1
|
Zhang L, Wang W, Yang Y, Liu X, Zhu W, Pi L, Liu X, Wang S. Spontaneous and site-specific immobilization of PNGase F via spy chemistry. RSC Adv 2023; 13:28493-28500. [PMID: 37771922 PMCID: PMC10523939 DOI: 10.1039/d3ra04591a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Protein N-glycosylation plays a critical role in a wide range of biological processes, and aberrant N-glycosylation is frequently associated with various pathological states. For global N-glycosylation analysis, N-glycans are typically released from glycoproteins mediated by endoglycosidases, primarily peptide N-glycosidase F (PNGase F). However, conventional N-glycan release by in-solution PNGase F is time-consuming and nonreusable. Although some immobilization methods can save time and reduce the enzyme dosage, including affinity interaction and covalent binding, the immobilized PNGase F by these traditional methods may compromises the immobilized enzyme's stability and biofunction. Therefore, a new approach is urgently needed to firmly and steadily immobilize PNGase F. To meet this demand, we have developed a spontaneous and site-specific way to immobilize PNGase F onto magnetic nanoparticles via Spy chemistry. The magnetic nanoparticles were synthesized and modified with SpyTag as a solid surface. The PNGase F fused with SpyCatcher can then be site-specifically and covalently immobilized onto this solid phase, forming a firm isopeptide bond via self-catalysis between the SpyTag peptide and SpyCatcher. Importantly, the immobilization process mediated by mild spy chemistry does not result in PNGase F inactivation; and allows immobilized PNGase F to rapidly release various types of glycans (high-mannose, sialylated, and hybrid) from glycoproteins. Moreover, the immobilized PNGase F exhibited good deglycosylation activity and facilitated good reusability in consecutive reactions. Deglycosylation of clinical samples was completed by the immobilized PNGase F as fast as several minutes.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University Wuhan 430079 China
| | - Wenhui Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Yueqin Yang
- Exercise Immunology Center, Wuhan Sports University Wuhan 430079 China
| | - Xiang Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430016 China
| | - Wenjie Zhu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Lingrui Pi
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Xin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China +86-27-87792203
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University Wuhan 430079 China
| |
Collapse
|
2
|
Majewska J, Miernikiewicz P, Szymczak A, Kaźmierczak Z, Goszczyński TM, Owczarek B, Rybicka I, Ciekot J, Dąbrowska K. Evolution of the T4 phage virion is driven by selection pressure from non-bacterial factors. Microbiol Spectr 2023; 11:e0011523. [PMID: 37724862 PMCID: PMC10580926 DOI: 10.1128/spectrum.00115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
Bacteriophages colonize animal and human bodies, propagating on sensitive bacteria that are symbionts, commensals, or pathogens of animals and humans. T4-like phages are dependent on abundant symbionts such as Escherichia coli, commonly present in animal and human gastrointestinal (GI) tracts. Bacteriophage T4 is one of the most complex viruses, and its intricate structure, particularly the capsid head protecting the phage genome, likely contributes substantially to the overall phage fitness in diverse environments. We investigated how individual head proteins-gp24, Hoc, and Soc-affect T4 phage survival under pressure from non-bacterial factors. We constructed a panel of T4 phage variants defective in these structural proteins: T4∆Soc, T4∆24byp24, T4∆Hoc∆Soc, T4∆Hoc∆24byp24, T4∆Soc∆24byp24, and T4∆Hoc∆Soc∆24byp24 (byp = bypass). These variants were investigated for their sensitivity to selected environmental conditions relevant to the microenvironment of the GI tract, including pH, temperature, and digestive enzymes. The simple and "primitive" structure of the phage capsid (∆24byp24) was significantly less stable at low pH and more sensitive to inactivation by digestive enzymes, and the simultaneous lack of gp24 and Soc resulted in a notable decrease in phage activity at 37°C. Gp24 was also found to be highly resistant to thermal and chemical denaturation. Thus, gp24, which was acquired relatively late in evolution, seems to play a key role in T4 withstanding environmental conditions, including those related to the animal/human GI tract, and Soc is a molecular glue that enhances this protective effect. IMPORTANCE Bacteriophages are important components of animal and human microbiota, particularly in the gastrointestinal tract, where they dominate the viral community and contribute to shaping microbial balance. However, interactions with bacterial hosts are not the only element of the equation in phage survival-phages inhabiting the GI tract are constantly exposed to increased temperature, pH fluctuations, or digestive enzymes, which raises the question of whether and how the complex structure of phage capsids contributes to their persistence in the specific microenvironment of human/animal bodies. Here we address this phage-centric perspective, identifying the role of individual head proteins in T4 phage survival in GI tract conditions. The selection pressure driving the evolution of T4-like phages could have come from the external environment that affects phage virions with increased temperature and variable pH; it is possible that in the local microenvironment along the GI tract, the phage benefits from stability-protecting proteins.
