1
|
Gaspar MG, Núñez-Carro C, Blanco-Blanco M, Blanco FJ, de Andrés MC. Inflammaging contributes to osteoarthritis development and human microbiota variations and vice versa: A systematic review. Osteoarthritis Cartilage 2025; 33:218-230. [PMID: 39612977 DOI: 10.1016/j.joca.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE To report evidence on microbiota and its relationship with inflammaging, the innate immune system and osteoarthritis (OA) in human patients. DESIGN A systematic review was performed in accordance with PRISMA and following the PICO model. Web of Science, Scopus, Cochrane Library for clinical trials and PubMed were searched. The analysis was focused on human OA patients, and the outcome was mainly microbiota identification, improvement or deterioration of OA pain, stiffness or inflammation. RESULTS After screening, 24 studies fulfilled the inclusion criteria. There is not a standardised procedure yet, as microbiota analysis in OA is relatively new. The 16S rRNA gene is the most used in bacterial phylogeny and taxonomy studies as it is highly conserved. Selected articles hypothesise about the correlation between the altered composition of the gut microbiota and OA severity, which seems to affect the immune composition by disrupting gut permeability and releasing pro-inflammatory factors. Five preliminary clinical trials used pro-prebiotics to treat OA patients, and although their results are not conclusive and the methodology needs to be improved, it might indicate a favourable approach for further studies in the prevention of OA. CONCLUSIONS Several hypotheses have been made on the associations between microbiota changes and inflammation. They mainly advocate that those changes in the gastrointestinal tract affect gut permeability, which alters the immune system, leading to OA progression. Research advances, along with the continual growth and improvement of technology, mark this 'microbiota-inflammaging-OA' axis as a promising line of investigation.
Collapse
Affiliation(s)
- Miruna G Gaspar
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), C/As Xubias de Arriba 84, 15006 A Coruña, Spain.
| | - Carmen Núñez-Carro
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), C/As Xubias de Arriba 84, 15006 A Coruña, Spain.
| | - Margarita Blanco-Blanco
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), C/As Xubias de Arriba 84, 15006 A Coruña, Spain.
| | - Francisco J Blanco
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), C/As Xubias de Arriba 84, 15006 A Coruña, Spain; Universidade da Coruña (UDC), Centro de Investigación de Ciencias Avanzadas (CICA), Grupo de Investigación en Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, 15008 A Coruña, Spain.
| | - María C de Andrés
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), C/As Xubias de Arriba 84, 15006 A Coruña, Spain.
| |
Collapse
|
2
|
Xi Y, Wang Z, Wei Y, Xiao N, Duan L, Zhao T, Zhang X, Zhang L, Wang J, Li Z, Qin D. Gut Microbiota and Osteoarthritis: From Pathogenesis to Novel Therapeutic Opportunities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025:1-24. [PMID: 39880660 DOI: 10.1142/s0192415x2550003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease, characterized by cartilage damage, synovial inflammation, subchondral bone sclerosis, marginal bone loss, and osteophyte development. Clinical manifestations include inflammatory joint pain, swelling, osteophytes, and limitation of motion. The pathogenesis of osteoarthritis has not yet been fully uncovered. With ongoing research, however, it has been gradually determined that OA is not caused solely by mechanical injury or aging, but rather involves chronic low-grade inflammation, metabolic imbalances, dysfunctional adaptive immunity, and alterations in central pain processing centers. The main risk factors for OA include obesity, age, gender, genetics, and sports injuries. In recent years, extensive research on gut microbiota has revealed that gut dysbiosis is associated with some common risk factors for OA, and that it may intervene in its pathogenesis through both direct and indirect mechanisms. Therefore, gut flora imbalance as a pathogenic factor in OA has become a hotspot topic of research, with potential therapeutic connotations. In this paper, we review the role of the gut microbiota in the pathogenesis of OA, describe its relationship with common OA risk factors, and address candidate gut microbiota markers for OA diagnosis. In addition, with focus on OA therapies, we discuss the effects of direct and indirect interventions targeting the gut microbiota, as well as the impact of gut bacteria on the efficacy of OA drugs.
Collapse
Affiliation(s)
- Yujiang Xi
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- United Graduate School, China Academy of Chinese Medical Sciences, Suzhou Jiangsu 215000, P. R. China
| | - Zhifeng Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Yuanyuan Wei
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Niqin Xiao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Li Duan
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Ting Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
| | - Xiaoyu Zhang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Liping Zhang
- Southern Central Hospital of Yunnan Province, Mengzi Honghe 661100, P. R. China
| | - Jian Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Zhaofu Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| | - Dongdong Qin
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming Yunnan 650500, P. R. China
| |
Collapse
|
3
|
Dyson G, Barrett M, Schlupp L, Prinz E, Hannebut N, Szymczak A, Brawner CM, Jeffries MA. Ketogenic Diet-Associated Worsening of Osteoarthritis Histologic Secerity, Increased Pain Sensitivity and Gut Microbiome Dysbiosis in Mice. ACR Open Rheumatol 2025; 7:e11794. [PMID: 39853943 PMCID: PMC11760994 DOI: 10.1002/acr2.11794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/26/2025] Open
Abstract
OBJECTIVES Dietary interventions are a potentially powerful treatment option for knee osteoarthritis (OA). The objective of this study was to evaluate a well-formulated ketogenic diet (KD) in the context of knee OA histology and pain using the destabilization of the medial meniscus (DMM) mouse model and correlate with gut microbiome and systemic cytokine levels. METHODS Adult male mice underwent unilateral DMM or sham surgery and were then fed eight weeks of KD or chow. At baseline and every two weeks, mechanical allodynia of the operated and contralateral knees was assessed via analgesiometry. Knee joints were collected for histology, gut microbiome analysis was performed on cecal material via 16S sequencing, and serum cytokines were analyzed via Bio-Plex assay. RESULTS KD mice had worse histopathologic OA after DMM (mean ± SEM Osteoarthritis Research Society International score: KD-DMM: 4.0 ± 0.5 vs chow-DMM: 2.7 ± 0.08; P = 0.02). KD mice had increased mechanical allodynia postsurgery (P = 0.005 in mixed-effects model). The gut microbiome changed substantially with KD: 59 clades were altered by KD in DMM and 39 by KD in sham (36 were shared, 25 overlapped with previous murine OA studies). Several clades were correlated on an individual-mouse level with both histology and allodynia (eg, Lactobacillus histology P = 0.004, allodynia P = 1 × 10-4). Serum analysis showed four cytokines increased with KD (interleukin [IL]-1β, IL-2, IL-3, and IL-13). CONCLUSION KD started immediately after OA induction via DMM is associated with worsened histologic outcomes. KD also worsens mechanical allodynia after either DMM or sham surgery. KD induces significant gut microbiome dysbiosis in clades previously associated with murine OA.
Collapse
Affiliation(s)
- Gabby Dyson
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and the Oklahoma City Veterans Affairs Medical Center
| | - Montana Barrett
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and the Oklahoma City Veterans Affairs Medical Center
| | - Leoni Schlupp
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma City
| | - Emmaline Prinz
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma City
| | - Nicholas Hannebut
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and the Oklahoma City Veterans Affairs Medical Center
| | - Aleksander Szymczak
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology ProgramOklahoma City
| | - Cindy Miranda Brawner
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program and the Oklahoma City Veterans Affairs Medical Center
| | - Matlock A. Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, the University of Oklahoma Health Sciences Center, and the Oklahoma City Veterans Affairs Medical Center
| |
Collapse
|
4
|
Chow L, Kawahisa-Piquini G, Bass L, Hendrickson D, Patel A, Rockow M, Dow S, Pezzanite LM. Correlation of fecal microbiome dysregulation to synovial transcriptome in an equine model of obesity associated osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:112. [PMID: 39817240 PMCID: PMC11729816 DOI: 10.21037/atm-24-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/26/2024] [Indexed: 01/18/2025]
Abstract
Background Osteoarthritis (OA) is increasingly thought to be a multifactorial disease in which sustained gut inflammation serves as a continued source of inflammatory mediators driving degenerative processes at distant sites such as joints. The objective of this study was to use the equine model of naturally occurring obesity associated OA to compare the fecal microbiome in OA and health and correlate those findings to differential gene expression synovial fluid (SF) cells, circulating leukocytes and cytokine levels (plasma, SF) towards improved understanding of the interplay between microbiome and immune transcriptome in OA pathophysiology. Methods Feces, peripheral blood mononuclear cells (PBMCs), and SF cells were isolated from healthy skeletally mature horses (n=12; 6 males, 6 females) and those with OA (n=6, 2 females, 4 males). Horses were determined to have OA via lameness evaluation, response to intra-articular (IA) diagnostic analgesia, and radiographic and arthroscopic evidence. Horses were excluded who had received medications or joint injections within 2 months. Cytokine analyses of plasma and SF were performed via multiplex immunoassay. Fecal bacterial microbial 16s DNA sequencing was performed and correlated to bulk RNA sequencing of SF cells and PBMC performed using an Illumina based platform. Results Horses with OA had higher body condition scores (P=0.009). Cytokines were elevated in plasma [interleukin (IL)-2, IL-6, IL-18, interferon gamma (IFN-γ), interferon gamma inducible protein 10 (CXCL10 or IP-10), granulocyte colony-stimulating factor (G-CSF)] and SF (IL-1β, IL-6, IL-17A, IL-18, IP-10, G-CSF) in OA. Microbial principal coordinate analysis (PCoA) using Bray-Curtis dissimilarity for β-diversity demonstrated distinct grouping of samples from OA versus healthy horses (P=0.003). Faith alpha diversity was reduced in OA (P=0.02). Analysis of microbiome composition showed differential relative abundance of taxa on multiple levels in OA. Specific phyla (Firmicutes, Verrucomicrobia, Tenericutes, Fibrobacteres), correlated to transcriptomic differences related to cell structure, extracellular matrix, collagen, laminin, migration, and motility, or immune response to inflammation in OA. Conclusions These findings provide compelling evidence for a link between obesity, gut microbiome dysbiosis and differential gene expression in distant joint sites associated with development of OA in a relevant large animal model, establishing a connection here that provides a platform from which development of therapeutic interventions targeting the gut microbiome can build.
Collapse
Affiliation(s)
- Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gabriella Kawahisa-Piquini
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luke Bass
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dean Hendrickson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ashana Patel
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Meagan Rockow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Chang YT, Huang KC, Pranata R, Chen YL, Chen SN, Cheng YH, Chen RJ. Evaluation of the protective effects of chondroitin sulfate oligosaccharide against osteoarthritis via inactivation of NLRP3 inflammasome by in vivo and in vitro studies. Int Immunopharmacol 2024; 142:113148. [PMID: 39276449 DOI: 10.1016/j.intimp.2024.113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Osteoarthritis (OA) is the most prevalent degenerative arthritis disease linked to aging, obesity, diet, and accumulation of octacalcium phosphate (OCP) crystals in joints. Current research has focused on inflammation and chondrocytes apoptosis as underlying OA mechanisms. Inflammatory cytokines like IL-1β activate matrix metalloproteinase-13 (MMP-13) and aggrecanase (the member of A Disintegrin and Metalloproteinase with Thrombospondin motifs family, ADAMTS), leading to cartilage matrix degradation. The NLRP3 inflammasome also contributes to OA pathogenesis by maturing IL-1β. Natural products like chondroitin sulfate oligosaccharides (oligo-CS) show promise in OA treatment by inhibiting inflammation. Our study evaluates the protective effects of oligo-CS against OA by targeting NLRP3 inflammation. Stimulating human SW1353 chondrocytes and human mononuclear macrophage THP-1 cells with OCP showed increased NLRP3 inflammation initiation, NF-κB pathway activation, and the production of inflammatory cytokines (IL-1β, IL-6) and the metabolic index (MMP-13, ADAMTS-5), leading to cartilage matrix degradation. However, oligo-CS treatment significantly reduced inflammation. In a 28-day in vivo study with C57BL/6 female mice, OCP was injected into their right knee and oligo-CS was orally administered. The OCP group exhibited significant joint space narrowing and chondrocyte loss, while the oligo-CS group maintained cartilage integrity. Oligo-CS groups also regulated gut microbiota composition to a healthier state. Taken together, our findings suggest that oligo-CS can be considered as a protective compound against OA.
