1
|
Bharadwaj R, Bora A, Sharma K. Liposomal delivery of Annona muricata leaves extract for the treatment of hepatocellular carcinoma. Drug Dev Ind Pharm 2024; 50:968-980. [PMID: 39615035 DOI: 10.1080/03639045.2024.2433618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Liver in the body plays vital role including digestion, detoxification, metabolism and even production of hormones. Hepatocellular carcinoma is recognized as one of leading cause of death worldwide. Infection with hepatitis B and C virus, nonalcoholic fatty liver disease and excessive consumption of alcohol are among the most common risk factors associated with the development of hepatocellular carcinoma. OBJECTIVE The present research study involves formulation of liposomal delivery of methanolic extract of Annona muricata as an alternative for the treatment of hepatocellular carcinoma. METHODS The methanolic extract of Annona muricata was subjected for both nonvolatile and volatile content analysis by performing phytochemical screening and GCMS. The methanolic extract was entrapped within the liposomes for its effective delivery. The prepared liposomes were characterized in-vitro, and the optimized formulation was further evaluated against hepatocellular carcinoma induced in the animal model. RESULTS The methanolic extract showed the presence of alkaloid, carbohydrate, flavonoid, tannin, proteins and acetogenins, whereas the GMCS analysis depicts presence of 12 different compounds. The optimized in-vitro analysis of prepared liposomes showed a particle size of 107.2 ± 1.7 nm, zeta potential of -30.6 mV and entrapment efficiency of 62.15%. TEM micrograph of the optimized liposome formulation has showed spherical geometry with homogenous distribution and negligible agglomeration. In-vivo anticancer study reveals the potent efficacy of the formulation for the treatment of hepatocellular carcinoma. CONCLUSION The research findings have established the efficacy of the methanolic extract of Annona muricata in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Rituraj Bharadwaj
- Department of Bioengineering and Technology, Gauhati University, Assam, India
| | - Achyut Bora
- Department of Bioengineering and Technology, Gauhati University, Assam, India
| | | |
Collapse
|
2
|
Medicinal Chemistry of Anti-HIV-1 Latency Chemotherapeutics: Biotargets, Binding Modes and Structure-Activity Relationship Investigation. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010003. [PMID: 36615199 PMCID: PMC9822059 DOI: 10.3390/molecules28010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The existence of latent viral reservoirs (LVRs), also called latent cells, has long been an acknowledged stubborn hurdle for effective treatment of HIV-1/AIDS. This stable and heterogeneous reservoir, which mainly exists in resting memory CD4+ T cells, is not only resistant to highly active antiretroviral therapy (HAART) but cannot be detected by the immune system, leading to rapid drug resistance and viral rebound once antiviral treatment is interrupted. Accordingly, various functional cure strategies have been proposed to combat this barrier, among which one of the widely accepted and utilized protocols is the so-called 'shock-and-kill' regimen. The protocol begins with latency-reversing agents (LRAs), either alone or in combination, to reactivate the latent HIV-1 proviruses, then eliminates them by viral cytopathic mechanisms (e.g., currently available antiviral drugs) or by the immune killing function of the immune system (e.g., NK and CD8+ T cells). In this review, we focuse on the currently explored small molecular LRAs, with emphasis on their mechanism-directed drug targets, binding modes and structure-relationship activity (SAR) profiles, aiming to provide safer and more effective remedies for treating HIV-1 infection.
