1
|
Aspbury M, Mansfield RC, Baxter L, Bhatt A, Cobo MM, Fitzgibbon SP, Hartley C, Hauck A, Marchant S, Monk V, Pillay K, Poorun R, van der Vaart M, Slater R. Establishing a standardised approach for the measurement of neonatal noxious-evoked brain activity in response to an acute somatic nociceptive heel lance stimulus. Cortex 2024; 179:215-234. [PMID: 39197410 DOI: 10.1016/j.cortex.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Electroencephalography (EEG) can be used in neonates to measure brain activity changes that are evoked by noxious events, such as clinically required immunisations, cannulation and heel lancing for blood tests. EEG provides an alternative approach to infer pain experience in infants compared with more commonly used behavioural and physiological pain assessments. Establishing the generalisability and construct validity of these measures will help corroborate the use of brain-derived outcomes to evaluate the efficacy of new or existing pharmacological and non-pharmacological methods to treat neonatal pain. This study aimed to test whether a measure of noxious-evoked EEG activity called the noxious neurodynamic response function (n-NRF), that was originally derived in a sample of term-aged infants at the Oxford John Radcliffe Hospital, UK, in 2017, can reliably distinguish noxious from non-noxious events in two independent datasets collected at University College London Hospital and at Royal Devon & Exeter Hospital. We aimed to reproduce three published results that use this measure to quantify noxious-evoked changes in brain activity. We used the n-NRF to quantify noxious-evoked brain activity to test (i) whether significantly larger noxious-evoked activity is recorded in response to a clinical heel lance compared to a non-noxious control heel lance procedure; (ii) whether the magnitude of the activity evoked by a noxious heel lance is equivalent in independent cohorts of infants; and (iii) whether the magnitude of the noxious-evoked brain activity increases with postmenstrual age (PMA) in premature infants up to 37 weeks PMA. Positive replication of these studies will build confidence in the use of the n-NRF as a valid and reliable pain-related outcome which could be used to evaluate analgesic efficacy in neonates. The protocol for this study was published following peer review (https://doi.org/10.17605/OSF.IO/ZY9MS). RESULTS The n-NRF magnitude to a noxious heel lance stimulus was significantly greater than to a non-noxious control heel lance stimulus in both the UCL dataset (n = 60; mean difference .88; 95% confidence interval (CI) .64-1.13; p < .0001) and the Exeter dataset (n = 31; mean difference .31; 95% CI .02-.61; p = .02). The mean magnitude and 90% bootstrap confidence interval of the n-NRF evoked by the heel lance did not meet our pre-defined equivalence bounds of 1.0 ± .2 in either the UCL dataset (n = 72; mean magnitude 1.33; 90% bootstrapped CI 1.18-1.52) or the Exeter dataset (n = 35; mean magnitude .92, 90% bootstrapped CI .74-1.22). The magnitude of the n-NRF to the noxious stimulus was significantly positively correlated with PMA in infants up to 37 weeks PMA (n = 65; one-sided Pearson's R, adjusted for site: .24; 95% CI .06-1.00; p = .03). CONCLUSIONS We have reproduced in independent datasets the findings that the n-NRF response to a noxious stimulus is significantly greater than to a non-noxious stimulus, and that the noxious-evoked EEG response increases with PMA. The pre-defined equivalence bounds for the mean magnitude of the EEG response were not met, though this might be due to either inter-site differences such as the lack of calibration of devices between sites (a true negative) or underpowering (a false negative). This reproducibility study provides robust evidence that supports the use of the n-NRF as an objective outcome for clinical trials assessing acute nociception in neonates. Use of the n-NRF in this way has the potential to transform the way analgesic efficacy studies are performed.
