control tACS, and individual alpha frequency (IAF) tACS, on EEG alpha power and performance in an endogenous attention task previously reported to be affected by alpha tACS. Broadband-alpha-tACS significantly modulated attention task performance (i.e., reduced the rightward visuospatial attention bias in trials without distractors, and reduced attention benefits). Alpha-removed tACS also reduced the rightward visuospatial attention bias. IAF-tACS did not significantly modulate attention task performance compared to sham tACS, but also did not statistically significantly differ from broadband-alpha-tACS. This new broadband-alpha-tACS approach seems promising, but should be further explored and validated in future studies.
Collapse
Affiliation(s)
- Shanice E W Janssens
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands.
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands; Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| | - Tom A de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht, Netherlands; Center for Integrative Neuroscience (CIN), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
13
|
Kemmerer SK, Sack AT, de Graaf TA, Ten Oever S, De Weerd P, Schuhmann T. Frequency-specific transcranial neuromodulation of alpha power alters visuospatial attention performance. Brain Res 2022; 1782:147834. [PMID: 35176250 DOI: 10.1016/j.brainres.2022.147834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) at 10Hz has been shown to modulate spatial attention. However, the frequency-specificity and the oscillatory changes underlying this tACS effect are still largely unclear. Here, we applied high-definition tACS at individual alpha frequency (IAF), two control frequencies (IAF+/-2Hz) and sham to the left posterior parietal cortex and measured its effects on visuospatial attention performance and offline alpha power (using electroencephalography, EEG). We revealed a behavioural and electrophysiological stimulation effect relative to sham for IAF but not control frequency stimulation conditions: there was a leftward lateralization of alpha power for IAF tACS, which differed from sham for the first out of three minutes following tACS. At a high value of this EEG effect (moderation effect), we observed a leftward attention bias relative to sham. This effect was task-specific, i.e. it could be found in an endogenous attention but not in a detection task. Only in the IAF tACS condition, we also found a correlation between the magnitude of the alpha lateralization and the attentional bias effect. Our results support a functional role of alpha oscillations in visuospatial attention and the potential of tACS to modulate it. The frequency-specificity of the effects suggests that an individualization of the stimulation frequency is necessary in heterogeneous target groups with a large variation in IAF.
Collapse
Affiliation(s)
- S K Kemmerer
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands.
| | - A T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - T A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| | - S Ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| | - P De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| | - T Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands; Brain Imaging Center, Maastricht, The Netherlands
| |
Collapse
|
14
|
Behavioral and electrocortical effects of transcranial alternating current stimulation during advice-guided decision-making. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Schoenfeld MJ, Grigoras IF, Stagg CJ, Zich C. Investigating Different Levels of Bimanual Interaction With a Novel Motor Learning Task: A Behavioural and Transcranial Alternating Current Stimulation Study. Front Hum Neurosci 2021; 15:755748. [PMID: 34867245 PMCID: PMC8635148 DOI: 10.3389/fnhum.2021.755748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Many tasks require the skilled interaction of both hands, such as eating with knife and fork or keyboard typing. However, our understanding of the behavioural and neurophysiological mechanisms underpinning bimanual motor learning is still sparse. Here, we aimed to address this by first characterising learning-related changes of different levels of bimanual interaction and second investigating how beta tACS modulates these learning-related changes. To explore early bimanual motor learning, we designed a novel bimanual motor learning task. In the task, a force grip device held in each hand (controlling x- and y-axis separately) was used to move a cursor along a path of streets at different angles (0°, 22.5°, 45°, 67.5°, and 90°). Each street corresponded to specific force ratios between hands, which resulted in different levels of hand interaction, i.e., unimanual (Uni, i.e., 0°, 90°), bimanual with equal force (Bi eq , 45°), and bimanual with unequal force (Bi uneq 22.5°, 67.5°). In experiment 1, 40 healthy participants performed the task for 45 min with a minimum of 100 trials. We found that the novel task induced improvements in movement time and error, with no trade-off between movement time and error, and with distinct patterns for the three levels of bimanual interaction. In experiment 2, we performed a between-subjects, double-blind study in 54 healthy participants to explore the effect of phase synchrony between both sensorimotor cortices using tACS at the individual's beta peak frequency. The individual's beta peak frequency was quantified using electroencephalography. 20 min of 2 mA peak-to-peak amplitude tACS was applied during task performance (40 min). Participants either received in-phase (0° phase shift), out-of-phase (90° phase shift), or sham (3 s of stimulation) tACS. We replicated the behavioural results of experiment 1, however, beta tACS did not modulate motor learning. Overall, the novel bimanual motor task allows to characterise bimanual motor learning with different levels of bimanual interaction. This should pave the way for future neuroimaging studies to further investigate the underlying mechanism of bimanual motor learning.