Collapse
|
3
|
Covino DA, Desimio MG, Doria M. Impact of IL-15 and latency reversing agent combinations in the reactivation and NK cell-mediated suppression of the HIV reservoir. Sci Rep 2022; 12:18567. [PMID: 36329160 PMCID: PMC9633760 DOI: 10.1038/s41598-022-23010-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibitors of histone deacetylases (HDACis) are major latency reversing agent (LRA) candidates in 'shock and kill' strategies to eradicate the HIV reservoir in infected patients. The poor achievements of initial HDACi-based trials and subsequent studies have highlighted the need for more efficient approaches such as combinatory and immunostimulating therapies. Here we studied combinations of IL-15 with pan-HDACi (Vorinostat, Romidepsin, Panobinostat) or class I selective-HDACi (Entinostat) with or without a PKC agonist (Prostratin) for their impact on in vitro reactivation and NK cell-mediated suppression of latent HIV. Results showed that pan-HDACis but not Entinostat reduced NK cell viability and function; yet, combined IL-15 reverted the negative effects of pan-HDACis except for Panobinostat. All HDACis were ineffective at reactivating HIV in a CD4+ T cell model of latency, with pan-HDACis suppressing spontaneous and IL-15- or Prostratin-induced HIV release, while IL-15 + Prostratin combination showed maximal activity. Moreover, Panobinostat impaired STAT5 and NF-κB activation by IL-15 and Prostratin, respectively. Finally, by using effectors (NK) and targets (latently infected CD4+ T cells) equally exposed to drug combinations, we found that IL-15-mediated suppression of HIV reactivation by NK cells was inhibited by Panobinostat. Our data raise concerns and encouragements for therapeutic application of IL-15/LRA combinations.
Collapse
Affiliation(s)
- Daniela Angela Covino
- grid.414603.4Primary Immunodeficiency Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Maria Giovanna Desimio
- grid.414603.4Primary Immunodeficiency Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Margherita Doria
- grid.414603.4Primary Immunodeficiency Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
4
|
A functional mammalian display screen identifies rare antibodies that stimulate NK cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 2021; 118:2104099118. [PMID: 34330834 DOI: 10.1073/pnas.2104099118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Therapies that boost the antitumor immune response have shown a great deal of success. Although most of these therapies have focused on enhancing T cell functions, there is a growing interest in developing therapies that can target other immune cell subsets. Like T cells, natural killer (NK) cells are cytotoxic effector cells that play a key role in the antitumor response. To advance the development of NK-based therapies, we developed a functional screen to rapidly identify antibodies that can activate NK cells. We displayed antibodies on a mammalian target cell line and probed their ability to stimulate NK cell-mediated cytotoxicity. From this screen, we identified five antibodies that bound with high affinity to NK cells and stimulated NK cell-mediated cytotoxicity and interferon-γ (IFN-γ) secretion. We demonstrate that these antibodies can be further developed into bispecific antibodies to redirect NK cell-mediated cytotoxicity toward CD20+ B cell lymphoma cells and HER2+ breast cancer cells. While antibodies to two of the receptors, CD16 and NCR1, have previously been targeted as bispecific antibodies to redirect NK cell-mediated cytotoxicity, we demonstrate that bispecific antibodies targeting NCR3 can also potently activate NK cells. These results show that this screen can be used to directly identify antibodies that can enhance antitumor immune responses.
Collapse
|
5
|
Desimio MG, Finocchi A, Di Matteo G, Di Cesare S, Giancotta C, Conti F, Chessa L, Piane M, Montin D, Dellepiane M, Rossi P, Cancrini C, Doria M. Altered NK-cell compartment and dysfunctional NKG2D/NKG2D-ligand axis in patients with ataxia-telangiectasia. Clin Immunol 2021; 230:108802. [PMID: 34298181 DOI: 10.1016/j.clim.2021.