Collapse
Affiliation(s)
| | - Roshni C Mansfield
- Department of Paediatrics, University of Oxford, Oxford, UK; Newborn Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Aomesh Bhatt
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Maria M Cobo
- Department of Paediatrics, University of Oxford, Oxford, UK; Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biologicas y Ambientales, Quito, Ecuador
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Annalisa Hauck
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Simon Marchant
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Vaneesha Monk
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Kirubin Pillay
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ravi Poorun
- Children's Services, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK; College of Medicine & Health, University of Exeter, Exeter, UK
| | | | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
2
|
Shu X, Cai F, Li W, Shen H. Copeptin as a diagnostic and prognostic biomarker in pediatric diseases. Clin Chem Lab Med 2024; 0:cclm-2024-0839. [PMID: 39165044 DOI: 10.1515/cclm-2024-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Arginine vasopressin (AVP) plays a main role in maintaining the homeostasis of fluid balance and vascular tone and in regulating the endocrine stress response in response to osmotic, hemodynamic and stress stimuli. However, the difficulty in measuring AVP limits its clinical application. Copeptin, the C-terminal part of the AVP precursor, is released in an equimolar concentration mode with AVP from the pituitary but is more stable and simple to measure. Therefore, copeptin has emerged as a promising surrogate marker of AVP with excellent potential for the diagnosis, differentiation and prognosis of various diseases in recent decades. However, its application requires further validation, especially in the pediatric population. This review focuses on the clinical value of copeptin in different pediatric diseases and the prospects for its application as a potential biomarker.
Collapse
Affiliation(s)
- Xiaoli Shu
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Fengqing Cai
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Wei Li
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Hongqiang Shen
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
3
|
Carter M, Manworren RC, Stinson JN. Commentary: Pediatric Pain Measurement, Assessment, and Evaluation. Semin Pediatr Neurol 2023; 47:101074. [PMID: 37919028 DOI: 10.1016/j.spen.2023.101074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 11/04/2023]
Abstract
PEDIATRIC PAIN MEASUREMENT, ASSESSMENT, AND EVALUATION Renee C.B. Manworren, Jennifer Stinson Seminars in Pediatric Neurology Volume 23, Issue 3, August 2016, Pages 189-200 Assessment provides the foundation for diagnosis, selection of treatments, and evaluation of treatment effectiveness for pediatric patients with acute, recurrent, and chronic pain. Extensive research has resulted in the availability of a number of valid, reliable, and recommended tools for assessing children's pain. Yet, evidence suggests children's pain is still not optimally measured or treated. In this article, we provide an overview of pain evaluation for premature neonates to adolescents. The difference between pain assessment and measurement is highlighted; and the key steps to follow are identified. Information about self report and behavioral pain assessment tools appropriate for children are provided; and fac tors to be considered when choosing a specific 1 are outlined. Finally, we preview future approaches to personalized pain medicine in pediatrics that include harnessing the use of potential digital health technologies and genomics.
Collapse
Affiliation(s)
- Michela Carter
- Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Renee Cb Manworren
- Nursing Research & Professional Practice, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX.
| | - Jennifer N Stinson
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Mimoglu E, Joyce K, Mohamed B, Sathiyamurthy S, Banerjee J. Variability of neonatal premedication practices for endotracheal intubation and LISA in the UK (NeoPRINT survey). Early Hum Dev 2023; 183:105808. [PMID: 37343322 DOI: 10.1016/j.earlhumdev.2023.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE The NeoPRINT Survey was designed to assess premedication practices throughout UK NHS Trusts for both neonatal endotracheal intubation and less invasive surfactant administration (LISA). DESIGN An online survey consisting of multiple choice and open answer questions covering preferences of premedication for endotracheal intubation and LISA was distributed over a 67-day period. Responses were then analysed using STATA IC 16.0. SETTING Online survey distributed to all UK Neonatal Units (NNUs). PARTICIPANTS The survey evaluated premedication practices for endotracheal intubation and LISA in neonates requiring these procedures. MAIN OUTCOME MEASURES The use of different premedication categories as well as individual medications within each category was analysed to create a picture of typical clinical practice across the UK. RESULTS The response rate for the survey was 40.8 % (78/191). Premedication was used in all hospitals for endotracheal intubation but overall, 50 % (39/78) of the units that have responded, use premedications for LISA. Individual clinician preference had an impact on premedication practices within each NNU. CONCLUSION The wide variability on first-line premedication for endotracheal intubation noted in this survey could be overcome using best available evidence through consensus guidance driven by organisations such as British Association of Perinatal |Medicine (BAPM). Secondly, the divisive view around LISA premedication practices noted in this survey requires an answer through a randomised controlled trial.
