1
|
Sel K, Osman D, Zare F, Masoumi Shahrbabak S, Brattain L, Hahn JO, Inan OT, Mukkamala R, Palmer J, Paydarfar D, Pettigrew RI, Quyyumi AA, Telfer B, Jafari R. Building Digital Twins for Cardiovascular Health: From Principles to Clinical Impact. J Am Heart Assoc 2024; 13:e031981. [PMID: 39087582 DOI: 10.1161/jaha.123.031981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The past several decades have seen rapid advances in diagnosis and treatment of cardiovascular diseases and stroke, enabled by technological breakthroughs in imaging, genomics, and physiological monitoring, coupled with therapeutic interventions. We now face the challenge of how to (1) rapidly process large, complex multimodal and multiscale medical measurements; (2) map all available data streams to the trajectories of disease states over the patient's lifetime; and (3) apply this information for optimal clinical interventions and outcomes. Here we review new advances that may address these challenges using digital twin technology to fulfill the promise of personalized cardiovascular medical practice. Rooted in engineering mechanics and manufacturing, the digital twin is a virtual representation engineered to model and simulate its physical counterpart. Recent breakthroughs in scientific computation, artificial intelligence, and sensor technology have enabled rapid bidirectional interactions between the virtual-physical counterparts with measurements of the physical twin that inform and improve its virtual twin, which in turn provide updated virtual projections of disease trajectories and anticipated clinical outcomes. Verification, validation, and uncertainty quantification builds confidence and trust by clinicians and patients in the digital twin and establishes boundaries for the use of simulations in cardiovascular medicine. Mechanistic physiological models form the fundamental building blocks of the personalized digital twin that continuously forecast optimal management of cardiovascular health using individualized data streams. We present exemplars from the existing body of literature pertaining to mechanistic model development for cardiovascular dynamics and summarize existing technical challenges and opportunities pertaining to the foundation of a digital twin.
Collapse
Affiliation(s)
- Kaan Sel
- Laboratory for Information & Decision Systems (LIDS) Massachusetts Institute of Technology Cambridge MA USA
| | - Deen Osman
- Department of Electrical and Computer Engineering Texas A&M University College Station TX USA
| | - Fatemeh Zare
- Department of Electrical and Computer Engineering Texas A&M University College Station TX USA
| | | | - Laura Brattain
- Lincoln Laboratory Massachusetts Institute of Technology Lexington MA USA
| | - Jin-Oh Hahn
- Department of Mechanical Engineering University of Maryland College Park MD USA
| | - Omer T Inan
- School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta GA USA
| | - Ramakrishna Mukkamala
- Department of Bioengineering and Anesthesiology and Perioperative Medicine University of Pittsburgh Pittsburgh PA USA
| | - Jeffrey Palmer
- Lincoln Laboratory Massachusetts Institute of Technology Lexington MA USA
| | - David Paydarfar
- Department of Neurology The University of Texas at Austin Dell Medical School Austin TX USA
| | | | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine Emory University School of Medicine Atlanta GA USA
| | - Brian Telfer
- Lincoln Laboratory Massachusetts Institute of Technology Lexington MA USA
| | - Roozbeh Jafari
- Laboratory for Information & Decision Systems (LIDS) Massachusetts Institute of Technology Cambridge MA USA
- Department of Electrical and Computer Engineering Texas A&M University College Station TX USA
- Lincoln Laboratory Massachusetts Institute of Technology Lexington MA USA
- School of Engineering Medicine Texas A&M University Houston TX USA
| |
Collapse
|
2
|
Steffensen TL, Schjerven FE, Flade HM, Kirkeby-Garstad I, Ingeström E, Solberg FS, Steinert M. Wrist ballistocardiography and invasively recorded blood pressure in healthy volunteers during reclining bike exercise. Front Physiol 2023; 14:1189732. [PMID: 37250120 PMCID: PMC10213206 DOI: 10.3389/fphys.2023.1189732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Objective: Ballistocardiogram (BCG) features are of interest in wearable cardiovascular monitoring of cardiac performance. We assess feasibility of wrist acceleration BCG during exercise for estimating pulse transit time (PTT), enabling broader cardiovascular response studies during acute exercise and improved monitoring in individuals at risk for cardiovascular disease (CVD). We also examine the relationship between PTT, blood pressure (BP), and stroke volume (SV) during exercise and posture interventions. Methods: 25 participants underwent a bike exercise protocol with four incremental workloads (0 W, 50 W, 100 W, and 150 W) in supine and semirecumbent postures. BCG, invasive radial artery BP, tonometry, photoplethysmography (PPG) and echocardiography were recorded. Ensemble averages of BCG signals determined aortic valve opening (AVO) timings, combined with peripheral pulse wave arrival times to calculate PTT. We tested for significance using Wilcoxon signed-rank test. Results: BCG was successfully recorded at the wrist during exercise. PTT exhibited a moderate negative correlation with systolic BP (ρSup = -0.65, ρSR = -0.57, ρAll = -0.54). PTT differences between supine and semirecumbent conditions were significant at 0 W and 50 W (p < 0.001), less at 100 W (p = 0.0135) and 150 W (p = 0.031). SBP and DBP were lower in semirecumbent posture (p < 0.01), while HR was slightly higher. Echocardiography confirmed association of BCG features with AVO and indicated a positive relationship between BCG amplitude and SV (ρ = 0.74). Significance: Wrist BCG may allow convenient PTT and possibly SV tracking during exercise, enabling studies of cardiovascular response to acute exercise and convenient monitoring of cardiovascular performance.