Collapse
Affiliation(s)
- Marleen J. Schoenfeld
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Ioana-Florentina Grigoras
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Charlotte J. Stagg
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Catharina Zich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
16
|
No aftereffects of high current density 10 Hz and 20 Hz tACS on sensorimotor alpha and beta oscillations. Sci Rep 2021; 11:21416. [PMID: 34725379 PMCID: PMC8560917 DOI: 10.1038/s41598-021-00850-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 12/27/2022] Open
Abstract
Application of transcranial alternating current stimulation (tACS) is thought to modulate ongoing brain oscillations in a frequency-dependent manner. However, recent studies report various and sometimes inconsistent results regarding its capacity to induce changes in cortical activity beyond the stimulation period. Here, thirty healthy volunteers participated in a randomized, cross-over, sham-controlled, double-blind study using EEG to measure the offline effects of tACS on alpha and beta power. Sham and high current density tACS (1 mA; 10 Hz and 20 Hz; 0.32 mA/cm2) were applied for 20 min over bilateral sensorimotor areas and EEG was recorded at rest before and after stimulation for 20 min. Bilateral tACS was not associated with significant changes in local alpha and beta power frequencies at stimulation sites (C3 and C4 electrodes). Overall, the present results fail to provide evidence that bilateral tACS with high current density applied over sensorimotor regions at 10 and 20 Hz reliably modulates offline brain oscillation power at the stimulation site. These results may have implications for the design and implementation of future protocols aiming to induce sustained changes in brain activity, including in clinical populations.
Collapse
|
17
|
Zanto TP, Jones KT, Ostrand AE, Hsu WY, Campusano R, Gazzaley A. Individual differences in neuroanatomy and neurophysiology predict effects of transcranial alternating current stimulation. Brain Stimul 2021; 14:1317-1329. [PMID: 34481095 DOI: 10.1016/j.brs.2021.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Noninvasive transcranial electrical stimulation (tES) research has been plagued with inconsistent effects. Recent work has suggested neuroanatomical and neurophysiological variability may alter tES efficacy. However, direct evidence is limited. OBJECTIVE We have previously replicated effects of transcranial alternating current stimulation (tACS) on improving multitasking ability in young adults. Here, we attempt to assess whether these stimulation parameters have comparable effects in older adults (aged 60-80 years), which is a population known to have greater variability in neuroanatomy and neurophysiology. It is hypothesized that this variability in neuroanatomy and neurophysiology will be predictive of tACS efficacy. METHODS We conducted a pre-registered study where tACS was applied above the prefrontal cortex (between electrodes F3-F4) while participants were engaged in multitasking. Participants were randomized to receive either 6-Hz (theta) tACS for 26.67 min daily for three days (80 min total; Long Exposure Theta group), 6-Hz tACS for 5.33 min daily (16-min total; Short Exposure Theta group), or 1-Hz tACS for 26.67 min (80 min total; Control group). To account for neuroanatomy, magnetic resonance imaging data was used to form individualized models of the tACS-induced electric field (EF) within the brain. To account for neurophysiology, electroencephalography data was used to identify individual peak theta frequency. RESULTS Results indicated that only in the Long Theta group, performance change was correlated with modeled EF and peak theta frequency. Together, modeled EF and peak theta frequency accounted for 54%-65% of the variance in tACS-related performance improvements, which sustained for a month. CONCLUSION These results demonstrate the importance of individual differences in neuroanatomy and neurophysiology in tACS research and help account for inconsistent effects across studies.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA.
| | - Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA
| | - Avery E Ostrand
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA
| | - Wan-Yu Hsu
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA
| | - Richard Campusano
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, CA, USA; Neuroscape, University of California-San Francisco, San Francisco, CA, USA; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Takeuchi N, Izumi SI. Motor Learning Based on Oscillatory Brain Activity Using Transcranial Alternating Current Stimulation: A Review. Brain Sci 2021; 11:1095. [PMID: 34439714 PMCID: PMC8392205 DOI: 10.3390/brainsci11081095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Developing effective tools and strategies to promote motor learning is a high-priority scientific and clinical goal. In particular, motor-related areas have been investigated as potential targets to facilitate motor learning by noninvasive brain stimulation (NIBS). In addition to shedding light on the relationship between motor function and oscillatory brain activity, transcranial alternating current stimulation (tACS), which can noninvasively entrain oscillatory brain activity and modulate oscillatory brain communication, has attracted attention as a possible technique to promote motor learning. This review focuses on the use of tACS to enhance motor learning through the manipulation of oscillatory brain activity and its potential clinical applications. We discuss a potential tACS-based approach to ameliorate motor deficits by correcting abnormal oscillatory brain activity and promoting appropriate oscillatory communication in patients after stroke or with Parkinson's disease. Interpersonal tACS approaches to manipulate intra- and inter-brain communication may result in pro-social effects and could promote the teaching-learning process during rehabilitation sessions with a therapist. The approach of re-establishing oscillatory brain communication through tACS could be effective for motor recovery and might eventually drive the design of new neurorehabilitation approaches based on motor learning.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- Department of Physical Therapy, Akita University Graduate School of Health Sciences 1-1-1, Hondo, Akita 010-8543, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| |
Collapse
|
19
|
Salamanca-Giron RF, Raffin E, Zandvliet SB, Seeber M, Michel CM, Sauseng P, Huxlin KR, Hummel FC. Enhancing visual motion discrimination by desynchronizing bifocal oscillatory activity. Neuroimage 2021; 240:118299. [PMID: 34171500 DOI: 10.1016/j.neuroimage.2021.118299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 11/17/2022] Open
Abstract
Visual motion discrimination involves reciprocal interactions in the alpha band between the primary visual cortex (V1) and mediotemporal areas (V5/MT). We investigated whether modulating alpha phase synchronization using individualized multisite transcranial alternating current stimulation (tACS) over V5 and V1 regions would improve motion discrimination. We tested 3 groups of healthy subjects with the following conditions: (1) individualized In-Phase V1alpha-V5alpha tACS (0° lag), (2) individualized Anti-Phase V1alpha-V5alpha tACS (180° lag) and (3) sham tACS. Motion discrimination and EEG activity were recorded before, during and after tACS. Performance significantly improved in the Anti-Phase group compared to the In-Phase group 10 and 30 min after stimulation. This result was explained by decreases in bottom-up alpha-V1 gamma-V5 phase-amplitude coupling. One possible explanation of these results is that Anti-Phase V1alpha-V5alpha tACS might impose an optimal phase lag between stimulation sites due to the inherent speed of wave propagation, hereby supporting optimized neuronal communication.
Collapse
Affiliation(s)
- Roberto F Salamanca-Giron
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
| | - Estelle Raffin
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
| | - Sarah B Zandvliet
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland
| | - Martin Seeber
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland; Lemanic Biomedical Imaging Centre (CIBM), Lausanne, Geneva, Switzerland
| | - Paul Sauseng
- Department of Psychology, LMU Munich, Leopoldstr. 13, Munich 80802, Germany
| | - Krystel R Huxlin
- The Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Campus Biotech, Room H4.3.132.084, Chemin des Mines 9, Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics and Brain Mind Institute, Clinique Romande de Readaptation (CRR), EPFL Valais, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
20
|
Giustiniani A, Battaglia G, Messina G, Morello H, Guastella S, Iovane A, Oliveri M, Palma A, Proia P. Transcranial Alternating Current Stimulation (tACS) Does Not Affect Sports People's Explosive Power: A Pilot Study. Front Hum Neurosci 2021; 15:640609. [PMID: 33994980 PMCID: PMC8116517 DOI: 10.3389/fnhum.2021.640609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose: This study is aimed to preliminary investigate whether transcranial alternating current stimulation (tACS) could affect explosive power considering genetic background in sport subjects. Methods: Seventeen healthy sports volunteers with at least 3 years of sports activities participated in the experiment. After 2 weeks of familiarization performed without any stimulation, each participant received either 50 Hz-tACS or sham-tACS. Before and after stimulation, subjects performed the following tests: (1) the squat jump with the hands on the hips (SJ); (2) countermovement jump with the hands on the hips (CMJ); (3) countermovement jump with arm swing (CMJ-AS); (4) 15-s Bosco's test; (5) seated backward overhead medicine ball throw (SBOMBT); (6) seated chest pass throw (SCPT) with a 3-kg rubber medicine ball; and (7) hand-grip test. Additionally, saliva samples were collected from each participant. Genotyping analysis was carried out by polymerase chain reaction (PCR). Results: No significant differences were found in sport performance of subjects after 50 Hz-tACS. Additionally, we did not find any influence of genetic background on tACS-related effect on physical performance. These results suggest that tACS at gamma frequency is not able to induce an after-effect modulating sport performance. Further investigations with larger sample size are needed in order to understand the potential role of non-invasive brain stimulation techniques (NIBS) in motor performances. Conclusions: Gamma-tACS applied before the physical performance fails to improve explosive power in sport subjects.