Collapse
Affiliation(s)
- Ecem Mimoglu
- School of Medicine, Imperial College London, London, UK
| | - Katie Joyce
- School of Medicine, Imperial College London, London, UK
| | - Basma Mohamed
- St George's University Hospitals NHS Foundation Trust, London, UK; Department of Neonatology, Imperial College Healthcare NHS Trust, London, UK
| | | | - Jay Banerjee
- Department of Neonatology, Imperial College Healthcare NHS Trust, London, UK; Institute of Reproductive and Developmental Biology, Imperial College London, Biomedical Research Centre, Imperial College Healthcare NHS Trust, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK.
| |
Collapse
|
5
|
Pichler K, Kuehne B, Dekker J, Stummer S, Giordano V, Berger A, Kribs A, Klebermass-Schrehof K. Assessment of Comfort during Less Invasive Surfactant Administration in Very Preterm Infants: A Multicenter Study. Neonatology 2023; 120:473-481. [PMID: 37311430 PMCID: PMC10614453 DOI: 10.1159/000530333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/10/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION This study was set up to investigate if and to what extent non-pharmacological analgesia is able to provide comfort to very preterm infants (VPI) during less invasive surfactant administration (LISA). METHODS This was a prospective non-randomized multicenter observational study performed in level IV NICUs. Inborn VPI with a gestational age between 220/7 and 316/7 weeks, signs of respiratory distress syndrome, and the need for surfactant replacement were included. Non-pharmacological analgesia was performed in all infants during LISA. In case of failure of the first LISA attempt, additional analgosedation could be administered. COMFORTneo scores during LISA were assessed. RESULTS 113 VPI with a mean gestational age of 27 weeks (+/- 2.3 weeks) and mean birth weight of 946 g (+/- 33 g) were included. LISA was successful at the first laryngoscopy attempt in 81%. COMFORTneo scores were highest during laryngoscopy. At this time point, non-pharmacological analgesia provided adequate comfort in 61% of the infants. 74.4% of lower gestational aged infants (i.e., 220-266 weeks) were within the comfort zone during laryngoscopy compared to 51.6% of higher gestational aged infants (i.e., 270-320 weeks) (p = 0.016). The time point of surfactant administration did not influence the COMFORTneo scores during the LISA procedure. CONCLUSION Non-pharmacological analgesia provided comfort in as much as 61% of the included VPI during LISA. Further research is needed to both develop strategies to identify infants who, despite receiving non-pharmacological analgesia, are at high risk for experiencing discomfort during LISA and define patient-tailored dosage and choice of analgosedative drugs.
Collapse
Affiliation(s)
- Karin Pichler
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria,
| | - Benjamin Kuehne
- Division of Neonatology, Department of Paediatrics, University of Cologne, Cologne, Germany
| | - Janneke Dekker
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie Stummer
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Vito Giordano
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Angela Kribs
- Division of Neonatology, Department of Paediatrics, University of Cologne, Cologne, Germany
| | - Katrin Klebermass-Schrehof
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Abdelmageed M, Güzelgül F. Copeptin: Up-to-date diagnostic and prognostic role highlight. Anal Biochem 2023:115181. [PMID: 37247750 DOI: 10.1016/j.ab.2023.115181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Arginine Vasopressin (AVP) is one of the key hormones in the human body. AVP is clinically important because it maintains body fluid balance and vascular tone. Unfortunately, AVP laboratory measurements are always difficult and with low accuracy. Copeptin, the C-terminal of the AVP precursor, is released in equal amounts with AVP, making it a sensitive marker of AVP release. Despite being a non-specific biomarker, copeptin earned a lot of attention as a novel biomarker due to easy and quick laboratory measurements. Recent studies have reported the critical role of copeptin as a clinical indicator, especially in the diagnosis and prognosis of many diseases. Besides, it was reported that the combination between copeptin and gold standard biomarkers improved the prognostic values of those biomarkers. In this review, the role of copeptin as a new predictive diagnostic and prognostic biomarker of various diseases is highlighted according to the most recent studies. In addition, the importance of using copeptin as a marker in different medical departments and the impact of this on improving healthcare service was discussed.
