1
|
Wang R, Wei H, Shi Y, Wang C, Yu Z, Zhang Y, Lai Y, Chen J, Wang G, Tian W. Self-generating electricity system driven by aqueous humor flow and trabecular meshwork contraction motion activated BCKa for glaucoma intraocular pressure treatment. MATERIALS HORIZONS 2024. [PMID: 39449290 DOI: 10.1039/d4mh01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Primary open-angle glaucoma (POAG) is the most common form of glaucoma and the leading cause of irreversible vision loss and blindness worldwide. Intraocular pressure (IOP) is the only modifiable risk factor, and prompt treatment to lower IOP can effectively slow the rate of vision loss due to glaucoma. Trabecular meshwork (TM) cells can maintain IOP homeostasis by correcting and adjusting the resistance to aqueous humor outflow in response to sustained pressure changes. TM cells' function is reduced, and membrane ion channels are impaired in POAG. The dysfunction of Large conductance Ca2+-activated K+ (BKCa) plays a central role in the pathogenesis of POAG. In this work, we targeted MXene nanoparticles (MXene-RGD) with piezoelectric response to TM cells in a 3D model of glaucoma in vitro as well as in the rabbit Transient Ocular Hypertension (OHT) Model in vivo. MXene-RGD gives the TM electromechanical transfer properties, while the self-enhancing and self-generated electricity properties of the TM are determined by the aqueous humor flow rate and the size of the deformation of the TM. MXene-RGD is nontoxic, as illustrated by a cell toxicity study and histological examination. In a 3D in vitro model of high-pressure glaucoma, whole-cell patch-clamp confirmed that piezoelectric stimulation turns on BKCa, which reduces the volume of the cell. MXene-RGD was injected into the anterior chamber with minimal trauma, i.e., anterior chamber injection, and specifically targeted to TM cells. The OHT model in vivo confirmed the potential IOP-lowering ability of MXene-RGD. We evaluated the ion channels involved in the reduction of IOP by MXene-RGD by pre-treatment with a BKCa channel blocker (iberiotoxin, IbTX) and a voltage-gated Ca2+channel blocker (nifedipine). Quantitative qPCR analysis showed that MXene-RGD inhibited the upregulation of mRNA expression levels of the myofibroblast marker α-smooth muscle actin (α-SMA) and the inflammatory response marker interleukin-6 (IL-6) induced by IOP. Histology confirmed that MXene-RGD attenuated IOP-induced proliferation and collagen production in the TM. Taken together, we present for the first time a minimally invasive surgical approach for targeting TM cells for POAG by utilizing piezoresponse nanomaterials to target BKCa to repair or awaken the ability of TM cells to regulate IOP homeostasis on their own.
Collapse
Affiliation(s)
- Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Haiying Wei
- The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Harbin 150001, Heilongjiang Province, P. R. China
| | - Yuying Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Zhenqiang Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yijian Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Yifan Lai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Jingwei Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Guangfu Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, P. R. China.
| |
Collapse
|
2
|
Li H, Harvey DH, Dai J, Swingle SP, Compton AM, Sugali CK, Dhamodaran K, Yao J, Lin TY, Sulchek T, Kim T, Ethier CR, Mao W. Characterization, enrichment, and computational modeling of cross-linked actin networks in trabecular meshwork cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608970. [PMID: 39229235 PMCID: PMC11370370 DOI: 10.1101/2024.08.21.608970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Purpose Cross-linked actin networks (CLANs) are prevalent in the glaucomatous trabecular meshwork (TM), yet their role in ocular hypertension remains unclear. We used a human TM cell line that spontaneously forms fluorescently-labeled CLANs (GTM3L) to explore the origin of CLANs, developed techniques to increase CLAN incidence in GMT3L cells, and computationally studied the biomechanical properties of CLAN-containing cells. Methods GTM3L cells were fluorescently sorted for viral copy number analysis. CLAN incidence was increased by (i) differential sorting of cells by adhesion, (ii) cell deswelling, and (iii) cell selection based on cell stiffness. GTM3L cells were also cultured on glass or soft hydrogel to determine substrate stiffness effects on CLAN incidence. Computational models were constructed to mimic and study the biomechanical properties of CLANs. Results All GTM3L cells had an average of 1 viral copy per cell. LifeAct-GFP expression level did not affect CLAN incidence rate, but CLAN rate was increased from ~0.28% to ~50% by a combination of adhesion selection, cell deswelling, and cell stiffness-based sorting. Further, GTM3L cells formed more CLANs on a stiff vs. a soft substrate. Computational modeling predicted that CLANs contribute to higher cell stiffness, including increased resistance of the nucleus to tensile stress when CLANs are physically linked to the nucleus. Conclusions It is possible to greatly enhance CLAN incidence in GTM3L cells. CLANs are mechanosensitive structures that affect cell biomechanical properties. Further research is needed to determine the effect of CLANs on TM biomechanics and mechanobiology as well as the etiology of CLAN formation in the TM.