Collapse
Affiliation(s)
- Andreina Giustiniani
- IRCCS San Camillo Hospital, Venice, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy.,Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Messina
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Hely Morello
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | | | - Angelo Iovane
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Massimiliano Oliveri
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
21
|
Dantas AM, Sack AT, Bruggen E, Jiao P, Schuhmann T. Reduced risk-taking behavior during frontal oscillatory theta band neurostimulation. Brain Res 2021; 1759:147365. [PMID: 33582119 DOI: 10.1016/j.brainres.2021.147365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Most of our decisions involve a certain degree of risk regarding the outcomes of our choices. People vary in the way they make decisions, resulting in different levels of risk-taking behavior. These differences have been linked to prefrontal theta band activity. However, a direct functional relationship between prefrontal theta band activity and risk-taking has not yet been demonstrated. OBJECTIVE We used noninvasive brain stimulation to test the functional relevance of prefrontal oscillatory theta activity for the regulatory control of risk-taking behavior. METHODS In a within-subject experiment, 31 healthy participants received theta (6.5 Hertz [Hz]), gamma (40 Hz), and sham transcranial alternating current stimulation (tACS) over the left prefrontal cortex (lPFC). During stimulation, participants completed a task assessing their risk-taking behavior as well as response times and sensitivity to value and outcome probabilities. Electroencephalography (EEG) was recorded before and immediately after stimulation to investigate possible long-lasting stimulation effects. RESULTS Theta band, but not gamma band or sham, tACS led to a significant reduction in risk-taking behavior, indicating a frequency-specific effect of prefrontal brain stimulation on the modulation of risk-taking behavior. Moreover, theta band stimulation led to increased response times and decreased sensitivity to reward values. EEG data analyses did not show an offline increase in power in the stimulated frequencies after the stimulation protocol. CONCLUSION These findings provide direct empirical evidence for the effects of prefrontal theta band stimulation on behavioral risk-taking regulation.
Collapse
Affiliation(s)
- Aline M Dantas
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands; Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University, Maastricht, The Netherlands.
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
| | - Elisabeth Bruggen
- Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University, Maastricht, The Netherlands
| | - Peiran Jiao
- Department of Finance, School of Business and Economics, Maastricht University, Maastricht, The Netherlands
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Centre, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
22
|
Zarubin G, Gundlach C, Nikulin V, Villringer A, Bogdan M. Transient Amplitude Modulation of Alpha-Band Oscillations by Short-Time Intermittent Closed-Loop tACS. Front Hum Neurosci 2020; 14:366. [PMID: 33100993 PMCID: PMC7500443 DOI: 10.3389/fnhum.2020.00366] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) techniques such as transcranial alternating current stimulation (tACS) have recently become extensively utilized due to their potential to modulate ongoing neuronal oscillatory activity and consequently to induce cortical plasticity relevant for various cognitive functions. However, the neurophysiological basis for stimulation effects as well as their inter-individual differences is not yet understood. In the present study, we used a closed-loop electroencephalography-tACS(EEG-tACS) protocol to examine the modulation of alpha oscillations generated in occipito-parietal areas. In particular, we investigated the effects of a repeated short-time intermittent stimulation protocol (1 s in every trial) applied over the visual cortex (Cz and Oz) and adjusted according to the phase and frequency of visual alpha oscillations on the amplitude of these oscillations. Based on previous findings, we expected higher increases in alpha amplitudes for tACS applied in-phase with ongoing oscillations as compared to an application in anti-phase and this modulation to be present in low-alpha amplitude states of the visual system (eyes opened, EO) but not high (eyes closed, EC). Contrary to our expectations, we found a transient suppression of alpha power in inter-individually derived spatially specific parieto-occipital components obtained via the estimation of spatial filters by using the common spatial patterns approach. The amplitude modulation was independent of the phase relationship between the tACS signal and alpha oscillations, and the state of the visual system manipulated via closed- and open-eye conditions. It was also absent in conventionally analyzed single-channel and multi-channel data from an average parieto-occipital region. The fact that the tACS modulation of oscillations was phase-independent suggests that mechanisms driving the effects of tACS may not be explained by entrainment alone, but rather require neuroplastic changes or transient disruption of neural oscillations. Our study also supports the notion that the response to tACS is subject-specific, where the modulatory effects are shaped by the interplay between the stimulation and different alpha generators. This favors stimulation protocols as well as analysis regimes exploiting inter-individual differences, such as spatial filters to reveal otherwise hidden stimulation effects and, thereby, comprehensively induce and study the effects and underlying mechanisms of tACS.