Collapse
Affiliation(s)
- Marwa Abdelmageed
- Tokat Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biochemistry, Tokat City, Turkiye.
| | - Figen Güzelgül
- Tokat Gaziosmanpasa University, Faculty of Pharmacy, Department of Biochemistry, Tokat City, Turkiye.
| |
Collapse
|
7
|
Polese D, Riccio ML, Fagioli M, Mazzetta A, Fagioli F, Parisi P, Fagioli M. The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Front Integr Neurosci 2022; 16:933426. [PMID: 36118115 PMCID: PMC9478760 DOI: 10.3389/fnint.2022.933426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Developmental neuroscience research has not yet fully unveiled the dynamics involved in human birth. The trigger of the first breath, often assumed to be the marker of human life, has not been characterized nor has the process entailing brain modification and activation at birth been clarified yet. To date, few researchers only have investigated the impact of the extrauterine environment, with its strong stimuli, on birth. This ‘hypothesis and theory' article assumes the role of a specific stimulus activating the central nervous system (CNS) at human birth. This stimulus must have specific features though, such as novelty, efficacy, ubiquity, and immediacy. We propose light as a robust candidate for the CNS activation via the retina. Available data on fetal and neonatal neurodevelopment, in particular with reference to retinal light-responsive pathways, will be examined together with the GABA functional switch, and the subplate disappearance, which, at an experimental level, differentiate the neonatal brain from the fetal brain. In this study, we assume how a very rapid activation of retinal photoreceptors at birth initiates a sudden brain shift from the prenatal pattern of functions to the neonatal setup. Our assumption implies the presence of a photoreceptor capable of capturing and transducing light/photon stimulus, transforming it into an effective signal for the activation of new brain functions at birth. Opsin photoreception or, more specifically, melanopsin-dependent photoreception, which is provided by intrinsically photosensitive retinal ganglion cells (ipRGCs), is considered as a valid candidate. Although what is assumed herein cannot be verified in humans based on knowledge available so far, proposing an important and novel function can trigger a broad range of diversified research in different domains, from neurophysiology to neurology and psychiatry.
Collapse
Affiliation(s)
- Daniela Polese
- PhD Program on Sensorineural Plasticity, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
- *Correspondence: Daniela Polese
| | | | - Marcella Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Alessandro Mazzetta
- PhD Program on Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Fagioli
- Department of Mental Health, National Health System ASL Rome 1, Rome, Italy
| | - Pasquale Parisi
- Chair of Pediatrics, Department of Neuroscience, Mental Health and Sensory Organs NESMOS, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
8
|
Jarosz-Lesz A, Brzozowska A, Maruniak-Chudek I. Copeptin Concentrations in Plasma of Healthy Neonates in Relation to Water–Electrolyte Homeostasis in the Early Adaptation Period. CHILDREN 2022; 9:children9030443. [PMID: 35327814 PMCID: PMC8947540 DOI: 10.3390/children9030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022]
Abstract
Copeptin (CTproAVP) is a stable by-product of arginine–vasopressin synthesis and reflects its secretion by the pituitary gland, considered as a potential new marker of dehydration. The objective of the study was to investigate CTproAVP measured after the first 48 h of postnatal life in relation to serum effective osmolality, urine osmolality, and vessels filling according to the following variables: delivery mode, postnatal weight loss, fluids administered intravenously to the mother, and fluids given orally to the neonate. A prospective observational study was conducted with 200 healthy term infants (53% male) enrolled. Serum CTproAVP concentrations were measured using the ELISA kit; haematocrit, urine osmolality, serum effective osmolality were assessed after 48 h of life. Sonographic measurements of inferior vena cava (IVC) and aorta (Ao) were performed and IVC/Ao ratios were calculated. No correlations were found between CTproAVP concentrations and both serum effective osmolality and urine osmolality. There was also no association between CTproAVP concentrations and vessel filling represented by IVC/Ao index at 48 h of life.
