1
|
Aseyev N, Borodinova A, Pavlova S, Roshchina M, Roshchin M, Nikitin E, Balaban P. CADENCE - Neuroinformatics Tool for Supervised Calcium Events Detection. Neuroinformatics 2024; 22:379-387. [PMID: 38951389 DOI: 10.1007/s12021-024-09677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
CADENCE is an open Python 3-written neuroinformatics tool with Qt6 graphic user interface for supervised calcium events detection. In neuronal ensembles recording during calcium imaging experiments, the output of instruments such as Celena X, Zeiss LSM 5 Live confocal microscope and Miniscope is a movie showing flashing cells somata. There are few pipelines to convert video to relative fluorescence ΔF/F, from simplest ImageJ plugins to sophisticated tools like MiniAn (Dong et al. in Elife 11, https://doi.org/10.7554/eLife.70661 , 2022). Minian, an open-source miniscope analysis pipeline. Elife, 11.). While in some areas of study relative fluorescence ΔF/F may be the desired result in itself, researchers of neuronal ensembles are typically interested in a more detailed analysis of calcium events as indirect proxy of neuronal electrical activity. For such analyses, researchers need a tool to infer calcium events from the continuous ΔF/F curve in order to create a raster representation of calcium events for later use in analysis software, such as Elephant (Denker, M., Yegenoglu, A., & Grün, S. (2018). Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant framework. Neuroinformatics, 19.). Here we present such an open tool with supervised calcium events detection.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia.
| | | | - Svetlana Pavlova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Marina Roshchina
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Matvey Roshchin
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
2
|
Dyakonova VE. DNA Instability in Neurons: Lifespan Clock and Driver of Evolution. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1719-1731. [PMID: 38105193 DOI: 10.1134/s0006297923110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
In the last ten years, the discovery of neuronal DNA postmitotic instability has changed the theoretical landscape in neuroscience and, more broadly, biology. In 2003, A. M. Olovnikov suggested that neuronal DNA is the "initial substrate of aging". Recent experimental data have significantly increased the likelihood of this hypothesis. How does neuronal DNA accumulate damage and in what genome regions? What factors contribute to this process and how are they associated with aging and lifespan? These questions will be discussed in the review. In the course of Metazoan evolution, the instability of neuronal DNA has been accompanied by searching for the pathways to reduce the biological cost of brain activity. Various processes and activities, such as sleep, evolutionary increase in the number of neurons in the vertebrate brain, adult neurogenesis, distribution of neuronal activity, somatic polyploidy, and RNA editing in cephalopods, can be reconsidered in the light of the trade-off between neuronal plasticity and DNA instability in neurons. This topic is of considerable importance for both fundamental neuroscience and translational medicine.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
3
|
Pramio DT, Vieceli FM, Varella-Branco E, Goes CP, Kobayashi GS, da Silva Pelegrina DV, de Moraes BC, El Allam A, De Kumar B, Jara G, Farfel JM, Bennett DA, Kundu S, Viapiano MS, Reis EM, de Oliveira PSL, Dos Santos E Passos-Bueno MR, Rothlin CV, Ghosh S, Schechtman D. DNA methylation of the promoter region at the CREB1 binding site is a mechanism for the epigenetic regulation of brain-specific PKMζ. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194909. [PMID: 36682583 PMCID: PMC10037092 DOI: 10.1016/j.bbagrm.2023.194909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Protein kinase M zeta, PKMζ, is a brain enriched kinase with a well characterized role in Long-Term Potentiation (LTP), the activity-dependent strengthening of synapses involved in long-term memory formation. However, little is known about the molecular mechanisms that maintain the tissue specificity of this kinase. Here, we characterized the epigenetic factors, mainly DNA methylation, regulating PKMζ expression in the human brain. The PRKCZ gene has an upstream promoter regulating Protein kinase C ζ (PKCζ), and an internal promoter driving PKMζ expression. A demethylated region, including a canonical CREB binding site, situated at the internal promoter was only observed in human CNS tissues. The induction of site-specific hypermethylation