Collapse
Affiliation(s)
- Georgy Zarubin
- Technical Informatics Department, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christopher Gundlach
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
- Mind Brain Body Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Bogdan
- Technical Informatics Department, Leipzig University, Leipzig, Germany
| |
Collapse
|
23
|
Jones KT, Johnson EL, Tauxe ZS, Rojas DC. Modulation of auditory gamma-band responses using transcranial electrical stimulation. J Neurophysiol 2020; 123:2504-2514. [PMID: 32459551 DOI: 10.1152/jn.00003.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Auditory gamma-band (>30 Hz) activity is a biomarker of cortical excitation/inhibition (E/I) balance in autism, schizophrenia, and bipolar disorder. We provide a comprehensive account of the effects of transcranial alternating current stimulation (tACS) and transcranial direct current stimulation (tDCS) on gamma responses. Forty-five healthy young adults listened to 40-Hz auditory click trains while electroencephalography (EEG) data were collected to measure stimulus-related gamma activity immediately before and after 10 min of 1 mA tACS (40 Hz), tDCS, or sham stimulation to left auditory cortex. tACS, but not tDCS, increased gamma power and phase locking to the auditory stimulus. However, both tACS and tDCS strengthened the gamma phase connectome, and effects persisted beyond the stimulus. Finally, tDCS strengthened the coupling of gamma activity to alpha oscillations after termination of the stimulus. No effects were observed in prestimulus gamma power, the gamma amplitude connectome, or any band-limited alpha measure. Whereas both stimulation techniques synchronize gamma responses between regions, tACS also tunes the magnitude and timing of gamma responses to the stimulus. Results reveal dissociable neurophysiological changes following tACS and tDCS and demonstrate that clinical biomarkers can be altered with noninvasive neurostimulation, especially frequency-tuned tACS.NEW & NOTEWORTHY Gamma frequency-tuned transcranial alternating current stimulation (tACS) adjusts the magnitude and timing of auditory gamma responses, as compared with both sham stimulation and transcranial direct current stimulation (tDCS). However, both tACS and tDCS strengthen the gamma phase connectome, which is disrupted in numerous neurological and psychiatric disorders. These findings reveal dissociable neurophysiological changes following two noninvasive neurostimulation techniques commonly applied in clinical and research settings.
Collapse
Affiliation(s)
- Kevin T Jones
- Colorado State University, Department of Psychology, Fort Collins, Colorado.,University of California-San Francisco, Department of Neurology, Neuroscape, San Francisco, California
| | - Elizabeth L Johnson
- University of California-Berkeley, Helen Wills Neuroscience Institute, Berkeley, California.,Wayne State University, Institute of Gerontology, Life-Span Cognitive Neuroscience Program, Detroit, Michigan
| | - Zoe S Tauxe
- Colorado State University, Department of Psychology, Fort Collins, Colorado.,University of California-San Diego, Department of Psychology, San Diego, California
| | - Donald C Rojas
- Colorado State University, Department of Psychology, Fort Collins, Colorado
| |
Collapse
|
24
|
Lafleur LP, Klees-Themens G, Chouinard-Leclaire C, Larochelle-Brunet F, Tremblay S, Lepage JF, Théoret H. Neurophysiological aftereffects of 10 Hz and 20 Hz transcranial alternating current stimulation over bilateral sensorimotor cortex. Brain Res 2020; 1727:146542. [PMID: 31712086 DOI: 10.1016/j.brainres.2019.146542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
Abstract
Alpha (8-12 Hz) and beta (13-30 Hz) oscillations are believed to be involved in motor control. Their modulation with transcranial alternating current stimulation (tACS) has been shown to alter motor behavior and cortical excitability. The aim of the present study was to determine whether tACS applied bilaterally over sensorimotor cortex at 10 Hz and 20 Hz modulates interhemispheric interactions and corticospinal excitability. Thirty healthy volunteers participated in a randomized, cross-over, sham-controlled, double-blind protocol. Sham and active tACS (10 Hz, 20 Hz, 1 mA) were applied for 20 min over bilateral sensorimotor areas. The physiological effects of tACS on corticospinal excitability and interhemispheric inhibition were assessed with transcranial magnetic stimulation. Physiological mirror movements were assessed to measure the overflow of motor activity to the contralateral M1 during voluntary muscle contraction. Bilateral 10 Hz tACS reduced corticospinal excitability. There was no significant effect of tACS on physiological mirror movements and interhemispheric inhibition. Ten Hz tACS was associated with response patterns consistent with corticospinal inhibition in 57% of participants. The present results indicate that application of tACS at the alpha frequency can induce aftereffects in sensorimotor cortex of healthy individuals.