Collapse
Affiliation(s)
- Torjus L. Steffensen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Filip E. Schjerven
- Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hans M. Flade
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- St. Olav’s University Hospital, Trondheim, Norway
| | - Idar Kirkeby-Garstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- St. Olav’s University Hospital, Trondheim, Norway
| | - Emma Ingeström
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fredrik S. Solberg
- Department of Mechanical Engineering, Stanford University, Palo Alto, CA, United States
| | - Martin Steinert
- Department of Mechanical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
3
|
Liu SH, Wu YR, Chen W, Su CH, Chin CL. Using Ballistocardiogram and Impedance Plethysmogram for Minimal Contact Measurement of Blood Pressure Based on a Body Weight-Fat Scale. SENSORS (BASEL, SWITZERLAND) 2023; 23:2318. [PMID: 36850917 PMCID: PMC9966183 DOI: 10.3390/s23042318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Electronic health (eHealth) is a strategy to improve the physical and mental condition of a human, collecting daily physiological data and information from digital apparatuses. Body weight and blood pressure (BP) are the most popular and important physiological data. The goal of this study is to develop a minimal contact BP measurement method based on a commercial body weight-fat scale, capturing biometrics when users stand on it. The pulse transit time (PTT) is extracted from the ballistocardiogram (BCG) and impedance plethysmogram (IPG), measured by four strain gauges and four footpads of a commercial body weight-fat scale. Cuffless BP measurement using the electrocardiogram (ECG) and photoplethysmogram (PPG) serves as the reference method. The BP measured by a commercial BP monitor is considered the ground truth. Twenty subjects participated in this study. By the proposed model, the root-mean-square errors and correlation coefficients (r2s) of estimated systolic blood pressure and diastolic blood pressure are 7.3 ± 2.1 mmHg and 4.5 ± 1.8 mmHg, and 0.570 ± 0.205 and 0.284 ± 0.166, respectively. This accuracy level achieves the C grade of the corresponding IEEE standard. Thus, the proposed method has the potential benefit for eHealth monitoring in daily application.
Collapse
Affiliation(s)
- Shing-Hong Liu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung City 41349, Taiwan
| | - Yan-Rong Wu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung City 41349, Taiwan
| | - Wenxi Chen
- Biomedical Information Engineering Laboratory, The University of Aizu, Aizu-Wakamatsu City 965-8580, Japan
| | - Chun-Hung Su
- Institute of Medicine, School of Medicine, Chung-Shan Medical University, Taichung City 40201, Taiwan
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chiun-Li Chin
- Department of Medical Informatics, Chung-Shan Medical University, Taichung City 40201, Taiwan
| |
Collapse
|
4
|
Viera E, Kaschel H, Valencia C. Heart Rate Variability Control Using a Biofeedback and Wearable System. SENSORS (BASEL, SWITZERLAND) 2022; 22:7153. [PMID: 36236257 PMCID: PMC9572135 DOI: 10.3390/s22197153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Heart rate variability is an important physiological parameter in medicine. This parameter is used as an indicator of physiological and psychological well-being and even of certain pathologies. Research on biofeedback integrates the fields of biological application (physiological behavior), system modeling, and automated control. This study proposes a new method for modeling and controlling heart rate variability as heart rate acceleration, a model expressed in the frequency domain. The model is obtained from excitation and response signals from heart rate variability, which through the instrumental variables method and the minimization of a cost function delivers a transfer function that represents the physiological phenomenon. This study also proposes the design of an adaptive controller using the reference model. The controller controls heart rate variability based on the light actuators designed here, generating a conditioned reflex that allows individuals to self-regulate their state through biofeedback, synchronizing this action to homeostasis. Modeling is conducted in a target population of middle-aged men who work as firefighters and forest firefighters. This study validates the proposed model, as well as the design of the controllers and actuators, through a simple experiment based on indoor cycling. This experiment has different segments, namely leaving inertia, non-controlled segment, and actively controlled segment.