Collapse
Affiliation(s)
- Anna Jarosz-Lesz
- Neonatology Unit, The Guardian Angels Hospital of the Brothers Hospitallers of St. John of God in Katowice, 40-211 Katowice, Poland;
| | - Aniceta Brzozowska
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Iwona Maruniak-Chudek
- Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-207-1780; Fax: +48-32-207-1781
| |
Collapse
|
9
|
Schmidt Mellado G, Pillay K, Adams E, Alarcon A, Andritsou F, Cobo MM, Evans Fry R, Fitzgibbon S, Moultrie F, Baxter L, Slater R. The impact of premature extrauterine exposure on infants' stimulus-evoked brain activity across multiple sensory systems. Neuroimage Clin 2021; 33:102914. [PMID: 34915328 PMCID: PMC8683775 DOI: 10.1016/j.nicl.2021.102914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
Abstract
Prematurity can result in widespread neurodevelopmental impairment, with the impact of premature extrauterine exposure on brain function detectable in infancy. A range of neurodynamic and haemodynamic functional brain measures have previously been employed to study the neurodevelopmental impact of prematurity, with methodological and analytical heterogeneity across studies obscuring how multiple sensory systems are affected. Here, we outline a standardised template analysis approach to measure evoked response magnitudes for visual, tactile, and noxious stimulation in individual infants (n = 15) using EEG. By applying these templates longitudinally to an independent cohort of very preterm infants (n = 10), we observe that the evoked response template magnitudes are significantly associated with age-related maturation. Finally, in a cross-sectional study we show that the visual and tactile response template magnitudes differ between a cohort of infants who are age-matched at the time of study but who differ according to whether they are born during the very preterm or late preterm period (n = 10 and 8 respectively). These findings demonstrate the significant impact of premature extrauterine exposure on brain function and suggest that prematurity can accelerate maturation of the visual and tactile sensory system in infants born very prematurely. This study highlights the value of using a standardised multi-modal evoked-activity analysis approach to assess premature neurodevelopment, and will likely complement resting-state EEG and behavioural assessments in the study of the functional impact of developmental care interventions.
Collapse
Affiliation(s)
| | - Kirubin Pillay
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eleri Adams
- Newborn Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ana Alarcon
- Newborn Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Department of Neonatology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Universitat de Barcelona, Barcelona, Spain
| | | | - Maria M Cobo
- Department of Paediatrics, University of Oxford, Oxford, UK; Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biologicas y Ambientales, Quito, Ecuador
| | - Ria Evans Fry
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Fiona Moultrie
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Luke Baxter
- Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Hartley C. Toward personalized medicine for pharmacological interventions in neonates using vital signs. PAEDIATRIC AND NEONATAL PAIN 2021; 3:147-155. [PMID: 35372840 PMCID: PMC8937573 DOI: 10.1002/pne2.12065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 10/22/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Vital signs, such as heart rate and oxygen saturation, are continuously monitored for infants in neonatal care units. Pharmacological interventions can alter an infant's vital signs, either as an intended effect or as a side effect, and consequently could provide an approach to explore the wide variability in pharmacodynamics across infants and could be used to develop models to predict outcome (efficacy or adverse effects) in an individual infant. This will enable doses to be tailored according to the individual, shifting the balance toward efficacy and away from the adverse effects of a drug. Pharmacological analgesics are frequently not given in part due to the risk of adverse effects, yet this exposes infants to the short‐ and long‐term effects of painful procedures. Personalized analgesic dosing will be an important step forward in providing safer effective pain relief in infants. The aim of this paper was to describe a framework to develop predictive models of drug outcome from analysis of vital signs data, focusing on analgesics as a representative example. This framework investigates changes in vital signs in response to the analgesic (prior to the painful procedure) and proposes using machine learning to examine if these changes are predictive of outcome—either efficacy (with pain response measured using a multimodal approach, as changes in vital signs alone have limited sensitivity and specificity) or adverse effects. The framework could be applied to both preterm and term infants in neonatal care units, as well as older children. Sharing vital signs data are proposed as a means to achieve this aim and bring personalized medicine rapidly to the forefront in neonatology.