Collapse
Affiliation(s)
- Louis-Philippe Lafleur
- Department of psychologie, Université de Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada
| | | | | | | | - Sara Tremblay
- Department of Psychology, Carleton University, Ottawa, Canada
| | - Jean-Francois Lepage
- Département de Pédiatrie, Médecine nucléaire et radiobiologie, Centre de recherche du CHU Sherbrooke, Sherbrooke, Canada
| | - Hugo Théoret
- Department of psychologie, Université de Montréal, Montréal, Canada; Centre de recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada.
| |
Collapse
|
25
|
Schuhmann T, Kemmerer SK, Duecker F, de Graaf TA, ten Oever S, De Weerd P, Sack AT. Left parietal tACS at alpha frequency induces a shift of visuospatial attention. PLoS One 2019; 14:e0217729. [PMID: 31774818 PMCID: PMC6881009 DOI: 10.1371/journal.pone.0217729] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Voluntary shifts of visuospatial attention are associated with a lateralization of parieto-occipital alpha power (7-13Hz), i.e. higher power in the hemisphere ipsilateral and lower power contralateral to the locus of attention. Recent noninvasive neuromodulation studies demonstrated that alpha power can be experimentally increased using transcranial alternating current stimulation (tACS). OBJECTIVE/HYPOTHESIS We hypothesized that tACS at alpha frequency over the left parietal cortex induces shifts of attention to the left hemifield. However, spatial attention shifts not only occur voluntarily (endogenous/ top-down), but also stimulus-driven (exogenous/ bottom-up). To study the task-specificity of the potential effects of tACS on attentional processes, we administered three conceptually different spatial attention tasks. METHODS 36 healthy volunteers were recruited from an academic environment. In two separate sessions, we applied either high-density tACS at 10Hz, or sham tACS, for 35-40 minutes to their left parietal cortex. We systematically compared performance on endogenous attention, exogenous attention, and stimulus detection tasks. RESULTS In the endogenous attention task, a greater leftward bias in reaction times was induced during left parietal 10Hz tACS as compared to sham. There were no stimulation effects in either the exogenous attention or the stimulus detection task. CONCLUSION The study demonstrates that high-density tACS at 10Hz can be used to modulate visuospatial attention performance. The tACS effect is task-specific, indicating that not all forms of attention are equally susceptible to the stimulation.
Collapse
Affiliation(s)
- Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Selma K. Kemmerer
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Tom A. de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Sanne ten Oever
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
| | - Alexander T. Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Brain Imaging Center, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain + Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
26
|
State-Dependent Effects of Transcranial Oscillatory Currents on the Motor System during Action Observation. Sci Rep 2019; 9:12858. [PMID: 31492895 PMCID: PMC6731229 DOI: 10.1038/s41598-019-49166-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
We applied transcranial alternating current stimulation (tACS) to the primary motor cortex (M1) at different frequencies during an index–thumb pinch-grip observation task. To estimate changes in the corticospinal output, we used the size of motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) of M1 using an online MRI-guided simultaneous TMS-tACS approach. The results of the beta-tACS confirm a non-selective increase in corticospinal excitability in subjects at rest; an increase was observed for both of the tested hand muscles, the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). However, during action observation of the pinch-grip movement, the increase of corticospinal excitability was only observed for the prime mover FDI muscle and took place during alpha-tACS, while gamma-tACS affected both the FDI and control muscle (ADM) responses. These phenomena likely reflect the hypothesis that the mu and gamma rhythms specifically index the downstream modulation of primary sensorimotor areas by engaging mirror neuron activity. The current neuromodulation approach confirms that tACS can be used to induce neurophysiologically detectable state-dependent enhancement effects, even in complex motor-cognitive tasks.
Collapse
|