Collapse
Affiliation(s)
- Yu-Ting Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Ching Huang
- Division of Nephrology, Department of Internal Medicine, Chi Mei Hospital, Liouying District, Tainan, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rosita Pranata
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Lin Chen
- Bioresource Collection and Research Center (BCRC), Food Industry Research and Development Institute, Hsinchu 300, Taiwan.
| | - Ssu-Ning Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hsuan Cheng
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Abughazaleh N, Seerattan RA, Hart DA, Reimer RA, Herzog W. A novel Osteoarthritis scoring system to separate typical OA joint degeneration from non-typical lesions in male Sprague Dawley rats. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100521. [PMID: 39346617 PMCID: PMC11437769 DOI: 10.1016/j.ocarto.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Objective To develop a novel scoring system to characterize osteoarthritis-related degeneration distinct from spontaneous subchondral bone lesions observed in the tibia and femur of male Sprague Dawley rats. Method Knee joints from male rats following 12 weeks of a diet-induced obesity model of osteoarthritis (OA) were assessed. OA histopathological changes (OAHC) were assessed in the knee joints. All scores were evaluated using a modified Mankin score and a modified Osteoarthritis Research Society International histological score. OAHC were divided into 3 categories: (I) Typical OA score evaluating the changes in cartilage structure, cellularity, proteoglycan depletion, and tidemark integrity, (II) A novel Non-typical OA score evaluating cartilage integrity, and the size of local thickening, fragmentation and degeneration along the tidemark and the size and severity of the subchondral bone lesion, and (III) Total OA score comprised of both, the Typical and the Non-typical scores. Results Rats exposed to a high fat/high sucrose diet had higher Typical OA score compared to a control group (Chow). Non-typical and Total OA scores revealed no differences in the severity of the lesions between the HFS and the Chow group animals. All scoring systems had excellent intra- and inter-examiner reliability. Conclusion The spontaneous bone lesions observed in male Sprague Dawley rats can obscure the effect of the diet-induced obesity if the classical scoring system is used to assess joint degeneration. The newly proposed scoring method provides a reliable method to distinguish classical OA joint degeneration from spontaneous Non-typical lesions occurring in these rats.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | | | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Abughazaleh N, Boldt K, Rios JL, Mattiello SM, Collins KH, Seerattan RA, Herzog W. Aerobic and Resistance Training Attenuate Differently Knee Joint Damage Caused by a High-Fat-High-Sucrose Diet in a Rat Model. Cartilage 2024; 15:453-460. [PMID: 37655800 PMCID: PMC11526155 DOI: 10.1177/19476035231193090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE Obesity and associated low-level local systemic inflammation have been linked to an increased rate of developing knee osteoarthritis (OA). Aerobic exercise has been shown to protect the knee from obesity-induced joint damage. The aims of this study were to determine (1) if resistance training provides beneficial metabolic effects similar to those previously observed with aerobic training in rats consuming a high-fat/high-sucrose (HFS) diet and (2) if these metabolic effects mitigate knee OA in a diet-induced obesity model in rats. DESIGN Twelve-week-old Sprague-Dawley rats were randomized into 4 groups: (1) a group fed an HFS diet subjected to aerobic exercise (HFS+Aer), (2) a group fed an HFS diet subjected to resistance exercise (HFS+Res), (3) a group fed an HFS diet with no exercise (HFS+Sed), and (4) a chow-fed sedentary control group (Chow+Sed). HFS+Sed animals were heavier and had greater body fat, higher levels of triglycerides and total cholesterol, and more joint damage than Chow+Sed animals. RESULTS The HFS+Res group had higher body mass and body fat than Chow+Sed animals and higher OA scores than animals from the HFS+Aer group. Severe bone lesions were observed in the HFS+Sed and Chow+Sed animals at age 24 weeks, but not in the HFS+Res and HFS+Aer group animals. CONCLOSION In summary, aerobic training provided better protection against knee joint OA than resistance training in this rat model of HFS-diet-induced obesity. Exposing rats to exercise, either aerobic or resistance training, had a protective effect against the severe bone lesions observed in the nonexercised rats.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Kevin Boldt
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Jaqueline Lourdes Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Kelsey H. Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ruth-Anne Seerattan
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Stevens C, Norris S, Arbeeva L, Carter S, Enomoto M, Nelson AE, Lascelles BDX. Gut Microbiome and Osteoarthritis: Insights From the Naturally Occurring Canine Model of Osteoarthritis. Arthritis Rheumatol 2024; 76:1758-1763. [PMID: 39030898 PMCID: PMC11605265 DOI: 10.1002/art.42956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
OBJECTIVE The purpose of this study was to enhance the current knowledge of the relationship between the gut microbiome and osteoarthritis (OA) and associated pain using pet dogs as a clinically relevant translational model. METHODS Fecal samples were collected from 93 owned pet dogs. Dogs were designated as either clinically healthy or OA pain using validated methods. Metagenomic profiling was performed through shotgun sequencing using the Illumina NovaSeq platform. MetaPhlAn2 and HUMAnN2 were used to evaluate bacterial taxonomic and pathway relative abundance. Comparisons between healthy and OA-pain groups were performed individually for each taxa using nonparametric tests following Benjamini and Hochberg adjustment for multiple comparisons. Permutation analysis of variance was performed using Bray-Curtis distance matrices. All downstream analyses were completed in R. RESULTS No significant differences between healthy and OA-pain dogs were observed for alpha and beta diversity. We found 13 taxa with nominally significant (P < 0.05) associations with OA case status, but none of the associations remained significant after adjustment for multiple comparisons. No differences in alpha or beta diversities or the Firmicutes to Bacteroidetes ratio were found regarding pain severity, mobility or activity level, age, or body composition score. CONCLUSION Similar to recent studies in humans, the present study did not demonstrate a significant difference in the fecal microbial communities between dogs with OA pain and healthy control dogs. Future research in this naturally occurring model should expand on these data and relate the gut microbiome to gut permeability and circulating proinflammatory and anti-inflammatory molecules to better understand the influence of the gut microbiome on OA and OA pain.
Collapse
Affiliation(s)
- Christina Stevens
- Translational Research in Pain, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth Carolina
| | - Samantha Norris
- Translational Research in Pain, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth Carolina
| | - Liubov Arbeeva
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill
| | | | - Masataka Enomoto
- Translational Research in Pain, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth Carolina
| | - Amanda E. Nelson
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill and Gillings School of Global Public Health, University of North Carolina at Chapel Hill
| | - B. Duncan X. Lascelles
- Translational Research in Pain, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Comparative Pain Research and Education Center, North Carolina State University, Raleigh, North Carolina, and the Center for Translational Pain Research, Duke UniversityDurhamNorth Carolina
| |
Collapse
|
9
|
Abughazaleh N, Smith H, Seerattan RA, Hart DA, Reimer RA, Herzog W. Development of shoulder osteoarthritis and bone lesions in female and male rats subjected to a high fat/sucrose diet. Sci Rep 2024; 14:25871. [PMID: 39468197 PMCID: PMC11519393 DOI: 10.1038/s41598-024-76703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Oligofructose prebiotic fiber supplementation has been reported to mitigate the effects of a high fat/high sucrose diet and reduce knee joint degeneration in male rats. However, few studies investigated the development of osteoarthritis and bone lesions as a function of sex and in joints other than the knee. This study was aimed at to quantifying the effect of a HFS diet and prebiotic fiber supplementation on shoulder joint health in male and female Sprague-Dawley rats. Rats were randomized into 6 groups: 2 groups fed a chow diet: Chow-Male n = 11, Chow-female n = 12; 2 groups fed a HFS diet: HFS-Male n = 11, HFS-Female n = 12; and 2 groups fed a prebiotic fiber supplement in addition to the HFS diet: Fiber-Male n = 6, Fiber- Female n = 12. After 12 weeks, shoulder joints were histologically assessed for OA. Body composition, serum lipid profile, insulin resistance and fecal microbiota were also assessed. Shoulders in male and female rats appear to be protected against degeneration when exposed to a HFS diet. Male rats developed bone lesions while females did not. Fiber supplementation was more effective in males than in females suggesting that fiber supplementation may have sex-specific effects on the gut microbiota.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Hannah Smith
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | | | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, Department of Surgery, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Fortuna R, Wang W, Mayengbam S, Tuplin EWN, Sampsell K, Sharkey KA, Hart DA, Reimer RA. Effect of prebiotic fiber on physical function and gut microbiota in adults, mostly women, with knee osteoarthritis and obesity: a randomized controlled trial. Eur J Nutr 2024; 63:2149-2161. [PMID: 38713231 DOI: 10.1007/s00394-024-03415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Obesity is a primary risk factor for knee osteoarthritis (OA). Prebiotics enhance beneficial gut microbes and can reduce body fat and inflammation. Our objective was to examine if a 6-month prebiotic intervention improved physical function in adults with knee osteoarthritis and obesity. We also measured knee pain, body composition, quality of life, gut microbiota, inflammatory markers, and serum metabolomics. METHODS Adults (n = 54, mostly women) with co-morbid obesity (BMI > 30 kg/m2) and unilateral/bilateral knee OA were randomly assigned to prebiotic (oligofructose-enriched inulin; 16 g/day; n = 31) or isocaloric placebo (maltodextrin; n = 21) for 6 months. Performance based-tests, knee pain, quality of life, serum metabolomics and inflammatory markers, and fecal microbiota and short-chain fatty acids were assessed. RESULTS Significant between group differences were detected for the change in timed-up-and-go test, 40 m fast paced walk test, and hand grip strength test from baseline that favored prebiotic over placebo. Prebiotic also reduced trunk fat mass (kg) at 6 months and trunk fat (%) at 3 months compared to placebo. There was a trend (p = 0.059) for reduced knee pain at 6 months with prebiotic versus placebo. In gut microbiota analysis, a total of 37 amplicon sequence variants differed between groups. Bifidobacterium abundance was positively correlated with distance walked in the 6-min walk test and hand grip strength. At 6 months, there was a significant separation of serum metabolites between groups with upregulation of phenylalanine and tyrosine metabolism with prebiotic. CONCLUSION Prebiotics may hold promise for conservative management of knee osteoarthritis in adults with obesity and larger trials are warranted. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov/study/NCT04172688.
Collapse
Affiliation(s)
- Rafael Fortuna
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Weilan Wang
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Shyamchand Mayengbam
- Department of Biochemistry, Memorial University of Newfoundland, 45 Artic Ave, St. John's, NL, A1C 5S7, Canada
| | - Erin W Noye Tuplin
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Kara Sampsell
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Keith A Sharkey
- Department of Physiology and Pharmacology, Cumming School of Medicine, Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - David A Hart
- Department of Surgery, and Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
11
|
Lu J, Wei B, Xu J, Li Z. The impact of metabolic syndrome on clinical outcomes following total knee arthroplasty in osteoarthritis patients. ANNALS OF JOINT 2024; 9:22. [PMID: 39114416 PMCID: PMC11304090 DOI: 10.21037/aoj-24-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 08/10/2024]
Abstract
Background Metabolic syndrome (MetS) is a combination of interconnected conditions, including insulin resistance, abdominal obesity, high blood pressure, and abnormal blood lipid levels. The objective of this research was to investigate the impact of MetS on the quality of life and clinical outcomes following total knee arthroplasty (TKA) in patients with osteoarthritis (OA). Methods A retrospective descriptive study was conducted to enroll OA patients who underwent primary TKA at Zhongda Hospital, Southeast University from January 2015 to August 2019. A total of 83 OA patients who did and 144 (MetS group) who did not have MetS (non-MetS group) were included. An analysis was conducted on the patient's clinical data. Results The two groups had similar results in terms of lengths of stay (P=0.93), hospital costs (P=0.24), and overall complication rates (P=0.99). There was no significant difference in the average erythrocyte sedimentation rate and C-reactive protein levels between the groups. However, the MetS group exhibited notably lower Hospital for Special Surgery knee scores and Short Form [36] health survey (SF-36) scores compared to the non-MetS group (both P>0.05) during the one-year follow-up period. Conclusions OA patients who have MetS had significantly worse knee joint function and quality of life after TKA. There are certain constraints in the current research. First, it belongs to a single-center retrospective study. Further study will be necessary to determine the generality of this conclusion. Second, this study is retrospective, and the number of patients included is not large. Third, due to the diverse clinical groups in our hospital, it is challenging to comprehensively document all the clinical data of the patients involved in this study. Forth, this study did not compare the preoperative differences between the two groups, as well as analyze the postoperative improvement changes in depth. We will compare the preoperative and postoperative differences between the two groups in more depth in future large sample studies.