Collapse
Affiliation(s)
- Haiyan Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Devon H Harvey
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jiannong Dai
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Steven P Swingle
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Anthony M Compton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
| | - Chenna Kesavulu Sugali
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Kamesh Dhamodaran
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
| | - Jing Yao
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Tsai-Yu Lin
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Todd Sulchek
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Weiming Mao
- Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana
- Department of Ophthalmology, Indiana University, Indianapolis, Indiana
- Department of Biochemistry & Molecular Biology, Indiana University, Indianapolis, Indiana
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, Indiana
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana
| |
Collapse
|
3
|
Baumann JM, Yarishkin O, Lakk M, De Ieso ML, Rudzitis CN, Kuhn M, Tseng YT, Stamer WD, Križaj D. TRPV4 and chloride channels mediate volume sensing in trabecular meshwork cells. Am J Physiol Cell Physiol 2024; 327:C403-C414. [PMID: 38881423 PMCID: PMC11427009 DOI: 10.1152/ajpcell.00295.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.
Collapse
Affiliation(s)
- Jackson M Baumann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Michael L De Ieso
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | | | - Megan Kuhn
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yun Ting Tseng
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - W Daniel Stamer
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Padilla-Mejia NE, Makarov AA, Barlow LD, Butterfield ER, Field MC. Evolution and diversification of the nuclear envelope. Nucleus 2021; 12:21-41. [PMID: 33435791 PMCID: PMC7889174 DOI: 10.1080/19491034.2021.1874135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells arose ~1.5 billion years ago, with the endomembrane system a central feature, facilitating evolution of intracellular compartments. Endomembranes include the nuclear envelope (NE) dividing the cytoplasm and nucleoplasm. The NE possesses universal features: a double lipid bilayer membrane, nuclear pore complexes (NPCs), and continuity with the endoplasmic reticulum, indicating common evolutionary origin. However, levels of specialization between lineages remains unclear, despite distinct mechanisms underpinning various nuclear activities. Several distinct modes of molecular evolution facilitate organellar diversification and to understand which apply to the NE, we exploited proteomic datasets of purified nuclear envelopes from model systems for comparative analysis. We find enrichment of core nuclear functions amongst the widely conserved proteins to be less numerous than lineage-specific cohorts, but enriched in core nuclear functions. This, together with consideration of additional evidence, suggests that, despite a common origin, the NE has evolved as a highly diverse organelle with significant lineage-specific functionality.
Collapse
Affiliation(s)
- Norma E. Padilla-Mejia
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alexandr A. Makarov
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lael D. Barlow
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Erin R. Butterfield
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České, Czech Republic
| |
Collapse
|
5
|
Rezola M, Castellanos A, Gasull X, Comes N. Functional Interaction Between Caveolin 1 and LRRC8-Mediated Volume-Regulated Anion Channel. Front Physiol 2021; 12:691045. [PMID: 34658903 PMCID: PMC8517123 DOI: 10.3389/fphys.2021.691045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Volume-regulated anion channel (VRAC), constituted by leucine-rich repeat-containing 8 (LRRC8) heteromers, is crucial for volume homeostasis in vertebrate cells. This widely expressed channel has been associated with membrane potential modulation, proliferation, migration, apoptosis, and glutamate release. VRAC is activated by cell swelling and by low cytoplasmic ionic strength or intracellular guanosine 5′-O-(3-thiotriphosphate) (GTP-γS) in isotonic conditions. Despite the substantial number of studies that characterized the biophysical properties of VRAC, its mechanism of activation remains a mystery. Different evidence suggests a possible effect of caveolins in modulating VRAC activity: (1) Caveolin 1 (Cav1)-deficient cells display insignificant swelling-induced Cl– currents mediated by VRAC, which can be restored by Cav1 expression; (2) Caveolin 3 (Cav3) knockout mice display reduced VRAC currents; and (3) Interaction between LRRC8A, the essential subunit for VRAC, and Cav3 has been found in transfected human embryonic kidney 293 (HEK 293) cells. In this study, we demonstrate a physical interaction between endogenous LRRC8A and Cav1 proteins, that is enhanced by hypotonic stimulation, suggesting that this will increase the availability of the channel to Cav1. In addition, LRRC8A targets plasma membrane regions outside caveolae of HEK 293 cells where it associates with non-caveolar Cav1. We propose that a rise in cell membrane tension by hypotonicity would flatten caveolae, as described previously, increasing the amount of Cav1 outside of caveolar structures interacting with VRAC. Besides, the expression of Cav1 in HEK Cav1- cells increases VRAC current density without changing the main biophysical properties of the channel. The present study provides further evidence on the relevance of Cav1 on the activation of endothelial VRAC through a functional molecular interaction.