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 11/15/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem disorder caused by biallelic pathogenic variants in the gene encoding A-T mutated (ATM) kinase, a master regulator of the DNA damage response (DDR) pathway. Most A-T patients show cellular and/or humoral immunodeficiency that has been associated with cancer risk and reduced survival, but NK cells have not been thoroughly studied. Here we investigated NK cells of A-T patients with a special focus on the NKG2D receptor that triggers cytotoxicity upon engagement by its ligands (NKG2DLs) commonly induced via the DDR pathway on infected, transformed, and variously stressed cells. Using flow cytometry, we examined the phenotype and function of NK cells in 6 A-T patients as compared with healthy individuals. NKG2D expression was evaluated also by western blotting and RT-qPCR; plasma soluble NKG2DLs (sMICA, sMICB, sULBP1, ULBP2) were measured by ELISA. Results showed that A-T NK cells were skewed towards the CD56neg anergic phenotype and displayed decreased expression of NKG2D and perforin. NKG2D was reduced at the protein but not at the mRNA level and resulted in impaired NKG2D-mediated cytotoxicity in 4/6 A-T patients. Moreover, in A-T plasma we found 24-fold and 2-fold increase of sMICA and sULBP1, respectively, both inversely correlated with NKG2D expression. Overall, NK cells are disturbed in A-T patients showing reduced NKG2D expression, possibly caused by persistent engagement of its ligands, that may contribute to susceptibility to cancer and infections and represent novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Maria Giovanna Desimio
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Di Matteo
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Giancotta
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Conti
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Maria Piane
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Davide Montin
- Pediatric Immunology and Rheumatology, Regina Margherita Children's Hospital, Turin, Italy
| | - Marta Dellepiane
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Paolo Rossi
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Margherita Doria
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
6
|
Doria M, Zicari S, Cotugno N, Domínguez‐Rodríguez S, Ruggiero A, Pascucci GR, Tagarro A, Rojo Conejo P, Nastouli E, Gärtner K, Cameron M, Richardson B, Foster C, Williams SL, Rinaldi S, De Rossi A, Giaquinto C, Rossi P, Pahwa S, Palma P. Early ART initiation during infancy preserves natural killer cells in young European adolescents living with HIV (CARMA cohort). J Int AIDS Soc 2021; 24:e25717. [PMID: 34235857 PMCID: PMC8264399 DOI: 10.1002/jia2.25717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/09/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION HIV infection causes pathological changes in the natural killer (NK) cell compartment that can be only partially restored by antiretroviral therapy (ART). We investigated NK cells phenotype and function in children with perinatally acquired HIV (PHIV) and long-term viral control (five years) due to effective ART in a multicentre cross-sectional European study (CARMA, EPIICAL consortium). The impact of age at ART start and viral reservoir was also evaluated. METHODS Peripheral blood mononuclear cells (PBMCs) from 40 PHIV who started ART within two years of life (early treated patients (ET), ≤6 months; late treated patients (LT), > 6 months), with at least five years of HIV-1 suppression (<40 HIV copies/mL), were collected between November 2017 and August 2018. NK phenotype and function were analysed by flow cytometry and transcriptional profile of PBMCs by RNA-Seq. HIV-1 DNA was measured by real-time polymerase chain reaction (Data were analysed by Spearman correlation plots and multivariable Poisson regression model (adjusted for baseline %CD4 and RNA HIV viral load and for age at ART start as an interaction term, either ET or LT) to explore the association between NK cell parameters and HIV reservoir modulated by age at ART start. RESULTS A significantly higher frequency of CD56neg NK cells was found in LT compared with ET. We further found in LT a positive correlation of CD56neg NK cells with HIV-1 DNA. LT also displayed increased expression of the NKG2D and NKp46 activating receptors and perforin compared with ET. Moreover, CD107a+ and IFN-γ+ frequencies in non-stimulated NK were associated with HIV-1 DNA in LT patients. Finally, RNA-Seq analysis showed in LT an up-regulation of genes related to NK-activating pathways and susceptibility to apoptosis compared with ET. CONCLUSIONS We show that early initiation of ART during infancy preserves the NK compartment and is associated with lower HIV-1 reservoir. Such condition persists over adolescence due to long-term viral control achieved through effective ART.