Collapse
Affiliation(s)
- Jun Lu
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bing Wei
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jihao Xu
- Department of Pediatric Orthopedics, Maternal and Child Health Care Hospital of Kunshan, Suzhou, China
| | - Zhuang Li
- Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Corriero A, Giglio M, Soloperto R, Inchingolo F, Varrassi G, Puntillo F. Microbial Symphony: Exploring the Role of the Gut in Osteoarthritis-Related Pain. A Narrative Review. Pain Ther 2024; 13:409-433. [PMID: 38678155 PMCID: PMC11111653 DOI: 10.1007/s40122-024-00602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
One of the most common musculoskeletal disorders, osteoarthritis (OA), causes worldwide disability, morbidity, and poor quality of life by degenerating articular cartilage, modifying subchondral bone, and inflaming synovial membranes. OA pathogenesis pathways must be understood to generate new preventative and disease-modifying therapies. In recent years, it has been acknowledged that gut microbiota (GM) can significantly contribute to the development of OA. Dysbiosis of GM can disrupt the "symphony" between the host and the GM, leading to a host immunological response that activates the "gut-joint" axis, ultimately worsening OA. This narrative review summarizes research supporting the "gut-joint axis" hypothesis, focusing on the interactions between GM and the immune system in its two main components, innate and adaptive immunity. Furthermore, the pathophysiological sequence of events that link GM imbalance to OA and OA-related pain is broken down and further investigated. We also suggest that diet and prebiotics, probiotics, nutraceuticals, exercise, and fecal microbiota transplantation could improve OA management and represent a new potential therapeutic tool in the light of the scarce panorama of disease-modifying osteoarthritis drugs (DMOADs). Future research is needed to elucidate these complex interactions, prioritizing how a particular change in GM, i.e., a rise or a drop of a specific bacterial strain, correlates with a certain OA subset to pinpoint the associated signaling pathway that leads to OA.
Collapse
Affiliation(s)
- Alberto Corriero
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mariateresa Giglio
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Rossana Soloperto
- Department of Intensive Care, Brussels' University Hospital (HUB), Rue de Lennik 808, 1070, Brussels, Belgium
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124, Bari, Italy
| | | | - Filomena Puntillo
- Department of Interdisciplinary Medicine - ICU Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
13
|
Liu X, Jiang X, Hu J, Ding M, Lee SK, Korivi M, Qian Y, Li T, Wang L, Li W. Exercise attenuates high-fat diet-induced PVAT dysfunction through improved inflammatory response and BMP4-regulated adipose tissue browning. Front Nutr 2024; 11:1393343. [PMID: 38784129 PMCID: PMC11111863 DOI: 10.3389/fnut.2024.1393343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Background Perivascular adipose tissue (PVAT) dysfunction impairs vascular homeostasis. Impaired inflammation and bone morphogenetic protein-4 (BMP4) signaling are involved in thoracic PVAT dysfunction by regulating adipokine secretion and adipocyte phenotype transformation. We investigated whether aerobic exercise training could ameliorate high-fat diet (HFD)-induced PVAT dysfunction via improved inflammatory response and BMP4-mediated signaling pathways. Methods Sprague-Dawley rats (n = 24) were divided into three groups, namely control, high-fat diet (HFD), and HFD plus exercise (HEx). After a 6-week intervention, PVAT functional efficiency and changes in inflammatory biomarkers (circulating concentrations in blood and mRNA expressions in thoracic PVAT) were assessed. Results Chronic HFD feeding caused obesity and dyslipidemia in rats. HFD decreased the relaxation response of PVAT-containing vascular rings and impaired PVAT-regulated vasodilatation. However, exercise training effectively reversed these diet-induced pathological changes to PVAT. This was accompanied by significantly (p < 0.05) restoring the morphological structure and the decreased lipid droplet size in PVAT. Furthermore, HFD-induced impaired inflammatory response (both in circulation and PVAT) was notably ameliorated by exercise training (p < 0.05). Specifically, exercise training substantially reversed HFD-induced WAT-like characteristics to BAT-like characteristics as evidenced by increased UCP1 and decreased FABP4 protein levels in PVAT against HFD. Exercise training promoted transcriptional activation of BMP4 and associated signaling molecules (p38/MAPK, ATF2, PGC1α, and Smad5) that are involved in browning of adipose tissue. In conjunction with gene expressions, exercise training increased BMP4 protein content and activated downstream cascades, represented by upregulated p38/MAPK and PGC1α proteins in PVAT. Conclusion Regular exercise training can reverse HFD-induced obesity, dyslipidemia, and thoracic PVAT dysfunction in rats. The browning of adipose tissue through exercise appears to be modulated through improved inflammatory response and/or BMP4-mediated signaling cascades in obese rats.
Collapse
Affiliation(s)
- Xiaojie Liu
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Xi Jiang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Jing Hu
- School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Mingxing Ding
- School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Sang Ki Lee
- Department of Sport Science, College of Natural Science, Chungnam National University, Daejeon, Republic of Korea
| | - Mallikarjuna Korivi
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Yongdong Qian
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Ting Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Lifeng Wang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Wei Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
14
|
Izda V, Schlupp L, Prinz E, Dyson G, Barrett M, Dunn CM, Nguyen E, Sturdy C, Jeffries MA. Murine cartilage microbial DNA deposition occurs rapidly following the introduction of a gut microbiome and changes with obesity, aging, and knee osteoarthritis. GeroScience 2024; 46:2317-2341. [PMID: 37946009 PMCID: PMC10828335 DOI: 10.1007/s11357-023-01004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Cartilage microbial DNA patterns have been recently characterized in osteoarthritis (OA). The objectives of this study were to evaluate the gut origins of cartilage microbial DNA, to characterize cartilage microbial changes with age, obesity, and OA in mice, and correlate these to gut microbiome changes. We used 16S rRNA sequencing performed longitudinally on articular knee cartilage from germ-free (GF) mice following oral microbiome inoculation and cartilage and cecal samples from young and old wild-type mice with/without high-fat diet-induced obesity (HFD) and with/without OA induced by destabilization of the medial meniscus (DMM) to evaluate gut and cartilage microbiota. Microbial diversity was assessed, groups compared, and functional metagenomic profiles reconstructed. Findings were confirmed in an independent cohort by clade-specific qPCR. We found that cartilage microbial patterns developed at 48 h and later timepoints following oral microbiome inoculation of GF mice. Alpha diversity was increased in SPF mouse cartilage samples with age (P = 0.013), HFD (P = 5.6E-4), and OA (P = 0.029) but decreased in cecal samples with age (P = 0.014) and HFD (P = 1.5E-9). Numerous clades were altered with aging, HFD, and OA, including increases in Verrucomicrobia in both cartilage and cecal samples. Functional analysis suggested changes in dihydroorotase, glutamate-5-semialdehyde dehydrogenase, glutamate-5-kinase, and phosphoribosylamine-glycine ligase, in both cecum and cartilage, with aging, HFD, and OA. In conclusion, cartilage microbial DNA patterns develop rapidly after the introduction of a gut microbiome and change in concert with the gut microbiome during aging, HFD, and OA in mice. DMM-induced OA causes shifts in both cartilage and cecal microbiome patterns independent of other factors.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
- Icahn School of Medicine, Mt. Sinai, New York, NY, USA
| | - Leoni Schlupp
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Emmaline Prinz
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Gabby Dyson
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Montana Barrett
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Christopher M Dunn
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
- Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Emily Nguyen
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA
| | - Matlock A Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA.
- Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- VA Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Karjalainen K, Tanska P, Collins KH, Herzog W, Korhonen RK, Moo EK. Independent and combined effects of obesity and traumatic joint injury to the structure and composition of rat knee cartilage. Connect Tissue Res 2024; 65:117-132. [PMID: 38530304 DOI: 10.1080/03008207.2024.2310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Osteoarthritis (OA) is a multifactorial joint disease characterized by articular cartilage degradation. Risk factors for OA include joint trauma, obesity, and inflammation, each of which can affect joint health independently, but their interaction and the associated consequences of such interaction were largely unexplored. Here, we studied compositional and structural alterations in knee joint cartilages of Sprague-Dawley rats exposed to two OA risk factors: joint injury and diet-induced obesity. Joint injury was imposed by surgical transection of anterior cruciate ligaments (ACLx), and obesity was induced by a high fat/high sucrose diet. Depth-dependent proteoglycan (PG) content and collagen structural network of cartilage were measured from histological sections collected previously in Collins et al.. (2015). We found that ACLx primarily affected the superficial cartilages. Compositionally, ACLx led to reduced PG content in lean animals, but increased PG content in obese rats. Structurally, ACLx caused disorganization of collagenous network in both lean and obese animals through increased collagen orientation in the superficial tissues and a change in the degree of fibrous alignment. However, the cartilage degradation attributed to joint injury and obesity was not necessarily additive when the two risk factors were present simultaneously, particularly for PG content and collagen orientation in the superficial tissues. Interestingly, sham surgeries caused a through-thickness disorganization of collagen network in lean and obese animals. We conclude that the interactions of multiple OA risk factors are complex and their combined effects cannot be understood by superposition principle. Further research is required to elucidate the interactive mechanism between OA subtypes.
Collapse
Affiliation(s)
- Kalle Karjalainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Petri Tanska
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Kelsey H Collins
- Laboratory of Musculoskeletal Crosstalk, Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, USA
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Eng Kuan Moo
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
16
|
Prinz E, Schlupp L, Dyson G, Barrett M, Szymczak A, Velasco C, Izda V, Dunn CM, Jeffries MA. OA susceptibility in mice is partially mediated by the gut microbiome, is transferrable via microbiome transplantation and is associated with immunophenotype changes. Ann Rheum Dis 2024; 83:382-393. [PMID: 37979958 PMCID: PMC10922159 DOI: 10.1136/ard-2023-224907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
OBJECTIVES The Murphy Roths Large (MRL)/MpJ 'superhealer' mouse strain is protected from post-traumatic osteoarthritis (OA), although no studies have evaluated the microbiome in the context of this protection. This study characterised microbiome differences between MRL and wild-type mice, evaluated microbiome transplantation and OA and investigated microbiome-associated immunophenotypes. METHODS Cecal material from mixed sex C57BL6/J (B6) or female MRL/MpJ (MRL) was transplanted into B6 and MRL mice, then OA was induced by disruption of the medial meniscus surgery (DMM). In other experiments, transplantation was performed after DMM and transplantation was performed into germ-free mice. Transplanted mice were bred through F2. OARSI, synovitis and osteophyte scores were determined blindly 8 weeks after DMM. 16S microbiome sequencing was performed and metagenomic function was imputed. Immunophenotypes were determined using mass cytometry. RESULTS MRL-into-B6 transplant prior to DMM showed reduced OA histopathology (OARSI score 70% lower transplant vs B6 control), synovitis (60% reduction) and osteophyte scores (30% reduction) 8 weeks after DMM. When performed 48 hours after DMM, MRL-into-B6 transplant improved OA outcomes but not when performed 1-2 weeks after DMM. Protection was seen in F1 (60% reduction) and F2 progeny (30% reduction). Several cecal microbiome clades were correlated with either better (eg, Lactobacillus, R=-0.32, p=0.02) or worse (eg, Rikenellaceae, R=0.43, p=0.001) OA outcomes. Baseline immunophenotypes associated with MRL-into-B6 transplants and MRL included reduced double-negative T cells and increased CD25+CD4+ T cells. CONCLUSION The gut microbiome is responsible in part for OA protection in MRL mice and is transferrable by microbiome transplantation. Transplantation induces resting systemic immunophenotyping changes that correlate with OA protection.