Collapse
Affiliation(s)
- Joanna Majewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paulina Miernikiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aleksander Szymczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Tomasz M. Goszczyński
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Barbara Owczarek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Izabela Rybicka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Krystyna Dąbrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- Research and Development Center, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| |
Collapse
|
3
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Duan F, Sun T, Zhang J, Wang K, Wen Y, Lu L. Recent innovations in immobilization of β-galactosidases for industrial and therapeutic applications. Biotechnol Adv 2022; 61:108053. [DOI: 10.1016/j.biotechadv.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|
5
|
Wu Y, Zhang Y, Li W, Xu Y, Liu Y, Liu X, Xu Y, Liu W. Flowing on-line preparation of deglycosylation, labeling and purification for N-glycan analysis. Talanta 2022; 249:123652. [PMID: 35696978 DOI: 10.1016/j.talanta.2022.123652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 10/31/2022]
Abstract
The current in-solution analysis of N-glycans suffers from several disadvantages including tedious de-glycosylation time and multi-step pre-treatment procedures. Here, an ultra-simple flowing on-line analysis of labeled N-glycans for high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed for eliminating the deficiencies. This on-line analysis consisted of an immobilized enzyme reactor (IMER) of PNGase F for efficient release of N-glycans, labeling of released N-glycans and following purification of derivatives on microfluidic chip. Notably, efficient preparations for all type of N-glycans were completed within ∼30 min. To our best knowledge, this is the first time to integrated the whole preparation of N-glycan deglycosylation, labeling and purification only by a simple fluidic flow with our developed device. Good reproducibility and stability were achieved with the relative standard deviation (RSD) less than 10%. Furthermore, the glycome studies with human serum revealed a good adaptability for biological samples. Our work provides an efficient N-glycomic strategy that can be applied to further multilayered clinical analysis.
Collapse
Affiliation(s)
- Yike Wu
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yuan Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Weifeng Li
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yun Xu
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Xin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yong Xu
- The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Wenlan Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China; The Center for Medical Genetics & Molecular Diagnosis, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| |
Collapse
|
6
|
Arnold J, Chapman J, Arnold M, Dinu CZ. Hyaluronic Acid Allows Enzyme Immobilization for Applications in Biomedicine. BIOSENSORS 2022; 12:bios12010028. [PMID: 35049657 PMCID: PMC8773612 DOI: 10.3390/bios12010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022]
Abstract
Enzymes are proteins that control the efficiency and effectiveness of biological reactions and systems, as well as of engineered biomimetic processes. This review highlights current applications of a diverse range of enzymes for biofuel production, plastics, and chemical waste management, as well as for detergent, textile, and food production and preservation industries respectively. Challenges regarding the transposition of enzymes from their natural purpose and environment into synthetic practice are discussed. For example, temperature and pH-induced enzyme fragilities, short shelf life, low-cost efficiency, poor user-controllability, and subsequently insufficient catalytic activity were shown to decrease pertinence and profitability in large-scale production considerations. Enzyme immobilization was shown to improve and expand upon enzyme usage within a profit and impact-oriented commercial world and through enzyme-material and interfaces integration. With particular focus on the growing biomedical market, examples of enzyme immobilization within or onto hyaluronic acid (HA)-based complexes are discussed as a definable way to improve upon and/or make possible the next generation of medical undertakings. As a polysaccharide formed in every living organism, HA has proven beneficial in biomedicine for its high biocompatibility and controllable biodegradability, viscoelasticity, and hydrophilicity. Complexes developed with this molecule have been utilized to selectively deliver drugs to a desired location and at a desired rate, improve the efficiency of tissue regeneration, and serve as a viable platform for biologically accepted sensors. In similar realms of enzyme immobilization, HA’s ease in crosslinking allows the molecule to user-controllably enhance the design of a given platform in terms of both chemical and physical characteristics to thus best support successful and sustained enzyme usage. Such examples do not only demonstrate the potential of enzyme-based applications but further, emphasize future market trends and accountability.
Collapse
Affiliation(s)
- Jackie Arnold
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA; (J.A.); (J.C.)
| | - Jordan Chapman
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA; (J.A.); (J.C.)
| | - Myra Arnold
- Department of Sociology and Anthropology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV 26505, USA;
- Department of Business Incubator, John Chambers College of Business and Economics, West Virginia University, Morgantown, WV 26505, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA; (J.A.); (J.C.)