Collapse
Affiliation(s)
- Margherita Doria
- Research Unit of Primary ImmunodeficiencyBambino Gesú Children's HospitalIRCCSRomeItaly
| | - Sonia Zicari
- Research Unit of Clinical Immunology and VaccinologyAcademic Department of Pediatrics (DPUO)Bambino Gesù Children's HospitalIRCCSRomeItaly
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and VaccinologyAcademic Department of Pediatrics (DPUO)Bambino Gesù Children's HospitalIRCCSRomeItaly
- Department of Systems MedicineChair of PediatricsUniversity of Rome "Tor Vergata"RomeItaly
| | - Sara Domínguez‐Rodríguez
- Pediatric Infectious Diseases UnitFundación para la Investigación Biomédica del HospitalMadridSpain
| | - Alessandra Ruggiero
- Research Unit of Primary ImmunodeficiencyBambino Gesú Children's HospitalIRCCSRomeItaly
| | - Giuseppe R Pascucci
- Research Unit of Primary ImmunodeficiencyBambino Gesú Children's HospitalIRCCSRomeItaly
- Research Unit of Clinical Immunology and VaccinologyAcademic Department of Pediatrics (DPUO)Bambino Gesù Children's HospitalIRCCSRomeItaly
- Department of Systems MedicineChair of PediatricsUniversity of Rome "Tor Vergata"RomeItaly
| | - Alfredo Tagarro
- Pediatric Infectious Diseases UnitFundación para la Investigación Biomédica del HospitalMadridSpain
| | - Pablo Rojo Conejo
- Pediatric Infectious Diseases UnitFundación para la Investigación Biomédica del HospitalMadridSpain
| | - Eleni Nastouli
- Department of VirologyUniversity College Hospital LondonUK
| | | | - Mark Cameron
- Department of Epidemiology and BiostatisticsCase Western Reserve UniversityClevelandOHUSA
| | - Brian Richardson
- Department of Epidemiology and BiostatisticsCase Western Reserve UniversityClevelandOHUSA
| | | | - Sion L Williams
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Stefano Rinaldi
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Anita De Rossi
- Section of Oncology and ImmunologyDepartment of Surgery, Oncology, and GastroenterologyUnit of Viral Oncology and AIDS Reference CenterUniversity of PadovaPadovaItaly
- Istituto Oncologico Veneto (IOV)‐IRCCSRomeItaly
| | - Carlo Giaquinto
- Department of Mother and Child HealthUniversity of PadovaPadovaItaly
| | - Paolo Rossi
- Research Unit of Primary ImmunodeficiencyBambino Gesú Children's HospitalIRCCSRomeItaly
- Research Unit of Clinical Immunology and VaccinologyAcademic Department of Pediatrics (DPUO)Bambino Gesù Children's HospitalIRCCSRomeItaly
- Department of Systems MedicineChair of PediatricsUniversity of Rome "Tor Vergata"RomeItaly
| | - Savita Pahwa
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Paolo Palma
- Research Unit of Primary ImmunodeficiencyBambino Gesú Children's HospitalIRCCSRomeItaly
- Research Unit of Clinical Immunology and VaccinologyAcademic Department of Pediatrics (DPUO)Bambino Gesù Children's HospitalIRCCSRomeItaly
- Department of Systems MedicineChair of PediatricsUniversity of Rome "Tor Vergata"RomeItaly
| | | |
Collapse
|
7
|
Covino DA, Desimio MG, Doria M. Combinations of Histone Deacetylase Inhibitors with Distinct Latency Reversing Agents Variably Affect HIV Reactivation and Susceptibility to NK Cell-Mediated Killing of T Cells That Exit Viral Latency. Int J Mol Sci 2021; 22:ijms22136654. [PMID: 34206330 PMCID: PMC8267728 DOI: 10.3390/ijms22136654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 01/23/2023] Open
Abstract
The ‘shock-and-kill’ strategy to purge the latent HIV reservoir relies on latency-reversing agents (LRAs) to reactivate the provirus and subsequent immune-mediated killing of HIV-expressing cells. Yet, clinical trials employing histone deacetylase inhibitors (HDACis; Vorinostat, Romidepsin, Panobinostat) as LRAs failed to reduce the HIV reservoir size, stressing the need for more effective latency reversal strategies, such as 2-LRA combinations, and enhancement of the immune responses. Interestingly, several LRAs are employed to treat cancer because they up-modulate ligands for the NKG2D NK-cell activating receptor on tumor cells. Therefore, using in vitro T cell models of HIV latency and NK cells, we investigated the capacity of HDACis, either alone or combined with a distinct LRA, to potentiate the NKG2D/NKG2D ligands axis. While Bortezomib proteasome inhibitor was toxic for both T and NK cells, the GS-9620 TLR-7 agonist antagonized HIV reactivation and NKG2D ligand expression by HDACis. Conversely, co-administration of the Prostratin PKC agonist attenuated HDACi toxicity and, when combined with Romidepsin, stimulated HIV reactivation and further up-modulated NKG2D ligands on HIV+ T cells and NKG2D on NK cells, ultimately boosting NKG2D-mediated viral suppression by NK cells. These findings disclose limitations of LRA candidates and provide evidence that NK cell suppression of reactivated HIV may be modulated by specific 2-LRA combinations.