Collapse
Affiliation(s)
- Emmaline Prinz
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Division of Rheumatology, Immunology, and Allergy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Leoni Schlupp
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Gabby Dyson
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Montana Barrett
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Aleksander Szymczak
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Cassandra Velasco
- Division of Rheumatology, Immunology, and Allergy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Vladislav Izda
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christopher M Dunn
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Division of Rheumatology, Immunology, and Allergy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Matlock A Jeffries
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Division of Rheumatology, Immunology, and Allergy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
17
|
Marchese L, Contartese D, Giavaresi G, Di Sarno L, Salamanna F. The Complex Interplay between the Gut Microbiome and Osteoarthritis: A Systematic Review on Potential Correlations and Therapeutic Approaches. Int J Mol Sci 2023; 25:143. [PMID: 38203314 PMCID: PMC10778637 DOI: 10.3390/ijms25010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this review is to systematically analyze the potential correlation between gut microbiota and osteoarthritis (OA) as well as to evaluate the feasibility of microbiota-targeted therapies for treating OA. Studies conducted from October 2013 to October 2023 were identified via a search on electronic databases such as PubMed, Web of Science, and Scopus, following established PRISMA statement standards. Two reviewers independently screened, assessed, and extracted relevant data, and then they graded the studies using the ROBINS I tool for non-randomized interventions studies and SYRCLE's risk-of-bias tool for animal studies. A search through 370 studies yielded 38 studies (24 preclinical and 14 clinical) that were included. In vivo research has predominantly concentrated on modifying the gut microbiota microenvironment, using dietary supplements, probiotics, and prebiotics to modify the OA status. Lactobacilli are the most thoroughly examined with Lactobacillus acidophilus found to effectively reduce cartilage damage, inflammatory factors, and pain. Additionally, Lactobacillus M5 inhibits the development of OA by preventing high-fat diet (HFD)-induced obesity and protecting cartilage from damage. Although there are limited clinical studies, certain compositions of intestinal microbiota may be associated with onset and progression of OA, while others are linked to pain reduction in OA patients. Based on preclinical studies, there is evidence to suggest that the gut microbiota could play a significant role in the development and progression of OA. However, due to the scarcity of clinical studies, the exact mechanism linking the gut microbiota and OA remains unclear. Further research is necessary to evaluate specific gut microbiota compositions, potential pathogens, and their corresponding signaling pathways that contribute to the onset and progression of OA. This will help to validate the potential of targeting gut microbiota for treating OA patients.
Collapse
Affiliation(s)
| | | | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.M.); (D.C.); (L.D.S.); (F.S.)
| | | | | |
Collapse
|
18
|
Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes 2023; 15:2263207. [PMID: 37800576 PMCID: PMC10561578 DOI: 10.1080/19490976.2023.2263207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The musculoskeletal system is important for balancing metabolic activity and maintaining health. Recent studies have shown that distortions in homeostasis of the intestinal microbiota are correlated with or may even contribute to abnormalities in musculoskeletal system function. Research has also shown that the intestinal flora and its secondary metabolites can impact the musculoskeletal system by regulating various phenomena, such as inflammation and immune and metabolic activities. Most of the existing literature supports that reasonable nutritional intervention helps to improve and maintain the homeostasis of intestinal microbiota, and may have a positive impact on musculoskeletal health. The purpose of organizing, summarizing and discussing the existing literature is to explore whether the intervention methods, including nutritional supplement and moderate exercise, can affect the muscle and bone health by regulating the microecology of the intestinal flora. More in-depth efficacy verification experiments will be helpful for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Enyuan Zhou
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yanyan Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
19
|
Jochimsen KN, Kim JS, Jayabalan P, Lawrence C, Lewis CL, Prather H, Bostrom MP. Arthritis Foundation/HSS Workshop on Hip Osteoarthritis, Part 3: Rehabilitation and Exercise. HSS J 2023; 19:447-452. [PMID: 37937088 PMCID: PMC10626932 DOI: 10.1177/15563316231192098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 11/09/2023]
Abstract
Far more publications are available for osteoarthritis of the knee than of the hip. Recognizing this research gap, the Arthritis Foundation (AF), in partnership with the Hospital for Special Surgery (HSS), convened an in-person meeting of thought leaders to review the state of the science of and clinical approaches to hip osteoarthritis. This article summarizes the recommendations gleaned from 5 presentations given on hip-related rehabilitation at the 2023 Hip Osteoarthritis Clinical Studies Conference, which took place on February 17 and 18, 2023, in New York City.
Collapse
Affiliation(s)
- Kate N Jochimsen
- School of Medicine, West Virginia University, Morgantown, WV, USA
| | | | - Prakash Jayabalan
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Cecelia Lawrence
- Acute Care Rehabilitation, Hospital for Special Surgery, New York, NY, USA
| | - Cara L Lewis
- Department of Physical Therapy, Boston University, Boston, MA, USA
| | - Heidi Prather
- Department of Physiatry, Hospital for Special Surgery, New York, NY, USA
| | | |
Collapse
|
20
|
Jiménez-Muro M, Soriano-Romaní L, Mora G, Ricciardelli D, Nieto JA. The microbiota-metabolic syndrome axis as a promoter of metabolic osteoarthritis. Life Sci 2023; 329:121944. [PMID: 37453577 DOI: 10.1016/j.lfs.2023.121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The relation between obesity and osteoarthritis (OA) development has been traditionally explained as consequence of the excessive joint effort derived of overweight. However, in the last two decades a metabolic OA has been suggested through diverse molecular mechanism implying metabolic syndrome, although more investigation must be conducted to elucidate it. Metabolic syndrome is responsible of the release of diverse inflammatory cytokines, specially the increased adipokine in obesity, causing a chronic low-grade inflammatory status that alters the joint homeostasis. In this scenario, the microbiota dysbiosis contribute by worsening the low-grade chronic inflammation or causing metabolic disorders mediated by endotoxemia generated by an increased lipopolysaccharides intake. This results in joint inflammation and cartilage degradation, which contributes to the development of OA. Also, the insulin resistance provoked by type 2 Diabetes contributes to the OA development. When intake patterns are considered, some coincidences can be pointed between the food patterns associated to the metabolic syndrome and the food patterns associated to OA development. Therefore, these coincidences support the idea of a molecular mechanism of the OA development caused by the molecular mechanism generated under the metabolic syndrome status. This review points the relation between metabolic syndrome and OA, showing the connected molecular mechanisms between both pathologies as well as the shared dietary patterns that promote or prevent both pathologies.
Collapse
Affiliation(s)
- Marta Jiménez-Muro
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Laura Soriano-Romaní
- ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980 Paterna, Valencia, Spain
| | - Gonzalo Mora
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Diego Ricciardelli
- Institute of Traumatology and Advanced Regenerative Medicine (ITRAMED), Calle Escultor Daniel 3, Logroño 26007, La Rioja, Spain
| | - Juan Antonio Nieto
- ainia Technological Centre, Calle Benjamin Franklin 5-11, Parque Tecnológico de Valencia, E46980 Paterna, Valencia, Spain; Bioactivity and Nutritional Immunology Group (BIOINUT), Faculty of Health Science, Universidad Internacional de Valencia (VIU), Calle Pintor Sorolla 21, E46002, Valencia, Spain.
| |
Collapse
|
21
|
Álvarez-Herms J, González A, Corbi F, Odriozola I, Odriozola A. Possible relationship between the gut leaky syndrome and musculoskeletal injuries: the important role of gut microbiota as indirect modulator. AIMS Public Health 2023; 10:710-738. [PMID: 37842270 PMCID: PMC10567981 DOI: 10.3934/publichealth.2023049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 10/17/2023] Open
Abstract
This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.
Collapse
Affiliation(s)
- Jesús Álvarez-Herms
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
- Phymo Lab, Physiology, and Molecular laboratory, Spain
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| | - Francisco Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48080 Leioa, Spain
| |
Collapse
|
22
|
Obermüller B, Singer G, Kienesberger B, Mittl B, Stadlbauer V, Horvath A, Miekisch W, Fuchs P, Schweiger M, Pajed L, Till H, Castellani C. Probiotic OMNi-BiOTiC ® 10 AAD Reduces Cyclophosphamide-Induced Inflammation and Adipose Tissue Wasting in Mice. Nutrients 2023; 15:3655. [PMID: 37630845 PMCID: PMC10458463 DOI: 10.3390/nu15163655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer therapy is often associated with severe side effects such as drug induced weight loss, also known as chemotherapy-induced cachexia. The aim of this study was to investigate the effects of a multispecies probiotic (OMNi-BiOTiC® 10 AAD) in a chemotherapy mouse model. A total of 24 male BALB/c mice were gavage-fed with the probiotic formulation or water, once a day for 3 weeks. In the third week, the mice received intraperitoneal cyclophosphamide. At euthanasia, the organs were dissected, and serum was sampled for cytokine analysis. Tight junction components, myosin light chain kinase, mucins, and apoptosis markers were detected in the ileum and colon using histological analyses and qRT-PCR. Lipolysis was analyzed by enzymatic activity assay, Western blotting analyses, and qRT-PCR in WAT. The fecal microbiome was measured with 16S-rRNA gene sequencing from stool samples, and fecal volatile organic compounds analysis was performed using gas chromatography/mass spectrometry. The probiotic-fed mice exhibited significantly less body weight loss and adipose tissue wasting associated with a reduced CGI58 mediated lipolysis. They showed significantly fewer pro-inflammatory cytokines and lower gut permeability compared to animals fed without the probiotic. The colons of the probiotic-fed animals showed lower inflammation scores and less goblet cell loss. qRT-PCR revealed no differences in regards to tight junction components, mucins, or apoptosis markers. No differences in microbiome alpha diversity, but differences in beta diversity, were observed between the treatment groups. Taxonomic analysis showed that the probiotic group had a lower relative abundance of Odoribacter and Ruminococcus-UCG014 and a higher abundance of Desulfovibrio. VOC analysis yielded no significant differences. The results of this study indicate that oral administration of the multispecies probiotic OMNi-BiOTiC® 10 AAD could mitigate cyclophosphamide-induced chemotherapy side effects.
Collapse
Affiliation(s)
- Beate Obermüller
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Georg Singer
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Bernhard Kienesberger
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Paediatric Surgery, Clinical Center of Klagenfurt, 9020 Klagenfurt, Austria
| | - Barbara Mittl
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Vanessa Stadlbauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Angela Horvath
- Center of Biomarker Research (CBmed), 8010 Graz, Austria;
| | - Wolfram Miekisch
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Patricia Fuchs
- Department of Anesthesiology and Intensive Care & Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany; (W.M.); (P.F.)
| | - Martina Schweiger
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Laura Pajed
- Institute of Molecular Biosciences, BioTechMed-Graz, BioHealth-Graz, University of Graz, 8010 Graz, Austria; (M.S.); (L.P.)
| | - Holger Till
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, 8036 Graz, Austria; (B.O.); (B.K.); (B.M.); (H.T.); (C.C.)
- Department of Anesthesiology and Intensive Care Medicine, Weiz District Hospital, 8160 Weiz, Austria
| |
Collapse
|
23
|
Delgado-Bravo M, Hart DA, Reimer RA, Herzog W. Alterations in skeletal muscle morphology and mechanics in juvenile male Sprague Dawley rats exposed to a high-fat high-sucrose diet. Sci Rep 2023; 13:12013. [PMID: 37491416 PMCID: PMC10368627 DOI: 10.1038/s41598-023-38487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
Although once a health concern largely considered in adults, the obesity epidemic is now prevalent in pediatric populations. While detrimental effects on skeletal muscle function have been seen in adulthood, the effects of obesity on skeletal muscle function in childhood is not clearly understood. The purpose of this study was to determine if the consumption of a high-fat high-sucrose (HFS) diet, starting in the post-weaning period, leads to changes in skeletal muscle morphology and mechanics after 14 weeks on the HFS diet. Eighteen 3-week-old male CD-Sprague Dawley rats were randomly assigned to a HFS (C-HFS, n = 10) or standard chow diet (C-CHOW, n = 8). Outcome measures included: weekly energy intake, activity levels, oxygen consumption, body mass, body composition, metabolic profile, serum protein levels, and medial gastrocnemius gene expression, morphology, and mechanics. The main findings from this study were that C-HFS rats: (1) had a greater body mass and percent body fat than control rats; (2) showed early signs of metabolic syndrome; (3) demonstrated potential impairment in muscle remodeling; (4) produced lower relative muscle force; and (5) had a shift in the force-length relationship, indicating that the medial gastrocnemius had shorter muscle fiber lengths compared to those of C-CHOW rats. Based on the results of this study, we conclude that exposure to a HFS diet led to increased body mass, body fat percentage, and early signs of metabolic syndrome, resulting in functional deficits in MG of childhood rats.