- Correspondence:
| |
Collapse
|
7
|
Bidondo L, Festari F, Freire T, Giacomini C. Immobilized peptide-N-glycosidase F onto magnetic nanoparticles: A biotechnological tool for protein deglycosylation under native conditions. Biotechnol Appl Biochem 2021; 69:209-220. [PMID: 33438294 DOI: 10.1002/bab.2099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/06/2021] [Indexed: 11/06/2022]
Abstract
The elucidation of glycans biological function is essential to understand their role in biological processes, both normal and pathological. Immobilized glycoenzymes are excellent tools for this purpose as they can selectively release glycans from glycoproteins without altering their backbone. They can be easily removed from the reaction mixture avoiding their interference in subsequent experiments. Here, we describe the immobilization of peptide-N-glycosidase F (PNGase F) onto silica magnetic nanoparticles with immobilization yields of 86% and activity yields of 12%. Immobilized PNGase F showed higher thermal stability than its soluble counterpart, and could be reused for at least seven deglycosylation cycles. It was efficient in the deglycosylation of several glycoproteins (ribonuclease B, bovine fetuin, and ovalbumin) and a protein lysate from the parasite Fasciola hepatica under native conditions, with similar performance to that of the soluble enzyme. Successful deglycosylation was evidenced by a decrease in specific lectin recognition of the glycoproteins (40%-80%). Moreover, deglycosylated F. hepatica lysate allowed us to confirm the role of parasite N-glycans in the inhibition of the lipopolysaccharide-induced maturation of dendritic cells. Immobilized PNGase F probed to be a robust biotechnological tool for deglycosylation of glycoproteins and complex biological samples under native conditions.
Collapse
Affiliation(s)
- Lucía Bidondo
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo, Uruguay
| | - Florencia Festari
- Laboratorio de Inmunomodulación y desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo, Uruguay
| | - Teresa Freire
- Laboratorio de Inmunomodulación y desarrollo de Vacunas, Departamento de Inmunobiología, Facultad de Medicina, UdelaR, Gral Flores 2125, Montevideo, Uruguay
| | - Cecilia Giacomini
- Laboratorio de Bioquímica, Departamento de Biociencias, Facultad de Química, UdelaR, Gral. Flores 2124, Montevideo, Uruguay
| |
Collapse
|
8
|
Ojha SK, Pattnaik R, Singh PK, Dixit S, Mishra S, Pal S, Kumar S. Virus as nanocarrier for drug delivery redefining medical therapeutics - A status report. Comb Chem High Throughput Screen 2020; 25:1619-1629. [PMID: 33342404 DOI: 10.2174/1386207323666201218115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022]
Abstract
Over the last two decades, drug delivery systems have evolved at a tremendous rate. Synthetic nanoparticles have played an important role in the design of vaccine and their delivery as many of them have shown improved safety and efficacy over conventional formulations. Nanocarriers formulated by natural, biological building blocks have become an important tool in the field biomedicine. A successful nanocarrier must have certain properties like evading the host immune system, target specificity, cellular entry, escape from endosomes, and ability to release material into the cytoplasm. Some or all of these functions can be performed by viruses making them a suitable candidate for naturally occurring nanocarriers. Moreover, viruses can be made non-infectious and non-replicative without compromising their ability to penetrate cells thus making them useful for a vast spectrum of applications. Currently, various carrier molecules are under different stages of development to become bio-nano capsules. This review covers the advances made in the field of viruses as potential nanocarriers and discusses the related technologies and strategies to target specific cells by using virus inspired nanocarriers. In future, these virus-based nano-formulations will be able to provide solutions towards pressing and emerging infectious diseases.
Collapse
Affiliation(s)
- Sanjay Kumar Ojha
- Pandorum Technologies Pvt. Ltd., Bangalore Bioinnovation Centre, Helix Biotech Park, Electronic City Phase 1, Bengaluru - 560 100. India
| | - Ritesh Pattnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Puneet Kumar Singh
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Shubha Dixit
- School of Pharmacy, Lloyd Institute of Management and Technology, PlotNo.11, Knowledge Park II Greater Noida- 201310. India
| | - Snehasish Mishra
- Bioenergy Lab and BDTC, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-be-University, Bhubaneswar 751 024. India
| | - Sreyasi Pal
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| | - Subrat Kumar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-beUniversity, Bhubaneswar 751 024. India
| |
Collapse
|