of this region resulted in decreased CREB1 binding and downregulation of PKMζ expression. Noteworthy, CREB binding sites were absent in the upstream promoter of PRKCZ locus, suggesting a specific mechanism for regulating PKMζ expression. These observations were validated using a system of human neuronal differentiation from induced pluripotent stem cells (iPSCs). CREB1 binding at the internal promoter was detected only in differentiated neurons, where PKMζ is expressed. The same epigenetic mechanism in the context of CREB binding site was identified in other genes involved in neuronal differentiation and LTP. Additionally, aberrant DNA hypermethylation at the internal promoter was observed in cases of Alzheimer's disease, correlating with decreased expression of PKMζ in patient brains. Altogether, we present a conserved epigenetic mechanism regulating PKMζ expression and other genes enhanced in the CNS with possible implications in neuronal differentiation and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Carolina Purcell Goes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil; Laboratory of Neuromodulation of Experimental Pain, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | | | | | | | - Aicha El Allam
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Gabriel Jara
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian National Biosciences Laboratory (LNBio) Campinas, SP, Brazil
| | - José Marcelo Farfel
- Traumatology and Orthopedy Department, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Health Sciences Program, Instituto de Assistência Medica ao Servidor Público do Estado (IAMSPE), SP, Brazil
| | - David Alan Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Somanath Kundu
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mariano S Viapiano
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Eduardo Moraes Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Paulo Sergio Lopes de Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian National Biosciences Laboratory (LNBio) Campinas, SP, Brazil
| | | | - Carla V Rothlin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Sourav Ghosh
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Ghosh K, Zhang GF, Chen H, Chen SR, Pan HL. Cannabinoid CB2 receptors are upregulated via bivalent histone modifications and control primary afferent input to the spinal cord in neuropathic pain. J Biol Chem 2022; 298:101999. [PMID: 35500651 PMCID: PMC9168157 DOI: 10.1016/j.jbc.2022.101999] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Type-2 cannabinoid receptors (CB2, encoded by the Cnr2 gene) are mainly expressed in immune cells, and CB2 agonists normally have no analgesic effect. However, nerve injury upregulates CB2 in the dorsal root ganglion (DRG), following which CB2 stimulation reduces neuropathic pain. It is unclear how nerve injury increases CB2 expression or how CB2 activity is transformed in neuropathic pain. In this study, immunoblotting showed that spinal nerve ligation (SNL) induced a delayed and sustained increase in CB2 expression in the DRG and dorsal spinal cord synaptosomes. RNAscope in situ hybridization also showed that SNL substantially increased CB2 mRNA levels, mostly in medium and large DRG neurons. Furthermore, we found that the specific CB2 agonist JWH-133 significantly inhibits the amplitude of dorsal root-evoked glutamatergic excitatory postsynaptic currents in spinal dorsal horn neurons in SNL rats, but not in sham control rats; intrathecal injection of JWH-133 reversed pain hypersensitivity in SNL rats, but had no effect in sham control rats. In addition, chromatin immunoprecipitation-qPCR analysis showed that SNL increased enrichment of two activating histone marks (H3K4me3 and H3K9ac) and diminished occupancy of two repressive histone marks (H3K9me2 and H3K27me3) at the Cnr2 promoter in the DRG. In contrast, SNL had no effect on DNA methylation levels around the Cnr2 promoter. Our findings suggest that peripheral nerve injury promotes CB2 expression in primary sensory neurons via epigenetic bivalent histone modifications and that CB2 activation reduces neuropathic pain by attenuating nociceptive transmission from primary afferent nerves to the spinal cord.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guang-Fen Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
5
|
Guan L, Shi X, Tang Y, Yan Y, Chen L, Chen Y, Gao G, Lin C, Chen A. Contribution of Amygdala Histone Acetylation in Early Life Stress-Induced Visceral Hypersensitivity and Emotional Comorbidity. Front Neurosci 2022; 16:843396. [PMID: 35600618 PMCID: PMC9120649 DOI: 10.3389/fnins.2022.843396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