Collapse
Affiliation(s)
- Mauricio Delgado-Bravo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Carrera de Kinesiología, Departamento de Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David A Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
24
|
Warmink K, Rios JL, van Valkengoed DR, Vinod P, Korthagen NM, Weinans H. Effects of different obesogenic diets on joint integrity, inflammation and intermediate monocyte levels in a rat groove model of osteoarthritis. Front Physiol 2023; 14:1211972. [PMID: 37520829 PMCID: PMC10372350 DOI: 10.3389/fphys.2023.1211972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Obesogenic diets aggravate osteoarthritis (OA) by inducing low-grade systemic inflammation, and diet composition may affect OA severity. Here, we investigated the effect of diet on joint damage and inflammation in an OA rat model. Methods: Wistar-Han rats (n = 24) were fed a chow, a high-fat (HF) diet, or a high-fat/high-sucrose (HFS) for 24 weeks. OA was induced unilaterally 12 weeks after the diet onset by groove surgery, and compared to sham surgery or no surgical intervention (contralateral limb). Knee OA severity was determined by OARSI histopathology scoring system. At several timepoints monocyte populations were measured using flow cytometry, and joint macrophage response was determined via CD68 immunohistochemistry staining. Results: Groove surgery combined with HF or HFS diet resulted in higher OARSI scores, and both HF and HFS diet showed increased circulating intermediate monocytes compared to chow fed rats. Additionally, in the HFS group, minimal damage by sham surgery resulted in an increased OARSI score. HFS diet resulted in the largest metabolic dysregulation, synovial inflammation and increased CD68 staining in tibia epiphysis bone marrow. Conclusion: Obesogenic diets resulted in aggravated OA development, even with very minimal joint damage when combined with the sucrose/fat-rich diet. We hypothesize that diet-induced low-grade inflammation primes monocytes and macrophages in the blood, bone marrow, and synovium, resulting in joint damage when triggered by groove OA inducing surgery. When the metabolic dysregulation is larger, as observed here for the HFS diet, the surgical trigger required to induce joint damage may be smaller, or even redundant.
Collapse
Affiliation(s)
- K. Warmink
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - J. L. Rios
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - D. R. van Valkengoed
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - P. Vinod
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - N. M. Korthagen
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Equine Sciences, Utrecht University, Utrecht, Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Biomechanical Engineering, TU Delft, Delft, Netherlands
| |
Collapse
|
25
|
Sun C, Zhou X, Guo T, Meng J. The immune role of the intestinal microbiome in knee osteoarthritis: a review of the possible mechanisms and therapies. Front Immunol 2023; 14:1168818. [PMID: 37388748 PMCID: PMC10306395 DOI: 10.3389/fimmu.2023.1168818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by cartilage damage and synovial inflammation and carries an enormous public health and economic burden. It is crucial to uncover the potential mechanisms of OA pathogenesis to develop new targets for OA treatment. In recent years, the pathogenic role of the gut microbiota in OA has been well recognized. Gut microbiota dysbiosis can break host-gut microbe equilibrium, trigger host immune responses and activate the "gut-joint axis", which aggravates OA. However, although the role of the gut microbiota in OA is well known, the mechanisms modulating the interactions between the gut microbiota and host immunity remain unclear. This review summarizes research on the gut microbiota and the involved immune cells in OA and interprets the potential mechanisms for the interactions between the gut microbiota and host immune responses from four aspects: gut barrier, innate immunity, adaptive immunity and gut microbiota modulation. Future research should focus on the specific pathogen or the specific changes in the gut microbiota composition to identify the related signaling pathways involved in the pathogenesis of OA. In addition, future studies should include more novel interventions on immune cell modifications and gene regulation of specific gut microbiota related to OA to validate the application of gut microbiota modulation in the onset of OA.
Collapse
Affiliation(s)
- Chang Sun
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xing Zhou
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ting Guo
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jia Meng
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Liu S, Li G, Xu H, Wang Q, Wei Y, Yang Q, Xiong A, Yu F, Weng J, Zeng H. "Cross-talk" between gut microbiome dysbiosis and osteoarthritis progression: a systematic review. Front Immunol 2023; 14:1150572. [PMID: 37180142 PMCID: PMC10167637 DOI: 10.3389/fimmu.2023.1150572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives The aim of this systematic review was to summarize the available literature on gut microbiome (GMB) and osteoarthritis (OA), analyze the correlation between GMB and OA, and explore potential underlying mechanisms. Methods A systematic search of the PubMed, Embase, Cochrane, and Web of Science with the keywords "Gut Microbiome" and "Osteoarthritis" was conducted to identify the human and animal studies exploring the association between GMB and OA. The retrieval time range was from the database inception to July 31, 2022. Studies reported the other arthritic diseases without OA, reviews, and studies focused on the microbiome in other parts of the body with OA, such as oral or skin, were excluded. The included studies were mainly reviewed for GMB composition, OA severity, inflammatory factors, and intestinal permeability. Results There were 31 studies published met the inclusion criteria and were analyzed, including 10 human studies and 21 animal studies. Human and animal studies have reached a consistent conclusion that GMB dysbiosis could aggravate OA. In addition, several studies have found that alterations of GMB composition can increase intestinal permeability and serum levels of inflammatory factors, while regulating GMB can alleviate the changes. Owing to the susceptibility of GMB to internal and external environments, genetics, and geography, the included studies were not consistent in GMB composition analysis. Conclusion There is a lack of high-quality studies evaluating the effects of GMB on OA. Available evidence indicated that GMB dysbiosis aggravated OA through activating the immune response and subsequent induction of inflammation. Future studies should focus on more prospective, cohort studies combined with multi-omics to further clarify the correlation.
Collapse
Affiliation(s)
- Su Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Huihui Xu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qichang Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yihao Wei
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qi Yang
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
27
|
Domínguez-Oliva A, Hernández-Ávalos I, Martínez-Burnes J, Olmos-Hernández A, Verduzco-Mendoza A, Mota-Rojas D. The Importance of Animal Models in Biomedical Research: Current Insights and Applications. Animals (Basel) 2023; 13:ani13071223. [PMID: 37048478 PMCID: PMC10093480 DOI: 10.3390/ani13071223] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Animal research is considered a key element in advance of biomedical science. Although its use is controversial and raises ethical challenges, the contribution of animal models in medicine is essential for understanding the physiopathology and novel treatment alternatives for several animal and human diseases. Current pandemics’ pathology, such as the 2019 Coronavirus disease, has been studied in primate, rodent, and porcine models to recognize infection routes and develop therapeutic protocols. Worldwide issues such as diabetes, obesity, neurological disorders, pain, rehabilitation medicine, and surgical techniques require studying the process in different animal species before testing them on humans. Due to their relevance, this article aims to discuss the importance of animal models in diverse lines of biomedical research by analyzing the contributions of the various species utilized in science over the past five years about key topics concerning human and animal health.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master’s Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis, Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
28
|
Warmink K, Vinod P, Korthagen NM, Weinans H, Rios JL. Macrophage-Driven Inflammation in Metabolic Osteoarthritis: Implications for Biomarker and Therapy Development. Int J Mol Sci 2023; 24:ijms24076112. [PMID: 37047082 PMCID: PMC10094694 DOI: 10.3390/ijms24076112] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Osteoarthritis (OA) is a common and debilitating joint disorder that leads to progressive joint breakdown and loss of articular cartilage. Accompanied by a state of low-grade inflammation, its etiology extends beyond that of a wear-and-tear disease, and the immune system might have a role in its initiation and progression. Obesity, which is directly associated with an increased incidence of OA, alters adipokine release, increases pro-inflammatory macrophage activity, and affects joint immune regulation. Studying inflammatory macrophage expression and strategies to inhibit inflammatory macrophage phenotype polarization might provide insights into disease pathogenesis and therapeutic applications. In pre-clinical studies, the detection of OA in its initial stages was shown to be possible using imaging techniques such as SPECT-CT, and advances are made to detect OA through blood-based biomarker analysis. In this review, obesity-induced osteoarthritis and its mechanisms in inducing joint degeneration are summarized, along with an analysis of the current developments in patient imaging and biomarker use for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Kelly Warmink
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Prateeksha Vinod
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Nicoline M Korthagen
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Harrie Weinans
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Biomechanical Engineering, TU Delft, 2628 CD Delft, The Netherlands
| | - Jaqueline L Rios
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
29
|
Uritani D, Koda H, Yasuura Y, Kusumoto A. Factors associated with subjective knee joint stiffness in people with knee osteoarthritis: A systematic review. Int J Rheum Dis 2023; 26:425-436. [PMID: 36572505 DOI: 10.1111/1756-185x.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Subjective knee stiffness is a common symptom in patients with knee osteoarthritis treated conservatively. However, the influencing factors or effects of knee joint stiffness are unknown. The aim of this study was to explore the factors associated with subjective knee stiffness in patients with knee osteoarthritis. METHODS The MEDLINE, Cochrane Central Register of Controlled Trials, EMBASE, Cumulative Index to Nursing and Allied Health Literature, Web of Science, and PEDro databases were searched in November 2021. Prospective or retrospective cohort studies were included. The methodological quality of the selected articles was assessed using the Scottish Intercollegiate Guidelines Network checklist. RESULTS Twenty out of 1943 screened articles were included in this systematic review. Eighteen and two studies were rated as having acceptable and low quality, respectively. All the included studies measured subjective knee stiffness using the Western Ontario and McMaster Universities Osteoarthritis Index. The main findings were that worse preoperative subjective knee stiffness was associated with worse pain, subjective knee stiffness, and patient satisfaction at 1 year after total knee arthroplasty. In addition, worse subjective knee stiffness was associated with future degenerative changes in the knee joint, such as joint space narrowing and osteophyte growth progression. CONCLUSION Subjective knee stiffness may be associated with the prognosis after total knee arthroplasty and degenerative changes in the knee joint. Early detection and treatment of knee stiffness could lead to a good prognosis after total knee arthroplasty and prevent the progression of degenerative changes in the knee joint.
Collapse
Affiliation(s)
- Daisuke Uritani
- Department of Physical Therapy, Faculty of Health Science, Kio University, Nara, Japan
| | - Hitoshi Koda
- Department of Rehabilitation Sciences, Faculty of Allied Health Sciences, Kansai University of Welfare Sciences, Osaka, Japan
| | - Yuuka Yasuura
- Department of Rehabilitation, Shimada Hospital, Osaka, Japan
| | - Aya Kusumoto
- Department of Rehabilitation, Saiseikai Nara Hospital, Nara, Japan
| |
Collapse
|
30
|
Cellular and Molecular Mechanisms Associating Obesity to Bone Loss. Cells 2023; 12:cells12040521. [PMID: 36831188 PMCID: PMC9954309 DOI: 10.3390/cells12040521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is an alarming disease that favors the upset of other illnesses and enhances mortality. It is spreading fast worldwide may affect more than 1 billion people by 2030. The imbalance between excessive food ingestion and less energy expenditure leads to pathological adipose tissue expansion, characterized by increased production of proinflammatory mediators with harmful interferences in the whole organism. Bone tissue is one of those target tissues in obesity. Bone is a mineralized connective tissue that is constantly renewed to maintain its mechanical properties. Osteoblasts are responsible for extracellular matrix synthesis, while osteoclasts resorb damaged bone, and the osteocytes have a regulatory role in this process, releasing growth factors and other proteins. A balanced activity among these actors is necessary for healthy bone remodeling. In obesity, several mechanisms may trigger incorrect remodeling, increasing bone resorption to the detriment of bone formation rates. Thus, excessive weight gain may represent higher bone fragility and fracture risk. This review highlights recent insights on the central mechanisms related to obesity-associated abnormal bone. Publications from the last ten years have shown that the main molecular mechanisms associated with obesity and bone loss involve: proinflammatory adipokines and osteokines production, oxidative stress, non-coding RNA interference, insulin resistance, and changes in gut microbiota. The data collection unveils new targets for prevention and putative therapeutic tools against unbalancing bone metabolism during obesity.