Collapse
Affiliation(s)
- Mikel Rezola
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Aida Castellanos
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Comes
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
6
|
Yurinskaya V, Aksenov N, Moshkov A, Goryachaya T, Shemery A, Vereninov A. Flow fluorometry quantification of anion channel VRAC subunit LRRC8A at the membrane of living U937 cells. Channels (Austin) 2021; 14:45-52. [PMID: 32075501 PMCID: PMC7039630 DOI: 10.1080/19336950.2020.1730535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Assessing the expression of channels on the cell membrane is a necessary step in studying the functioning of ion channels in living cells. We explore, first, if endogenous VRAC can be assayed using flow cytometry and a commercially available antibody against an extracellular loop of the LRRC8A, also known as SWELL1, subunit of the VRAC channel. The second goal is to determine if an increase in the number of VRAC channels at the cell membrane is responsible for an increase in chloride permeability of the membrane in two well-known cases: during staurosporine (STS)-induced apoptosis and after water balance disturbance caused by hypotonic medium. Human suspension lymphoid cells U937 were used as they are suitable for flow fluorometry and because we have recently studied their membrane chloride permeability during apoptosis. We found that surface expression of endogenous LRRC8A subunits can be quantified in living U937 cells using flow fluorometry with the Alomone Lab antibody. Further, we revealed that treatment of cells for 1 hour using STS or a hypotonic solution did not change the number of LRRC8A subunits to the extent that would correspond to changes in the membrane chloride permeability determined by ion content analysis. This indicates that prolonged increase in chloride permeability of the cell membrane during apoptotic cell shrinkage or cell volume regulation under hypotonicity in U937 cells occurs without altering cell surface expression of VRAC.
Collapse
Affiliation(s)
| | - Nikolay Aksenov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexey Moshkov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Tatyana Goryachaya
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Ashley Shemery
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Alexey Vereninov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
7
|
The Canonical Wnt Signaling Pathway Inhibits the Glucocorticoid Receptor Signaling Pathway in the Trabecular Meshwork. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1020-1035. [PMID: 33705750 DOI: 10.1016/j.ajpath.2021.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023]
Abstract
Glucocorticoid-induced glaucoma is a secondary open-angle glaucoma. About 40% of the general population may develop elevated intraocular pressure on prolonged glucocorticoid treatment secondary to damages in the trabecular meshwork (TM), a tissue that regulates intraocular pressure. Therefore, identifying the key molecules responsible for glucocorticoid-induced ocular hypertension is crucial. In this study, Dickkopf-related protein 1 (Dkk1), a canonical Wnt signaling inhibitor, was found to be elevated in the aqueous humor and TM of glaucoma patients. At the signaling level, Dkk1 enhanced glucocorticoid receptor (GR) signaling, whereas Dkk1 knockdown or Wnt signaling activators decreased GR signaling in human TM cells as indicated by luciferase assays. Similarly, activation of the GR signaling inhibited Wnt signaling. At the protein level, glucocorticoid-induced extracellular matrix was inhibited by Wnt activation using Wnt activators or Dkk1 knockdown in primary human TM cells. In contrast, inhibition of canonical Wnt signaling by β-catenin knockdown increased glucocorticoid-induced extracellular matrix proteins. At the physiological level, adenovirus-mediated Wnt3a expression decreased glucocorticoid-induced ocular hypertension in mouse eyes. In summary, Wnt and GR signaling inhibit each other in the TM, and canonical Wnt signaling activators may prevent the adverse effect of glucocorticoids in the eye.