Collapse
|
11
|
Abstract
Vasopressin (AVP) and copeptin are released in equimolar amounts from the same precursor. Due to its molecular stability and countless advantages as compared with AVP, copeptin perfectly mirrors AVP presence and has progressively emerged as a reliable marker of vasopressinergic activation in response to osmotic and hemodynamic stimuli in clinical practice. Moreover, evidence highlighting the prognostic potential of copeptin in several acute diseases, where the activation of the AVP system is primarily linked to stress, as well as in psychologically stressful conditions, has progressively emerged. Furthermore, organic stressors induce a rise in copeptin levels which, although non-specific, is unrelated to plasma osmolality but proportional to their magnitude: suggesting disease severity, copeptin proved to be a reliable prognostic biomarker in acute conditions, such as sepsis, early post-surgical period, cardiovascular, cerebrovascular or pulmonary diseases, and even in critical settings. Evidence on this topic will be briefly discussed in this article.
Collapse
Affiliation(s)
- Marianna Martino
- Division of Endocrinology and Metabolic Diseases, Clinical and Molecular Sciences Department (DISCLIMO), Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria “Ospedali Riuniti Ancona”, Via Conca 71, 60126 Ancona, Italy
| | - Giorgio Arnaldi
- Division of Endocrinology and Metabolic Diseases, Clinical and Molecular Sciences Department (DISCLIMO), Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria “Ospedali Riuniti Ancona”, Via Conca 71, 60126 Ancona, Italy
| |
Collapse
|
12
|
Fill Malfertheiner S, Bataiosu-Zimmer E, Michel H, Fouzas S, Bernasconi L, Bührer C, Wellmann S. Vasopressin but Not Oxytocin Responds to Birth Stress in Infants. Front Neurosci 2021; 15:718056. [PMID: 34512251 PMCID: PMC8430205 DOI: 10.3389/fnins.2021.718056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022] Open
Abstract
Context Birth triggers a large fetal neuroendocrine response, which is more pronounced in infants born vaginally than in those born by elective cesarean section (ECS). The two related peptides arginine vasopressin (AVP) and oxytocin (OT) play an essential role in peripheral and central stress adaptation and have a shared receptor mediating their function. Elevated cord blood levels of AVP and its surrogate marker copeptin, the C-terminal part of AVP prohormone, have been found after vaginal delivery (VD) as compared to ECS, while release of OT in response to birth is controversial. Moreover, AVP, copeptin and OT have not yet been measured simultaneously at birth. Objective To test the hypothesis that AVP but not OT levels are increased in infants arterial umbilical cord blood in response to birth stress and to characterize AVP secretion in direct comparison with plasma copeptin. Methods In a prospective single-center cross-sectional study, we recruited healthy women with a singleton pregnancy and more than 36 completed weeks of gestation delivering via VD or ECS (cesarean without prior uterine contractions or rupture of membranes). Arterial umbilical cord blood samples were collected directly after birth, centrifuged immediately and plasma samples were frozen. Concentrations of AVP and OT were determined by radioimmunoassay and that of copeptin by ultrasensitive immunofluorescence assay. Results A total of 53 arterial umbilical cord blood samples were collected, n = 29 from VD and n = 24 from ECS. Ten venous blood samples from pregnant women without stress were collected as controls. AVP and copeptin concentrations were significantly higher in the VD group than in the ECS group (both p < 0.001), median (range) AVP 4.78 (2.38–8.66) vs. 2.38 (1.79–3.88) (pmol/L), copeptin 1692 (72.1–4094) vs. 5.78 (3.14–17.97), respectively, (pmol/L). In contrast, there was no difference in OT concentrations (pmol/L) between VD and ECS, 6.00 (2.71–7.69) vs. 6.14 (4.26–9.93), respectively. AVP and copeptin concentrations were closely related (Rs = 0.700, p < 0.001) while OT did not show any correlation to either AVP or copeptin. In linear regression models, vaginal delivery and biochemical stress indicators, base deficit and pH, were independent predictors for both AVP and copeptin. OT was not linked to base deficit or pH. Conclusion Vaginal birth causes a profound secretion of AVP and copeptin in infants. Whereas AVP indicates acute stress events, copeptin provides information on cumulative stress events over a longer period. In contrast, fetal OT is unaffected by birth stress. Thus, AVP signaling but not OT mediates birth stress response in infants. This unique hormonal activation in early life may impact neurobehavioral development in whole life.