Collapse
|
31
|
Liu Q, Hao H, Li J, Zheng T, Yao Y, Tian X, Zhang Z, Yi H. Oral Administration of Bovine Milk-Derived Extracellular Vesicles Attenuates Cartilage Degeneration via Modulating Gut Microbiota in DMM-Induced Mice. Nutrients 2023; 15:nu15030747. [PMID: 36771453 PMCID: PMC9920331 DOI: 10.3390/nu15030747] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease primarily characterized by cartilage degeneration. Milk-derived extracellular vesicles (mEVs) were reported to inhibit catabolic and inflammatory processes in the cartilage of OA patients. However, the current therapies target the advanced symptoms of OA, and it is significant to develop a novel strategy to inhibit the processes driving OA pathology. In this study, we investigated the therapeutic potential of mEVs in alleviating OA in vivo. The results revealed that mEVs ameliorated cartilage degeneration by increasing hyaline cartilage thickness, decreasing histological Osteoarthritis Research Society International (OARSI) scores, enhancing matrix synthesis, and reducing the expression of cartilage destructive enzymes in the destabilization of medial meniscus (DMM) mice. In addition, the disturbed gut microbiota in DMM mice was partially improved upon treatment with mEVs. It was observed that the pro-inflammatory bacteria (Proteobacteria) were reduced and the potential beneficial bacteria (Firmicutes, Ruminococcaceae, Akkermansiaceae) were increased. mEVs could alleviate the progression of OA by restoring matrix homeostasis and reshaping the gut microbiota. These findings suggested that mEVs might be a potential therapeutic dietary supplement for the treatment of OA.
Collapse
Affiliation(s)
- Qiqi Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Haining Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Jiankun Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Ting Zheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Yukun Yao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Correspondence: (Z.Z.); (H.Y.)
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
- Correspondence: (Z.Z.); (H.Y.)
| |
Collapse
|
32
|
Rajeswari M, Pola S, Sravani DSL. Nutritional Modulation of Gut Microbiota Alleviates Metabolic and Neurological Disorders. HUMAN MICROBIOME IN HEALTH, DISEASE, AND THERAPY 2023:97-125. [DOI: 10.1007/978-981-99-5114-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Hart DA. Osteoarthritis as an Umbrella Term for Different Subsets of Humans Undergoing Joint Degeneration: The Need to Address the Differences to Develop Effective Conservative Treatments and Prevention Strategies. Int J Mol Sci 2022; 23:ijms232315365. [PMID: 36499704 PMCID: PMC9736942 DOI: 10.3390/ijms232315365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) of joints such as the knee and hip are very prevalent, and the number of individuals affected is expected to continue to rise. Currently, conservative treatments after OA diagnosis consist of a series of increasingly invasive interventions as the degeneration and pain increase, leading very often to joint replacement surgery. Most interventions are focused on alleviating pain, and there are no interventions currently available that stop and reverse OA-associated joint damage. For many decades OA was considered a disease of cartilage, but it is now considered a disease of the whole multi-tissue joint. As pain is the usual presenting symptom, for most patients, it is not known when the disease process was initiated and what the basis was for the initiation. The exception is post-traumatic OA which results from an overt injury to the joint that elevates the risk for OA development. This scenario leads to very long wait lists for joint replacement surgery in many jurisdictions. One aspect of why progress has been so slow in addressing the needs of patients is that OA has been used as an umbrella term that does not recognize that joint degeneration may arise from a variety of mechanistic causes that likely need separate analysis to identify interventions unique to each subtype (post-traumatic, metabolic, post-menopausal, growth and maturation associated). A second aspect of the slow pace of progress is that the bulk of research in the area is focused on post-traumatic OA (PTOA) in preclinical models that likely are not clearly relevant to human OA. That is, only ~12% of human OA is due to PTOA, but the bulk of studies investigate PTOA in rodents. Thus, much of the research community is failing the patient population affected by OA. A third aspect is that conservative treatment platforms are not specific to each OA subset, nor are they integrated into a coherent fashion for most patients. This review will discuss the literature relevant to the issues mentioned above and propose some of the directions that will be required going forward to enhance the impact of the research enterprise to affect patient outcomes.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
34
|
Zhang YW, Cao MM, Li YJ, Chen XX, Yu Q, Rui YF. A narrative review of the moderating effects and repercussion of exercise intervention on osteoporosis: ingenious involvement of gut microbiota and its metabolites. J Transl Med 2022; 20:490. [PMID: 36303163 DOI: 10.1186/s12967-022-03700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by the decreased bone mass and destruction of bone microstructure, which tends to result in the enhanced bone fragility and related fractures, as well as high disability rate and mortality. Exercise is one of the most common, reliable and cost-effective interventions for the prevention and treatment of OP currently, and numerous studies have revealed the close association between gut microbiota (GM) and bone metabolism recently. Moreover, exercise can alter the structure, composition and abundance of GM, and further influence the body health via GM and its metabolites, and the changes of GM also depend on the choice of exercise modes. Herein, combined with relevant studies and based on the inseparable relationship between exercise intervention-GM-OP, this review is aimed to discuss the moderating effects and potential mechanisms of exercise intervention on GM and bone metabolism, as well as the interaction between them.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Mu-Min Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Xiang-Xu Chen
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China
| | - Qian Yu
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China.,Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, No. 87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China. .,Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, School of Medicine, Zhongda Hospital, Southeast University, Nanjing Jiangsu, PR China. .,School of Medicine, Southeast University, Nanjing, Jiangsu, PR China. .,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
35
|
Choneva M, Shishmanova-Doseva M, Dimov I, Boyanov K, Dimitrov I, Vlaykova T, Georgieva K, Hrischev P, Bivolarska A. Xylooligosaccharides and aerobic training regulate metabolism and behavior in rats with streptozotocin-induced type 1 diabetes. Open Med (Wars) 2022; 17:1632-1644. [PMID: 36329786 PMCID: PMC9579861 DOI: 10.1515/med-2022-0579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/15/2022] Open
Abstract
Type 1 diabetes mellitus is characterized with decreased microbial diversity. Gut microbiota is essential for the normal physiological functioning of many organs, especially the brain. Prebiotics are selectively fermentable oligosaccharides [xylooligosaccharides (XOS), galactooligosaccharides, etc.] that promote the growth and activity of gut microbes and influence the gut-brain axis. Aerobic exercise is a non-pharmacological approach for the control of diabetes and could improve cognitive functions. The potential beneficial effect of XOS and/or aerobic training on cognition, the lipid profile and oxidative stress markers of experimental rats were evaluated in this study. Male Wistar rats were randomly divided into three streptozotocin-induced diabetic groups and a control group. Some of the rats, either on a XOS treatment or a standard diet, underwent aerobic training. The results showed that the aerobic training independently lowered the total cholesterol levels compared to the sedentary diabetic rats (p = 0.032), while XOS lowers the malondialdehyde levels in the trained diabetic rats (p = 0.034). What is more the exercise, independently or in combination with XOS beneficially affected all parameters of the behavioral tests. We conclude that aerobic exercises alone or in a combination with the prebiotic XOS could ameliorate the dyslipidemia, oxidative stress, and cognitive abilities in experimental type 1 diabetic animals.
Collapse
Affiliation(s)
- Mariya Choneva
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Michaela Shishmanova-Doseva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Krasimir Boyanov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Iliyan Dimitrov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Tatyana Vlaykova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Katerina Georgieva
- Department of Physiology, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Petar Hrischev
- Department of Physiology, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 15 A, Vassil Aprilov Blvd., Plovdiv, 4002, Bulgaria
| |
Collapse
|
36
|
Zeng L, Deng Y, He Q, Yang K, Li J, Xiang W, Liu H, Zhu X, Chen H. Safety and efficacy of probiotic supplementation in 8 types of inflammatory arthritis: A systematic review and meta-analysis of 34 randomized controlled trials. Front Immunol 2022; 13:961325. [PMID: 36217542 PMCID: PMC9547048 DOI: 10.3389/fimmu.2022.961325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate Safety and efficacy of probiotic supplementation in inflammatory arthritis. Methods The literature on the treatment of inflammatory arthritis with probiotics has been collected in databases such as CNKI, Pubmed, Cochrane library, Embase, etc. The search time is for them to build the database until May 2022. The included literatures are randomized controlled trials (RCTs) of probiotics in the treatment of hyperuricemia and gout. The Cochrane risk assessment tool was used for quality evaluation, and the Rev Man5.3 software was used for meta-analysis. Results A total of 37 records were finally included, involving 34 RCTs and 8 types of autoimmune disease (Hyperuricemia and gout, Inflammatory bowel disease arthritis, juvenile idiopathic arthritis [JIA], Osteoarthritis [OA], Osteoporosis and Osteopenia, Psoriasis, rheumatoid arthritis (RA), Spondyloarthritis). RA involved 10 RCTs (632 participants) whose results showed that probiotic intervention reduced CRP. Psoriasis involved 4 RCTs (214 participants) whose results showed that probiotic intervention could reduce PASI scores. Spondyloarthritis involved 2 RCTs (197 participants) whose results showed that probiotic intervention improved symptoms in patients. Osteoporosis and Ostepenia involving 10 RCTs (1156 participants) showed that probiotic intervention improved bone mineral density in patients. Hyperuricemia and gout involving 4 RCTs (294 participants) showed that probiotic intervention improved serum uric acid in patients. OA involving 1 RCTs (433 participants) showed that probiotic intervention improved symptoms in patients. JIA involving 2 RCTs (72 participants) showed that probiotic intervention improved symptoms in patients. Inflammatory bowel disease arthritis involving 1 RCTs (120 participants) showed that probiotic intervention improved symptoms in patients. All of the above RCTs showed that probiotics did not increase the incidence of adverse events. Conclusion Probiotic supplements may improve Hyperuricemia and gout, Inflammatory bowel disease arthritis, JIA, OA, Osteoporosis and Osteopenia, Psoriasis, RA, Spondyloarthritis. However, more randomized controlled trials are needed in the future to determine the efficacy and optimal dosing design of probiotics. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021286425, identifier CRD42021286425.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ying Deng
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Qi He
- People’s Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- The First People's Hospital of Changde City, Changde, China
| | - Huiping Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | | | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
37
|
Liu L, Tian F, Li GY, Xu W, Xia R. The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr 2022; 9:1012087. [PMID: 36204373 PMCID: PMC9530816 DOI: 10.3389/fnut.2022.1012087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease of articular cartilage in middle-aged and older individuals, which can result in the joint pain and dysfunction, and even cause the joint deformity or disability. With the enhancing process of global aging, OA has gradually become a major public health problem worldwide. Explaining pathogenesis of OA is critical for the development of new preventive and therapeutic interventions. In recent years, gut microbiota (GM) has been generally regarded as a “multifunctional organ,” which is closely relevant with a variety of immune, metabolic and inflammatory functions. Meanwhile, more and more human and animal researches have indicated the existence of gut-bone axis and suggested that GM and its metabolites are closely involved in the pathogenic process of OA, which might become a potential and promising intervention target. Based on the close coordination of gut-bone axis, this review aims to summarize and discuss the mechanisms of GM and its metabolites influencing OA from the aspects of the intestinal mucosal barrier modulation, intestinal metabolites modulation, immune modulation and strategies for the prevention or treatment of OA based on perspectives of GM and its metabolites, thus providing a profound knowledge and recognition of it.
Collapse
|
38
|
Xiang W, Ji B, Jiang Y, Xiang H. Association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis: A systematic review. Front Vet Sci 2022; 9:938629. [PMID: 36172610 PMCID: PMC9510893 DOI: 10.3389/fvets.2022.938629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 12/09/2022] Open
Abstract
Background Currently, many studies have been published on the relationship between the gut microbiome and knee osteoarthritis. However, the evidence for the association of gut microbiota with knee osteoarthritis has not been comprehensively evaluated. Objective This review aimed to assess existing results and provide scientific evidence for the association of low-grade inflammation caused by gut microbiota disturbances with knee osteoarthritis. Methods This study conducted an extensive review of the current literature using four databases, PubMed, EMBASE, Cochrane Library and Web of Science before 31 December 2021. Risk of bias was determined using ROBINS and SYRCLE, and quality of evidence was assessed using GRADE and CAMADARES criteria. Twelve articles were included. Results Studies have shown that a high-fat diet leads to a disturbance of the gut microbiota, mainly manifested by an increase in the abundance of Firmicutes and Proteobacteria, a decrease in Bacteroidetes, and an increase in the Firmicutes/ Bacteroidetes ratio. Exercise can reverse the pattern of gain or loss caused by high fat. These changes are associated with elevated levels of serum lipopolysaccharide (LPS) and its binding proteins, as well as various inflammatory factors, leading to osteoarthritis (OA). Conclusion This systematic review shows that a correlation between low-grade inflammation caused by gut microbiota disturbances and severity of knee osteoarthritis radiology and dysfunction. However, there was a very small number of studies that could be included in the review. Thus, further studies with large sample sizes are warranted to elucidate the association of low-grade inflammation caused by gut microbiota disturbances with osteoarthritis, and to explore the possible mechanisms for ameliorating osteoarthritis by modulating gut microbiota.