Patients with irritable bowel syndrome (IBS) experience not only enhanced visceral pain but also emotional comorbidities, such as anxiety and depression. Early life stress (ELS) is a high-risk for the development of IBS. Literatures have reported an important epigenetic modulation in sustaining extrinsic phenotypes. The amygdala is closely related to the regulation of visceral functions and emotional experiences. In this study, we hypothesized that ELS-induced reprogramming inappropriate adaptation of histone acetylation modification in the amygdala may result in visceral hypersensitivity and anxiety-like behaviors in ELS rats. To test this hypothesis, the model of ELS rats was established by neonatal colorectal dilatation (CRD). Visceral hypersensitivity was assessed based on the electromyography response of the abdominal external oblique muscle to CRD. Emotional comorbidities were examined using the elevated plus maze test, open field test, and sucrose preference test. Trichostatin A (TSA) and C646 were microinjected into the central amygdala (CeA) individually to investigate the effects of different levels of histone acetylation modification on visceral hypersensitivity and emotion. We found neonatal CRD resulted in visceral hypersensitivity and anxiety-like behaviors after adulthood. Inhibiting histone deacetylases (HDACs) in the CeA by TSA enhanced visceral sensitivity but did not affect anxiety-like behaviors, whereas inhibiting HAT by C646 attenuated visceral hypersensitivity in ELS rats. Interestingly, CeA treatment with TSA induced visceral sensitivity and anxiety-like behaviors in the control rats. Western blot showed that the expressions of acetylated 9 residue of Histone 3 (H3K9) and protein kinase C zeta type (PKMζ) were higher in the ELS rats compared to those of the controls. The administration of the PKMζ inhibitor ZIP into the CeA attenuated visceral hypersensitivity of ELS rats. Furthermore, the expression of amygdala PKMζ was enhanced by TSA treatment in control rats. Finally, western blot and immunofluorescence results indicated the decrease of HDAC1 and HDAC2 expressions, but not HDAC3 expression, contributed to the enhancement of histone acetylation in ELS rats. Our results support our hypothesis that amygdala-enhanced histone acetylation induced by stress in early life results in visceral hypersensitivity and anxiety-like behaviors in ELS rats, and reversing the abnormal epigenetic mechanisms may be crucial to relieve chronic symptoms in ELS rats.
Collapse
Affiliation(s)
- Le Guan
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Xi Shi
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Tang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Yan Yan
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Liang Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Yu Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Guangcheng Gao
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
| | - Chun Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
- Department of Pediatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Chun Lin,
| | - Aiqin Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Pain Research Institute, Fujian Medical University, Fuzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Aiqin Chen,
| |
Collapse
|
6
|
H. pylori effects on ghrelin axis: Preliminary change in gastric pathogenesis. Microb Pathog 2021; 161:105262. [PMID: 34695557 DOI: 10.1016/j.micpath.2021.105262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
Ghrelin and its receptors are present in the stomach, suggesting that the ghrelin axis plays an essential role in gastrointestinal complications. This investigation aimed to explore the effects of H. pylori infection and gastritis on serum ghrelin and ghrelin axis gene expression. In this study, we enrolled 68 adult ambulatory people referred for upper gastrointestinal endoscopy. The individuals were classified into three groups based on H. pylori infection and gastritis. Total serum ghrelin and tissue gene expression were tested with ELISA and quantitative RT-PCR, respectively. Serum ghrelin and mRNA expression were significantly lower in H. pylori-positive with gastritis subjects compared with both H. pylori-negative with and without gastritis. Growth hormone secretagogue receptor1a mRNA expression was not different between groups while GHSR1b expression was significantly higher in patients with H. pylori infection and gastritis. We propose the ghrelin axis intermediaries, such as GHSR1b, as a potential clinical target for gastric disorders.