Collapse
Affiliation(s)
- Sara Fill Malfertheiner
- Department of Gynecology and Obstetrics, Hospital St. Hedwig of the Order of St. John, University Medical Center Regensburg, Regensburg, Germany
| | - Evelyn Bataiosu-Zimmer
- Department of Gynecology and Obstetrics, Hospital St. Hedwig of the Order of St. John, University Medical Center Regensburg, Regensburg, Germany
| | - Holger Michel
- Department of Neonatology, University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Sotirios Fouzas
- Paediatric Respiratory Unit and Department of Neonatology, University Hospital of Patras, Patras, Greece
| | - Luca Bernasconi
- Kantonsspital Aarau, Institute of Laboratory Medicine, Aarau, Switzerland
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Wellmann
- Department of Neonatology, University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Using changes in brain activity to assess pain-relief in infants: Methodological considerations with Benoit et al. (2021). Early Hum Dev 2021; 157:105361. [PMID: 33838455 DOI: 10.1016/j.earlhumdev.2021.105361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 01/12/2023]
|
14
|
Cobo MM, Hartley C, Gursul D, Andritsou F, van der Vaart M, Schmidt Mellado G, Baxter L, Duff EP, Buckle M, Evans Fry R, Green G, Hoskin A, Rogers R, Adams E, Moultrie F, Slater R. Quantifying noxious-evoked baseline sensitivity in neonates to optimise analgesic trials. eLife 2021; 10:e65266. [PMID: 33847561 PMCID: PMC8087440 DOI: 10.7554/elife.65266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/17/2021] [Indexed: 01/18/2023] Open
Abstract
Despite the high burden of pain experienced by hospitalised neonates, there are few analgesics with proven efficacy. Testing analgesics in neonates is experimentally and ethically challenging and minimising the number of neonates required to demonstrate efficacy is essential. EEG (electroencephalography)-derived measures of noxious-evoked brain activity can be used to assess analgesic efficacy; however, as variability exists in neonate's responses to painful procedures, large sample sizes are often required. Here, we present an experimental paradigm to account for individual differences in noxious-evoked baseline sensitivity which can be used to improve the design of analgesic trials in neonates. The paradigm is developed and tested across four observational studies using clinical, experimental, and simulated data (92 neonates). We provide evidence of the efficacy of gentle brushing and paracetamol, substantiating the need for randomised controlled trials of these interventions. This work provides an important step towards safe, cost-effective clinical trials of analgesics in neonates.
Collapse
Affiliation(s)
- Maria M Cobo
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biologicas y AmbientalesQuitoEcuador
| | - Caroline Hartley
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Deniz Gursul
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Luke Baxter
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Eugene P Duff
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of OxfordOxfordUnited Kingdom
| | - Miranda Buckle
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Ria Evans Fry
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
- Newborn Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - Gabrielle Green
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Amy Hoskin
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Richard Rogers
- Department of Anaesthetics, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - Eleri Adams
- Newborn Care Unit, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation TrustOxfordUnited Kingdom
| | - Fiona Moultrie
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Rebeccah Slater
- Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
15
|
Hoffiz YC, Castillo-Ruiz A, Hall MAL, Hite TA, Gray JM, Cisternas CD, Cortes LR, Jacobs AJ, Forger NG. Birth elicits a conserved neuroendocrine response with implications for perinatal osmoregulation and neuronal cell death. Sci Rep 2021; 11:2335. [PMID: 33504846 PMCID: PMC7840942 DOI: 10.1038/s41598-021-81511-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Long-standing clinical findings report a dramatic surge of vasopressin in umbilical cord blood of the human neonate, but the neural underpinnings and function(s) of this phenomenon remain obscure. We studied neural activation in perinatal mice and rats, and found that birth triggers activation of the suprachiasmatic, supraoptic, and paraventricular nuclei of the hypothalamus. This was seen whether mice were born vaginally or via Cesarean section (C-section), and when birth timing was experimentally manipulated. Neuronal phenotyping showed that the activated neurons were predominantly vasopressinergic, and vasopressin mRNA increased fivefold in the hypothalamus during the 2–3 days before birth. Copeptin, a surrogate marker of vasopressin, was elevated 30-to 50-fold in plasma of perinatal mice, with higher levels after a vaginal than a C-section birth. We also found an acute decrease in plasma osmolality after a vaginal, but not C-section birth, suggesting that the difference in vasopressin release between birth modes is functionally meaningful. When vasopressin was administered centrally to newborns, we found an ~ 50% reduction in neuronal cell death in specific brain areas. Collectively, our results identify a conserved neuroendocrine response to birth that is sensitive to birth mode, and influences peripheral physiology and neurodevelopment.