Collapse
Affiliation(s)
- Wu Xiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Bingjin Ji
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Yiqin Jiang
- Department of Rehabilitation, Beibei Traditional Chinese Medical Hospital, Chongqing, China
| | - Han Xiang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Han Xiang
| |
Collapse
|
39
|
Effect of short-term high fat diet on resistin levels and expression of autophagy-related genes in the cartilage of male rats. Sci Rep 2022; 12:15313. [PMID: 36097281 PMCID: PMC9468003 DOI: 10.1038/s41598-022-19481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity is a significant risk factor for the development of knee osteoarthritis (KOA). However, the precise molecular mechanisms linking obesity to OA remain unclear. In the present study, we investigated the effect of short-term high-fat diet (HFD) on the development of OA and the possible role of the adipokine resistin and autophagy-related genes in mediating this effect. Thirty adult male Wistar rats were equally divided into 2 groups: control and obese groups. Body mass index (BMI), levels of lipid profile, glucose, insulin and HOMA-IR index were significantly higher in the obese group compared with control. Our results revealed significantly higher serum and cartilage resistin levels with a significant increase in the mRNA expressions of toll-like receptor 4 (TLR4), matrix metalloproteinase-9 (MMP-9) and interleukin-1β (IL-1β) as well as protein levels of IL-1β, matrix metalloproteinase-13 (MMP-13), ADAMTS 5 (aggrecanase-2) and caspase-3 in the cartilage of obese rats. The HFD induced a significant upregulation of autophagy related 5 (ATG5), beclin-1 and light chain 3 (LC3) mRNA expressions and a significant downregulation of mammalian target of rapamycin (mTOR) expression in cartilage. The protein levels of cartilage ATG5 were also significantly elevated in HFD-fed group. In conclusion, we suggested that increased levels of resistin and expression of autophagy-related genes may contribute in part, to OA development in HFD-fed rats. This provides a novel insight into the early molecular changes in the cartilage associated with obesity.
Collapse
|
40
|
Hart DA, Zernicke RF, Shrive NG. Homo sapiens May Incorporate Daily Acute Cycles of “Conditioning–Deconditioning” to Maintain Musculoskeletal Integrity: Need to Integrate with Biological Clocks and Circadian Rhythm Mediators. Int J Mol Sci 2022; 23:ijms23179949. [PMID: 36077345 PMCID: PMC9456265 DOI: 10.3390/ijms23179949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Human evolution required adaptation to the boundary conditions of Earth, including 1 g gravity. The bipedal mobility of Homo sapiens in that gravitational field causes ground reaction force (GRF) loading of their lower extremities, influencing the integrity of the tissues of those extremities. However, humans usually experience such loading during the day and then a period of relative unloading at night. Many studies have indicated that loading of tissues and cells of the musculoskeletal (MSK) system can inhibit their responses to biological mediators such as cytokines and growth factors. Such findings raise the possibility that humans use such cycles of acute conditioning and deconditioning of the cells and tissues of the MSK system to elaborate critical mediators and responsiveness in parallel with these cycles, particularly involving GRF loading. However, humans also experience circadian rhythms with the levels of a number of mediators influenced by day/night cycles, as well as various levels of biological clocks. Thus, if responsiveness to MSK-generated mediators also occurs during the unloaded part of the daily cycle, that response must be integrated with circadian variations as well. Furthermore, it is also possible that responsiveness to circadian rhythm mediators may be regulated by MSK tissue loading. This review will examine evidence for the above scenario and postulate how interactions could be both regulated and studied, and how extension of the acute cycles biased towards deconditioning could lead to loss of tissue integrity.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| | - Ronald F. Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-5328, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48108-1048, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | - Nigel G. Shrive
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 4V8, Canada
| |
Collapse
|
41
|
Bilal M, Ashraf S, Zhao X. Dietary Component-Induced Inflammation and Its Amelioration by Prebiotics, Probiotics, and Synbiotics. Front Nutr 2022; 9:931458. [PMID: 35938108 PMCID: PMC9354043 DOI: 10.3389/fnut.2022.931458] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
A balanced diet with many dietary components maintains immune homeostasis directly by interacting with innate and adaptive immune components or indirectly through gut microbiota and their metabolites. Dietary components may inhibit pro-inflammatory mediators and promote anti-inflammatory functions or vice versa. Western diets with imbalanced dietary components skew the immune balance toward pro-inflammation and induce intestinal inflammation, consequently leading to many intestinal and systemic inflammatory diseases like ulcerative colitis, Crohn's disease, irritable bowel syndrome, cardiovascular problems, obesity, and diabetes. The dietary component-induced inflammation is usually chronic in nature and frequently caused or accompanied by alterations in gut microbiota. Therefore, microbiome-targeted therapies such as probiotics, prebiotics and synbiotics hold great potentials to amend immune dysregulation and gut dysbiosis, preventing and treating intestinal and systemic inflammatory diseases. Probiotics, prebiotics and synbioitcs are progressively being added to foods and beverages, with claims of health benefits. However, the underlining mechanisms of these interventions for preventing and treating dietary component-induced inflammation are still not very clear. In addition, possibly ineffective or negative consequences of some probiotics, prebiotics and synbiotics call for stringent testing and regulation. Here, we will first briefly review inflammation, in terms of its types and the relationship between different dietary components and immune responses. Then, we focus on current knowledge about the direct and indirect effects of probiotics, prebiotics and synbiotics on intestinal and systemic inflammation. Understanding how probiotics, prebiotics and synbiotics modulate the immune system and gut microbiota will improve our strategies for preventing and treating dietary component-induced intestinal inflammation and inflammatory diseases.
Collapse
|
42
|
Identification of Key Genes Related to the Obesity Patients with Osteoarthritis Based on Weighted Gene Coexpression Network Analysis (WGCNA). COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8953807. [PMID: 35860189 PMCID: PMC9293492 DOI: 10.1155/2022/8953807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
Abstract
Background. Increasing evidence has suggested that obesity affects the occurrence and progression of osteoarthritis (OA). However, the underlying molecular mechanism that obesity affects the course of OA is not fully understood and remains to be studied. Methods. The gene expression profiles of the GSE117999 and GSE98460 datasets were derived from the Gene Expression Omnibus (GEO) database. Firstly, we explored the correlation between obesity and OA using chi-square test. Next, weighted gene coexpression network analysis (WGCNA) was executed to identify obesity patients with OA- (obesity OA-) related genes in the GSE117999 dataset by “WGCNA” package. Moreover, differential expression analysis was performed to select the hub genes by “limma” package. Furthermore, ingenuity pathway analysis (IPA) and functional enrichment analysis (“clusterProfiler” package) were conducted to investigate the functions of genes. Finally, the regulatory networks of hub genes and protein-protein interaction (PPI) network were created by the Cytoscape 3.5.1 software and STRING. Results. A total of 15 differentially expressed obesity OA-related genes, including 9 lncRNAs and 6 protein coding genes, were detected by overlapping 66 differentially expressed genes (DEGs) between normal BMI samples and obesity OA samples and 451 obesity OA-related genes. Moreover, CCR10, LENG8, QRFPR, UHRF1BP1, and HLA-DRB4 were identified as hub genes. IPA results indicated that the hub genes were noticeably enriched in antimicrobial response, inflammatory response, and humoral immune response. PPI network showed that CCR10 interacted more with other proteins. Gene set enrichment analysis (GSEA) indicated that the hub genes were related to protein translation, cancer, chromatin modification, antigen processing, and presentation. Conclusion. Our results further demonstrated the role of obesity in OA and might provide new targets for the treatment of obesity OA.
Collapse
|
43
|
Gleason B, Chisari E, Parvizi J. Osteoarthritis Can Also Start in the Gut: The Gut-Joint Axis. Indian J Orthop 2022; 56:1150-1155. [PMID: 35813544 PMCID: PMC9232669 DOI: 10.1007/s43465-021-00473-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/31/2021] [Indexed: 02/04/2023]
Abstract
Background Osteoarthritis is a common cause of pain and disability with an increasing prevalence among the global population (Hunter and Bierma-Zeinstra in Lancet 393(10182):1745-1759, 2019; Zhang and Jordan in Clinics in Geriatric Medicine 26(3):355-369, 2010). Altered immune responses and low-grade systemic inflammation driven by gut dysbiosis are being increasingly recognized as contributing factors to the pathophysiology of OA (Tan et al. in International Journal of Rheumatic Diseases. https://doi.org/10.1111/1756-185X.14123, 2021; Binvignat et al. in Joint, Bone, Spine 88(5):105203, 2021; Ramasamy et al. in Nutrients 13(4):1272, 2021), which increased the interest in the so-called "gut-joint axis". The various microbiota in the gastrointestinal tract is commonly referred to as the gut microbiome. The gut microbiome is affected by age, sex, and immune system activity as well as medications, environment, and diet (Arumugam in Nature. https://doi.org/10.1038/nature09944, 2011). The microbiome is pivotal to maintain host health and contributes to nutrition, host defense, and immune development (Nishida et al. in Clinical Journal of Gastroenterology 11:1-10, 2018). Alterations in this microbiome can induce dysbiosis, which is associated with many human disease states including allergies, autoimmune disease, diabetes, and cancer (Lin and Zhang in BMC Immunology 18(1):2, 2017). A gut-joint axis is proposed as a link involving the gastrointestinal microbiome, the immune response that it induces, and joint health. Results Emerging evidence has shown that there are specific changes in the microbiome that are associated with osteoarthritis, including increased Firmicutes/Bacteroides ratio, Streptococcus spp. prevalence, and local inflammation (Collins in Osteoarthritis and Cartilage. https://doi.org/10.1016/j.joca.2015.03.014, 2015; Rios in Science and Reports. https://doi.org/10.1038/s41598-019-40601-x, 2019; Schott in JCI insight. https://doi.org/10.1172/jci.insight.95997, 2018; Boer et al. in Nature Communications 10:4881, 2019). Both the innate and adaptive immune systems are affected by the gut microbiome and can become dysregulated in dysbiosis which ultimately triggers events associated with joint OA. Conclusions The gut is an intriguing and novel target for OA therapy. Dietary modification or supplementation with fiber, probiotics, or prebiotics could provide a positive impact on the gut joint axis.
Collapse
Affiliation(s)
- Brendan Gleason
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA 19107 USA
| | - Emanuele Chisari
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA 19107 USA
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University, 125 S 9th St. Ste 1000, Philadelphia, PA 19107 USA
| |
Collapse
|
44
|
Golovach I, Rekalov D. Osteoarthritis and intestinal microbiota: pathogenetic significance of the joint — gut — microbiome axis. PAIN, JOINTS, SPINE 2022; 12:72-80. [DOI: 10.22141/pjs.12.2.2022.332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Introduction. Osteoarthritis (ОА) is a disease leading to joint degeneration, accompanied by constant pain, inflammation, and functional failure of the joints. Although many factors contribute to the development of ОА, the gut microbiome has recently emerged as an important pathogenic factor in ОА initiation and progression. The purpose of the study was to analyze modern literature data regarding the link between the gut microbiome and ОА. Materials and methods. The available data of clinical studies and scientific reviews were analyzed, and modern meta-analyses on the influence of gut microbiota on the development and progression of ОА were evaluated. Results. Gut microbiota is responsible for a number of metabolic, immunological, and structural and neurological functions, potentially elucidating the heterogeneity of OA phenotypes and formation of individual features of the course of the disease. Numerous studies support the hypothesis of the existence of a gut – joint axis and the interaction between gut microbiota and OA-relevant risk factors. The proposed concept begins with intestinal disruption and dysbacteriosis, disruption of microbiota homeostasis, continuous changes in microbial composition and genomic plasticity for optimal adaptation of bacteria to the host environment, accompanied by both adaptive and innate immune responses due to translocation of bacteria and bacterial products into the bloodstream to the joint. This cascade ultimately leads to inflammation in the joint and contributes to the development and progression of OA. Interpretion of the potential mechanisms of OA pathogenesis is essential for the development of new preventive and disease-modifying therapeutic interventions. In addition, gut microbiota is also a potential biomarker related to inflammation and gut dysbiosis to predict the progression of ОА and monitor the effectiveness of therapeutic interventions. Conclusions. In this review, we summarized research data that are supporting the hypothesis of a “joint – gut – microbiota axis” and the interaction between gut microbiota and the OA-relevant factors, including age, gender, metabolism, obesity.