Collapse
|
7
|
Fang P, Chen C, Zheng F, Jia J, Chen T, Zhu J, Chang J, Zhang Z. NLRP3 inflammasome inhibition by histone acetylation ameliorates sevoflurane-induced cognitive impairment in aged mice by activating the autophagy pathway. Brain Res Bull 2021; 172:79-88. [PMID: 33895270 DOI: 10.1016/j.brainresbull.2021.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 01/31/2023]
Abstract
Age-related cognitive impairment is associated with diminished autophagy and progressively increased neuroinflammation. Histone acetylation has been shown to be a key process in sevoflurane-induced neurobehavioral abnormalities. Here, we investigated whether histone acetylation regulates the interaction between autophagy and the NLRP3 inflammasome in models of sevoflurane-induced cognitive impairment and explored the underlying molecular mechanisms. Aged C57BL/6 J mice and cultured primary hippocampal neurons were exposed to 3% sevoflurane for 2 h. Hippocampal tissue samples and hippocampal neurons were harvested. The processes of histone acetylation and autophagy and the activation of the NLRP3 inflammasome were observed using western blotting, immunofluorescence staining, and transmission electron microscopy. Suberoylanilide hydroxamic acid (SAHA), an inhibitor of histone deacetylases, increased histone H3 and H4 acetylation in both the mouse hippocampus and primary neurons. Concomitantly, sevoflurane upregulated components of the NLRP3 inflammasome (NLRP3, cleaved caspase-1, and IL-1β) by promoting autophagic degradation in the aging brain. Cognitive deficits and inadequate autophagy induced by sevoflurane were reversed and NLRP3 inflammasome activation was inhibited by SAHA. Treatment with 3-MA, an autophagy inhibitor, eliminated the neuroprotective effects of SAHA on improving cognition in mice, activating autophagy and downregulating the NLRP3 inflammasome. Based on these results, histone acetylation activates autophagy plays an important role in inhibiting the activation of the NLRP3 inflammasome to protect the host from excessive neuroinflammation and sevoflurane-induced cognitive dysfunction in the aging brain.
Collapse
Affiliation(s)
- Peng Fang
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China; Department of Anaesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Chang Chen
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Feng Zheng
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Junke Jia
- Department of Anaesthesiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310002, China
| | - Ting Chen
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jinpiao Zhu
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jing Chang
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zongze Zhang
- Department of Anaesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
8
|
The clues in solving the mystery of major psychosis: The epigenetic basis of schizophrenia and bipolar disorder. Neurosci Biobehav Rev 2020; 113:51-61. [DOI: 10.1016/j.neubiorev.2020.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
|
9
|
aPKC in neuronal differentiation, maturation and function. Neuronal Signal 2019; 3:NS20190019. [PMID: 32269838 PMCID: PMC7104321 DOI: 10.1042/ns20190019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022] Open
Abstract
The atypical Protein Kinase Cs (aPKCs)—PRKCI, PRKCZ and PKMζ—form a subfamily within the Protein Kinase C (PKC) family. These kinases are expressed in the nervous system, including during its development and in adulthood. One of the aPKCs, PKMζ, appears to be restricted to the nervous system. aPKCs are known to play a role in a variety of cellular responses such as proliferation, differentiation, polarity, migration, survival and key metabolic functions such as glucose uptake, that are critical for nervous system development and function. Therefore, these kinases have garnered a lot of interest in terms of their functional role in the nervous system. Here we review the expression and function of aPKCs in neural development and in neuronal maturation and function. Despite seemingly paradoxical findings with genetic deletion versus gene silencing approaches, we posit that aPKCs are likely candidates for regulating many important neurodevelopmental and neuronal functions, and may be associated with a number of human neuropsychiatric diseases.
Collapse
|