Collapse
Affiliation(s)
- Yarely C Hoffiz
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | | | - Megan A L Hall
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | - Taylor A Hite
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | - Jennifer M Gray
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | - Carla D Cisternas
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA.,Instituto de Investigación Médica M Y M Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | - Andrew J Jacobs
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
16
|
Kenkel W. Birth signalling hormones and the developmental consequences of caesarean delivery. J Neuroendocrinol 2021; 33:e12912. [PMID: 33145818 PMCID: PMC10590550 DOI: 10.1111/jne.12912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Rates of delivery by caesarean section (CS) are increasing around the globe and, although several epidemiological associations have already been observed between CS and health outcomes in later life, more are sure to be discovered as this practice continues to gain popularity. The components of vaginal delivery that protect offspring from the negative consequences of CS delivery in later life are currently unknown, although much attention to date has focused on differences in microbial colonisation. Here, we present the case that differing hormonal experiences at birth may also contribute to the neurodevelopmental consequences of CS delivery. Levels of each of the 'birth signalling hormones' (oxytocin, arginine vasopressin, epinephrine, norepinephrine and the glucocorticoids) are lower following CS compared to vaginal delivery, and there is substantial evidence for each that manipulations in early life results in long-term neurodevelopmental consequences. We draw from the research traditions of neuroendocrinology and developmental psychobiology to suggest that the perinatal period is a sensitive period, during which hormones achieve organisational effects. Furthermore, there is much to be learned from research on developmental programming by early-life stress that may inform research on CS, as a result of shared neuroendocrine mechanisms at work. We compare and contrast the effects of early-life stress with those of CS delivery and propose new avenues of research based on the links between the two bodies of literature. The research conducted to date suggests that the differences in hormone signalling seen in CS neonates may produce long-term neurodevelopmental consequences.
Collapse
Affiliation(s)
- William Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
17
|
Day KR, Coleman A, Greenwood MA, Hammock EAD. AVPR1A distribution in the whole C57BL/6J mouse neonate. Sci Rep 2020; 10:14512. [PMID: 32884025 PMCID: PMC7471960 DOI: 10.1038/s41598-020-71392-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide arginine vasopressin (AVP) plays significant roles in maintaining homeostasis and regulating social behavior. In vaginally delivered neonates, a surge of AVP is released into the bloodstream at levels exceeding release during life-threatening conditions such as hemorrhagic shock. It is currently unknown where the potential sites of action are in the neonate for these robust levels of circulating AVP at birth. The purpose of this study is to identify the location of AVP receptor 1a (AVPR1A) sites as potential peripheral targets of AVP in the neonatal mouse. RT-qPCR analysis of a sampling of tissues from the head demonstrated the presence of Avpr1a mRNA, suggesting local peripheral translation. Using competitive autoradiography in wildtype (WT) and AVPR1A knockout (KO) postnatal day 0 (P0) male and female mice on a C57BL/6J background, specific AVPR1A ligand binding was observed in the neonatal mouse periphery in sensory tissues of the head (eyes, ears, various oronasal regions), bone, spinal cord, adrenal cortex, and the uro-anogenital region in the neonatal AVPR1A WT mouse, as it was significantly reduced or absent in the control samples (AVPR1A KO and competition). AVPR1A throughout the neonatal periphery suggest roles for AVP in modulating peripheral physiology and development of the neonate.
Collapse
Affiliation(s)
- Katherine R Day
- Department of Psychology and Program in Neuroscience, The Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA
| | - Alexis Coleman
- Department of Psychology and Program in Neuroscience, The Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA
| | - Maria A Greenwood
- Department of Psychology and Program in Neuroscience, The Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA
| | - Elizabeth A D Hammock
- Department of Psychology and Program in Neuroscience, The Florida State University, 1107 West Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|