Collapse
|
45
|
A musculoskeletal finite element model of rat knee joint for evaluating cartilage biomechanics during gait. PLoS Comput Biol 2022; 18:e1009398. [PMID: 35657996 PMCID: PMC9166403 DOI: 10.1371/journal.pcbi.1009398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Abnormal loading of the knee due to injuries or obesity is thought to contribute to the development of osteoarthritis (OA). Small animal models have been used for studying OA progression mechanisms. However, numerical models to study cartilage responses under dynamic loading in preclinical animal models have not been developed. Here we present a musculoskeletal finite element model of a rat knee joint to evaluate cartilage biomechanical responses during a gait cycle. The rat knee joint geometries were obtained from a 3-D MRI dataset and the boundary conditions regarding loading in the joint were extracted from a musculoskeletal model of the rat hindlimb. The fibril-reinforced poroelastic (FRPE) properties of the rat cartilage were derived from data of mechanical indentation tests. Our numerical results showed the relevance of simulating anatomical and locomotion characteristics in the rat knee joint for estimating tissue responses such as contact pressures, stresses, strains, and fluid pressures. We found that the contact pressure and maximum principal strain were virtually constant in the medial compartment whereas they showed the highest values at the beginning of the gait cycle in the lateral compartment. Furthermore, we found that the maximum principal stress increased during the stance phase of gait, with the greatest values at midstance. We anticipate that our approach serves as a first step towards investigating the effects of gait abnormalities on the adaptation and degeneration of rat knee joint tissues and could be used to evaluate biomechanically-driven mechanisms of the progression of OA as a consequence of joint injury or obesity. Osteoarthritis is a disease of the musculoskeletal system which is characterized by the degradation of articular cartilage. Changes in the knee loading after injuries or obesity contribute to the development of cartilage degeneration. Since injured cartilage cannot be reversed back to intact conditions, small animal models have been widely used for investigating osteoarthritis progression mechanisms. Moreover, experimental studies have been complemented with numerical models to overcome inherent limitations such as cost, difficulties to obtain accurate measures and replicate degenerative situations in the knee joint. However, computational models to study articular cartilage responses under dynamic loading in small animal models have not been developed. Thus, here we present a musculoskeletal finite element model (MSFE) of a rat knee joint to evaluate cartilage biomechanical responses during gait. Our computational model considers both the anatomical and locomotion characteristics of the rat knee joint for estimating mechanical responses in the articular cartilage. We suggest that our approach can be used to investigate tissue adaptations based on the mechanobiological responses of the cartilage to prevent the progression of osteoarthritis.
Collapse
|
46
|
A systematic review of microbiome composition in osteoarthritis subjects. Osteoarthritis Cartilage 2022; 30:786-801. [PMID: 34958936 DOI: 10.1016/j.joca.2021.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) started to be associated to shifted microbiota composition recently. This systematic review aims to elucidate if there is a common microbiota composition linked with OA between different studies. METHODS We screened PubMed, Scopus, Web of Science and Cochrane databases up to July 26th 2021 to identify original studies in which microbiome was assessed from OA individuals, both in human and laboratory animals' studies. Bacteria associated with OA were summarized to find common patterns between the studies. RESULTS We identified 37 original studies where the microbiota composition was assessed in OA subjects. We identified some bacteria (Clostridium, Streptococcus, Bacteroides and Firmicutes) that were reported to be upregulated in OA subjects, whereas Lactobacillus and Bifidobacterium longum were associated with improved OA outcomes. The heterogeneity of sampling and analysis methods, different taxonomical levels reported and the lack of healthy controls in several studies made it difficult to compare the studies and reach conclusions about a potential causal link. CONCLUSIONS The current study demonstrated that some bacteria were identified as regulators of OA. Future works following standardized methodologies with more proper controls are needed to elucidate our understanding of the role of the microbiota in OA pathogenesis and progress towards new treatments.
Collapse
|
47
|
Terkawi MA, Ebata T, Yokota S, Takahashi D, Endo T, Matsumae G, Shimizu T, Kadoya K, Iwasaki N. Low-Grade Inflammation in the Pathogenesis of Osteoarthritis: Cellular and Molecular Mechanisms and Strategies for Future Therapeutic Intervention. Biomedicines 2022; 10:biomedicines10051109. [PMID: 35625846 PMCID: PMC9139060 DOI: 10.3390/biomedicines10051109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a musculoskeletal disease characterized by cartilage degeneration and stiffness, with chronic pain in the affected joint. It has been proposed that OA progression is associated with the development of low-grade inflammation (LGI) in the joint. In support of this principle, LGI is now recognized as the major contributor to the pathogenesis of obesity, aging, and metabolic syndromes, which have been documented as among the most significant risk factors for developing OA. These discoveries have led to a new definition of the disease, and OA has recently been recognized as a low-grade inflammatory disease of the joint. Damage-associated molecular patterns (DAMPs)/alarmin molecules, the major cellular components that facilitate the interplay between cells in the cartilage and synovium, activate various molecular pathways involved in the initiation and maintenance of LGI in the joint, which, in turn, drives OA progression. A better understanding of the pathological mechanisms initiated by LGI in the joint represents a decisive step toward discovering therapeutic strategies for the treatment of OA. Recent findings and discoveries regarding the involvement of LGI mediated by DAMPs in OA pathogenesis are discussed. Modulating communication between cells in the joint to decrease inflammation represents an attractive approach for the treatment of OA.
Collapse
|
48
|
Kong H, Wang XQ, Zhang XA. Exercise for Osteoarthritis: A Literature Review of Pathology and Mechanism. Front Aging Neurosci 2022; 14:854026. [PMID: 35592699 PMCID: PMC9110817 DOI: 10.3389/fnagi.2022.854026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) has a very high incidence worldwide and has become a very common joint disease in the elderly. Currently, the treatment methods for OA include surgery, drug therapy, and exercise therapy. In recent years, the treatment of certain diseases by exercise has received increasing research and attention. Proper exercise can improve the physiological function of various organs of the body. At present, the treatment of OA is usually symptomatic. Limited methods are available for the treatment of OA according to its pathogenesis, and effective intervention has not been developed to slow down the progress of OA from the molecular level. Only by clarifying the mechanism of exercise treatment of OA and the influence of different exercise intensities on OA patients can we choose the appropriate exercise prescription to prevent and treat OA. This review mainly expounds the mechanism that exercise alleviates the pathological changes of OA by affecting the degradation of the ECM, apoptosis, inflammatory response, autophagy, and changes of ncRNA, and summarizes the effects of different exercise types on OA patients. Finally, it is found that different exercise types, exercise intensity, exercise time and exercise frequency have different effects on OA patients. At the same time, suitable exercise prescriptions are recommended for OA patients.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopedic Hospital, Shanghai, China
- *Correspondence: Xin-An Zhang,
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Xue-Qiang Wang,
| |
Collapse
|
49
|
Rodriguez J, Neyrinck AM, Van Kerckhoven M, Gianfrancesco MA, Renguet E, Bertrand L, Cani PD, Lanthier N, Cnop M, Paquot N, Thissen JP, Bindels LB, Delzenne NM. Physical activity enhances the improvement of body mass index and metabolism by inulin: a multicenter randomized placebo-controlled trial performed in obese individuals. BMC Med 2022; 20:110. [PMID: 35351144 PMCID: PMC8966292 DOI: 10.1186/s12916-022-02299-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Dietary interventions targeting the gut microbiota have been proposed as innovative strategies to improve obesity-associated metabolic disorders. Increasing physical activity (PA) is considered as a key behavioral change for improving health. We have tested the hypothesis that changing the PA status during a nutritional intervention based on prebiotic supplementation can alter or even change the metabolic response to the prebiotic. We confirm in obese subjects and in high-fat diet fed mice that performing PA in parallel to a prebiotic supplementation is necessary to observe metabolic improvements upon inulin. METHODS A randomized, single-blinded, multicentric, placebo-controlled trial was conducted in obese participants who received 16 g/day native inulin versus maltodextrin, coupled to dietary advice to consume inulin-rich versus -poor vegetables for 3 months, respectively, in addition to dietary caloric restriction. Primary outcomes concern the changes on the gut microbiota composition, and secondary outcomes are related to the measures of anthropometric and metabolic parameters, as well as the evaluation of PA. Among the 106 patients who completed the study, 61 patients filled a questionnaire for PA before and after intervention (placebo: n = 31, prebiotic: n = 30). Except the dietitian (who provided dietary advices and recipes book), all participants and research staff were blinded to the treatments and no advices related to PA were given to participants in order to change their habits. In parallel, a preclinical study was designed combining both inulin supplementation and voluntary exercise in a model of diet-induced obesity in mice. RESULTS Obese subjects who increased PA during a 3 months intervention with inulin-enriched diet exhibited several clinical improvements such as reduced BMI (- 1.6 kg/m2), decreased liver enzymes and plasma cholesterol, and improved glucose tolerance. Interestingly, the regulations of Bifidobacterium, Dialister, and Catenibacterium genera by inulin were only significant when participants exercised more. In obese mice, we highlighted a greater gut fermentation of inulin and improved glucose homeostasis when PA is combined with prebiotics. CONCLUSION We conclude that PA level is an important determinant of the success of a dietary intervention targeting the gut microbiota. TRIAL REGISTRATION ClinicalTrials.gov, NCT03852069 (February 22, 2019 retrospectively registered).
Collapse
Affiliation(s)
- Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Van Kerckhoven
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Marco A Gianfrancesco
- Laboratory of Diabetology, Nutrition and Metabolic Disease, Université de Liège, Liège, Belgium
| | - Edith Renguet
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Lanthier
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Brussels, Belgium
| | - Nicolas Paquot
- Laboratory of Diabetology, Nutrition and Metabolic Disease, Université de Liège, Liège, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
50
|
Sprague Dawley Rats Show More Severe Bone Loss, Osteophytosis and Inflammation Compared toWistar Han Rats in a High-Fat, High-Sucrose Diet Model of Joint Damage. Int J Mol Sci 2022; 23:ijms23073725. [PMID: 35409085 PMCID: PMC8999132 DOI: 10.3390/ijms23073725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
In animal models, joint degeneration observed in response to obesogenic diet varies in nature and severity. In this study, we compare joint damage in Sprague Dawley and Wistar-Han rats in response to a high-fat, high-sucrose (HFS) diet groove model of osteoarthritis (OA). Wistar Han (n = 5) and Sprague Dawley (n = 5) rats were fed an HFS diet for 24 weeks. OA was induced 12 weeks after the diet onset by groove surgery in the right knee joint. The left knee served as a control. Outcomes were OARSI histopathology scoring, bone changes by µCT imaging, local (synovial and fat pad) and systemic (blood cytokine) inflammation markers. In both rat strains, the HFS diet resulted in a similar change in metabolic parameters, but only Sprague Dawley rats showed a large, osteoporosis-like decrease in trabecular bone volume. Osteophyte count and local joint inflammation were higher in Sprague Dawley rats. In contrast, cartilage degeneration and systemic inflammatory marker levels were similar between the rat strains. The difference in bone volume loss, osteophytosis and local inflammation suggest that both rat strains show a different joint damage phenotype and could, therefore, potentially represent different OA phenotypes observed in humans.
Collapse
|