Collapse
|
8
|
Potential of the NKG2D/NKG2DL Axis in NK Cell-Mediated Clearance of the HIV-1 Reservoir. Int J Mol Sci 2019; 20:ijms20184490. [PMID: 31514330 PMCID: PMC6770208 DOI: 10.3390/ijms20184490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Viral persistency in latently infected CD4+ T cells despite antiretroviral therapy (ART) represents a major drawback in the fight against HIV-1. Efforts to purge latent HIV-1 have been attempted using latency reversing agents (LRAs) that activate expression of the quiescent virus. However, initial trials have shown that immune responses of ART-treated patients are ineffective at clearing LRA-reactivated HIV-1 reservoirs, suggesting that an adjuvant immunotherapy is needed. Here we overview multiple lines of evidence indicating that natural killer (NK) cells have the potential to induce anti-HIV-1 responses relevant for virus eradication. In particular, we focus on the role of the NKG2D activating receptor that crucially enables NK cell-mediated killing of HIV-1-infected cells. We describe recent data indicating that LRAs can synergize with HIV-1 at upregulating ligands for NKG2D (NKG2DLs), hence sensitizing T cells that exit from viral latency for recognition and lysis by NK cells; in addition, we report in vivo and ex vivo data showing the potential benefits and drawbacks that LRAs may have on NKG2D expression and, more in general, on the cytotoxicity of NK cells. Finally, we discuss how the NKG2D/NKG2DLs axis can be exploited for the development of effective HIV-1 eradication strategies combining LRA-induced virus reactivation with recently optimized NK cell-based immunotherapies.
Collapse
|
9
|
DNAM-1 Activating Receptor and Its Ligands: How Do Viruses Affect the NK Cell-Mediated Immune Surveillance during the Various Phases of Infection? Int J Mol Sci 2019; 20:ijms20153715. [PMID: 31366013 PMCID: PMC6695959 DOI: 10.3390/ijms20153715] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Natural Killer (NK) cells play a critical role in host defense against viral infections. The mechanisms of recognition and killing of virus-infected cells mediated by NK cells are still only partially defined. Several viruses induce, on the surface of target cells, the expression of molecules that are specifically recognized by NK cell-activating receptors. The main NK cell-activating receptors involved in the recognition and killing of virus-infected cells are NKG2D and DNAM-1. In particular, ligands for DNAM-1 are nectin/nectin-like molecules involved also in mechanisms allowing viral infection. Viruses adopt several immune evasion strategies, including those affecting NK cell-mediated immune surveillance, causing persistent viral infection and the development of virus-associated diseases. The virus's immune evasion efficacy depends on molecules differently expressed during the various phases of infection. In this review, we overview the molecular strategies adopted by viruses, specifically cytomegalovirus (CMV), human immunodeficiency virus (HIV-1), herpes virus (HSV), Epstein-Barr virus (EBV) and hepatitis C virus (HCV), aiming to evade NK cell-mediated surveillance, with a special focus on the modulation of DNAM-1 activating receptor and its ligands in various phases of the viral life cycle. The increasing understanding of mechanisms involved in the modulation of activating ligands, together with those mediating the viral immune evasion strategies, would provide critical tools leading to design novel NK cell-based immunotherapies aiming at viral infection control, thus improving cure strategies of virus-associated diseases.
Collapse
|