1
|
Agyekum TP, Arko-Mensah J, Botwe PK, Hogarh JN, Issah I, Dadzie SK, Dwomoh D, Billah MK, Robins T, Fobil JN. Relationship between temperature and Anopheles gambiae sensu lato mosquitoes' susceptibility to pyrethroids and expression of metabolic enzymes. Parasit Vectors 2022; 15:163. [PMID: 35527275 PMCID: PMC9080126 DOI: 10.1186/s13071-022-05273-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background Malaria remains one of the most devastating diseases globally, and the control of mosquitoes as the vector is mainly dependent on chemical insecticides. Elevated temperatures associated with future warmer climates could affect mosquitoes' metabolic enzyme expression and increase insecticide resistance, making vector control difficult. Understanding how mosquito rearing temperatures influence their susceptibility to insecticide and expression of metabolic enzymes could aid in the development of novel tools and strategies to control mosquitoes in a future warmer climate. This study evaluated the effects of temperature on the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to pyrethroids and their expression of metabolic enzymes. Methods Anopheles gambiae s.l. eggs obtained from laboratory-established colonies were reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38, and 40 °C). Upon adult emergence, 3- to 5-day-old female non-blood-fed mosquitoes were used for susceptibility tests following the World Health Organization (WHO) bioassay protocol. Batches of 20–25 mosquitoes from each temperature regime (25–34 °C) were exposed to two pyrethroid insecticides (0.75% permethrin and 0.05% deltamethrin). In addition, the levels of four metabolic enzymes (α-esterase, β-esterase, glutathione S-transferase [GST], and mixed-function oxidase [MFO]) were examined in mosquitoes that were not exposed and those that were exposed to pyrethroids. Results Mortality in An. gambiae s.l. mosquitoes exposed to deltamethrin and permethrin decreased at temperatures above 28 °C. In addition, mosquitoes reared at higher temperatures were more resistant and had more elevated enzyme levels than those raised at low temperatures. Overall, mosquitoes that survived after being exposed to pyrethroids had higher levels of metabolic enzymes than those that were not exposed to pyrethroids. Conclusions This study provides evidence that elevated temperatures decreased An. gambiae s.l. mosquitoes' susceptibility to pyrethroids and increased the expression of metabolic enzymes. This evidence suggests that elevated temperatures projected in a future warmer climate could increase mosquitoes' resistance to insecticides and complicate malaria vector control measures. This study therefore provides vital information, and suggests useful areas of future research, on the effects of temperature variability on mosquitoes that could guide vector control measures in a future warmer climate. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05273-z.
Collapse
Affiliation(s)
- Thomas Peprah Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana.
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| | - Paul Kingsley Botwe
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| | - Jonathan Nartey Hogarh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| | - Samuel Kweku Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, P.O. Box LG 581, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Maxwell Kelvin Billah
- Department of Animal Biology and Conservation Science, University of Ghana, P.O. Box L.G. 67, Accra, Ghana
| | - Thomas Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Julius Najah Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| |
Collapse
|
2
|
Leippe P, Broichhagen J, Cailliau K, Mougel A, Morel M, Dissous C, Trauner D, Vicogne J. Transformation of Receptor Tyrosine Kinases into Glutamate Receptors and Photoreceptors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Philipp Leippe
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyMax Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Johannes Broichhagen
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyForschungsinstitut für Molekulare Pharmakologie Robert-Rössle Str. 10 13125 Berlin Germany
| | - Katia Cailliau
- CNRS UMR 8576University of Lille Villeneuve d'Asq France
| | - Alexandra Mougel
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Marion Morel
- Department of Biochemistry and Molecular BiologyBoonshoft School of MedicineWright State University Dayton OH 45435 USA
| | - Colette Dissous
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Dirk Trauner
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Department of ChemistrySilver Center for Arts and ScienceNew York University 100 Washington Square East New York NY 10003 USA
| | - Jérôme Vicogne
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| |
Collapse
|
3
|
Leippe P, Broichhagen J, Cailliau K, Mougel A, Morel M, Dissous C, Trauner D, Vicogne J. Transformation of Receptor Tyrosine Kinases into Glutamate Receptors and Photoreceptors. Angew Chem Int Ed Engl 2020; 59:6720-6723. [DOI: 10.1002/anie.201915352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Philipp Leippe
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyMax Planck Institute for Medical Research Jahnstr. 29 69120 Heidelberg Germany
| | - Johannes Broichhagen
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Present address: Department of Chemical BiologyForschungsinstitut für Molekulare Pharmakologie Robert-Rössle Str. 10 13125 Berlin Germany
| | - Katia Cailliau
- CNRS UMR 8576University of Lille Villeneuve d'Asq France
| | - Alexandra Mougel
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Marion Morel
- Department of Biochemistry and Molecular BiologyBoonshoft School of MedicineWright State University Dayton OH 45435 USA
| | - Colette Dissous
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| | - Dirk Trauner
- Department of ChemistryLudwig-Maximilians-Universität München and Munich Center for Integrated Protein Science Butenandtstrasse 5–13 81377 München Germany
- Department of ChemistrySilver Center for Arts and ScienceNew York University 100 Washington Square East New York NY 10003 USA
| | - Jérôme Vicogne
- Univ. LilleCNRSInserm, CHU LilleInstitut Pasteur de LilleU1019—UMR 8204, Center for Infection and Immunity of Lille (CIIL) 59000 Lille France
| |
Collapse
|
4
|
Veenstra JA. Most lepidopteran neuroparsin genes seem functional, but in some domesticated silkworm strains it has a fatal mutation. Gen Comp Endocrinol 2020; 285:113274. [PMID: 31525375 DOI: 10.1016/j.ygcen.2019.113274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 11/25/2022]
Abstract
The primary sequence of the Arthropod neurohormone neuroparsin is so variable that so far no orthologs from moths and butterflies have been characterized, even though classical neurosecretory stains identify cells that are homologous to those producing this hormone in other insect species. Here Lepidopteran cDNAs showing limited sequence similarity to other insect neuroparsins are described. That these cDNAs do indeed code for authentic neuroparsins was confirmed by in situ hybridization in the wax moth, Galleria mellonella, which labeled the neuroparsin neuroendocrine cells. Although in virtually all genome assemblies from Lepidoptera a neuroparsin gene could be identified, the genome assembly from the silkworm, Bombyx mori, has a neuroparsin gene containing a 16 nucleotide deletion that renders this gene nonfunctional. Although only a small number of all silkworm strains carry this deletion, it suggests that the domestication of the silkworm has rendered the function of this neurohormone dispensable.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France.
| |
Collapse
|