Collapse
|
8
|
Boente-Juncal A, Raposo-García S, Louzao MC, Vale C, Botana LM. Targeting Chloride Ion Channels: New Insights into the Mechanism of Action of the Marine Toxin Azaspiracid. Chem Res Toxicol 2021; 34:865-879. [PMID: 33512997 DOI: 10.1021/acs.chemrestox.0c00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Azaspiracids (AZAs) are marine toxins produced by dinoflagellates belonging to the genera Azadinium and Amphidoma that caused human intoxications after consumption of contaminated fishery products, such as mussels. However, the exact mechanism for the AZA induced cytotoxic and neurotoxic effects is still unknown. In this study several pharmacological approaches were employed to evaluate the role of anion channels on the AZA effects that demonstrated that cellular anion dysregulation was involved in the toxic effects of these compounds. The results presented here demonstrated that volume regulated anion channels (VRACs) are affected by this group of toxins, and, because there is not any specific activator of VRACs besides the intracellular application of GTPγ-S molecule, this group of natural compounds could represent a powerful tool to analyze the role of these channels in cellular homeostasis. In addition to this, in this work, a detailed pharmacological approach was performed in order to elucidate the anion channels present in human HEK293 cells as well as their regulation by the marine toxins azaspiracids. Altogether, the data presented here demonstrated that the effect of azaspiracids in human cells was completely dependent on ATP-regulated anion channels, whose upregulation by these toxins could lead to regulatory volume decrease and underlie the reported toxicity of these compounds.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Sandra Raposo-García
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - M Carmen Louzao
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Carmen Vale
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Luis M Botana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| |
Collapse
|
9
|
Lu R, Soden PA, Lee E. Tissue-Engineered Models for Glaucoma Research. MICROMACHINES 2020; 11:mi11060612. [PMID: 32599818 PMCID: PMC7345325 DOI: 10.3390/mi11060612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs). Patients with glaucoma generally experience elevations in intraocular pressure (IOP), followed by RGC death, peripheral vision loss and eventually blindness. However, despite the substantial economic and health-related impact of glaucoma-related morbidity worldwide, the surgical and pharmacological management of glaucoma is still limited to maintaining IOP within a normal range. This is in large part because the underlying molecular and biophysical mechanisms by which glaucomatous changes occur are still unclear. In the present review article, we describe current tissue-engineered models of the intraocular space that aim to advance the state of glaucoma research. Specifically, we critically evaluate and compare both 2D and 3D-culture models of the trabecular meshwork and nerve fiber layer, both of which are key players in glaucoma pathophysiology. Finally, we point out the need for novel organ-on-a-chip models of glaucoma that functionally integrate currently available 3D models of the retina and the trabecular outflow pathway.
Collapse
Affiliation(s)
- Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Paul A. Soden
- College of Human Ecology, Cornell University, Ithaca, NY 14853, USA;
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-8491
| |
Collapse
|
10
|
Chen L, König B, Liu T, Pervaiz S, Razzaque YS, Stauber T. More than just a pressure relief valve: physiological roles of volume-regulated LRRC8 anion channels. Biol Chem 2019; 400:1481-1496. [DOI: 10.1515/hsz-2019-0189] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/27/2019] [Indexed: 12/29/2022]
Abstract
Abstract
The volume-regulated anion channel (VRAC) is a key player in the volume regulation of vertebrate cells. This ubiquitously expressed channel opens upon osmotic cell swelling and potentially other cues and releases chloride and organic osmolytes, which contributes to regulatory volume decrease (RVD). A plethora of studies have proposed a wide range of physiological roles for VRAC beyond volume regulation including cell proliferation, differentiation and migration, apoptosis, intercellular communication by direct release of signaling molecules and by supporting the exocytosis of insulin. VRAC was additionally implicated in pathological states such as cancer therapy resistance and excitotoxicity under ischemic conditions. Following extensive investigations, 5 years ago leucine-rich repeat-containing family 8 (LRRC8) heteromers containing LRRC8A were identified as the pore-forming components of VRAC. Since then, molecular biological approaches have allowed further insight into the biophysical properties and structure of VRAC. Heterologous expression, siRNA-mediated downregulation and genome editing in cells, as well as the use of animal models have enabled the assessment of the proposed physiological roles, together with the identification of new functions including spermatogenesis and the uptake of antibiotics and platinum-based cancer drugs. This review discusses the recent molecular biological insights into the physiology of VRAC in relation to its previously proposed roles.
Collapse
Affiliation(s)
- Lingye Chen
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Benjamin König
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Tianbao Liu
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Sumaira Pervaiz
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Yasmin S. Razzaque
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| | - Tobias Stauber
- Institut für Chemie und Biochemie , Freie Universität Berlin , Thielallee 63 , D-14195 Berlin , Germany
| |
Collapse
|