Collapse
|
5
|
Liu SH, Zhang BH, Chen W, Su CH, Chin CL. Cuffless and Touchless Measurement of Blood Pressure from Ballistocardiogram Based on a Body Weight Scale. Nutrients 2022; 14:2552. [PMID: 35745282 PMCID: PMC9229996 DOI: 10.3390/nu14122552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, in terms of reducing the infection risk of the COVID-19 virus spreading all over the world, the development of touchless blood pressure (BP) measurement has potential benefits. The pulse transit time (PTT) has a high relation with BP, which can be measured by electrocardiogram (ECG) and photoplethysmogram (PPG). The ballistocardiogram (BCG) reflects the mechanical vibration (or displacement) caused by the heart contraction/relaxation (or heart beating), which can be measured from multiple degrees of the body. The goal of this study is to develop a cuffless and touchless BP-measurement method based on a commercial weight scale combined with a PPG sensor when measuring body weight. The proposed method was that the PTTBCG-PPGT was extracted from the BCG signal measured by a weight scale, and the PPG signal was measured from the PPG probe placed at the toe. Four PTT models were used to estimate BP. The reference method was the PTTECG-PPGF extracted from the ECG signal and PPG signal measured from the PPG probe placed at the finger. The standard BP was measured by an electronic blood pressure monitor. Twenty subjects were recruited in this study. By the proposed method, the root-mean-square error (ERMS) of estimated systolic blood pressure (SBP) and diastolic blood pressure (DBP) are 6.7 ± 1.60 mmHg and 4.8 ± 1.47 mmHg, respectively. The correlation coefficients, r2, of the proposed model for the SBP and DBP are 0.606 ± 0.142 and 0.284 ± 0.166, respectively. The results show that the proposed method can serve for cuffless and touchless BP measurement.
Collapse
Affiliation(s)
- Shing-Hong Liu
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung City 41349, Taiwan; (S.-H.L.); (B.-H.Z.)
| | - Bing-Hao Zhang
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung City 41349, Taiwan; (S.-H.L.); (B.-H.Z.)
| | - Wenxi Chen
- Biomedical Information Engineering Laboratory, The University of Aizu, Aizu-Wakamatsu City 965-8580, Fukushima, Japan;
| | - Chun-Hung Su
- Institute of Medicine, School of Medicine, Chung-Shan Medical University, Taichung City 40201, Taiwan;
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Chiun-Li Chin
- Department of Medical Informatics, Chung-Shan Medical University, Taichung City 40201, Taiwan
| |
Collapse
|
6
|
Chalumuri YR, Kimball JP, Mousavi A, Zia JS, Rolfes C, Parreira JD, Inan OT, Hahn JO. Classification of Blood Volume Decompensation State via Machine Learning Analysis of Multi-Modal Wearable-Compatible Physiological Signals. SENSORS (BASEL, SWITZERLAND) 2022; 22:1336. [PMID: 35214238 PMCID: PMC8963055 DOI: 10.3390/s22041336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
This paper presents a novel computational algorithm to estimate blood volume decompensation state based on machine learning (ML) analysis of multi-modal wearable-compatible physiological signals. To the best of our knowledge, our algorithm may be the first of its kind which can not only discriminate normovolemia from hypovolemia but also classify hypovolemia into absolute hypovolemia and relative hypovolemia. We realized our blood volume classification algorithm by (i) extracting a multitude of features from multi-modal physiological signals including the electrocardiogram (ECG), the seismocardiogram (SCG), the ballistocardiogram (BCG), and the photoplethysmogram (PPG), (ii) constructing two ML classifiers using the features, one to classify normovolemia vs. hypovolemia and the other to classify hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) sequentially integrating the two to enable multi-class classification (normovolemia, absolute hypovolemia, and relative hypovolemia). We developed the blood volume decompensation state classification algorithm using the experimental data collected from six animals undergoing normovolemia, relative hypovolemia, and absolute hypovolemia challenges. Leave-one-subject-out analysis showed that our classification algorithm achieved an F1 score and accuracy of (i) 0.93 and 0.89 in classifying normovolemia vs. hypovolemia, (ii) 0.88 and 0.89 in classifying hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) 0.77 and 0.81 in classifying the overall blood volume decompensation state. The analysis of the features embedded in the ML classifiers indicated that many features are physiologically plausible, and that multi-modal SCG-BCG fusion may play an important role in achieving good blood volume classification efficacy. Our work may complement existing computational algorithms to estimate blood volume compensatory reserve as a potential decision-support tool to provide guidance on context-sensitive hypovolemia therapeutic strategy.
Collapse
Affiliation(s)
- Yekanth Ram Chalumuri
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; (A.M.); (J.D.P.)
| | - Jacob P. Kimball
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA; (J.P.K.); (J.S.Z.); (O.T.I.)
| | - Azin Mousavi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; (A.M.); (J.D.P.)
| | - Jonathan S. Zia
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA; (J.P.K.); (J.S.Z.); (O.T.I.)
| | - Christopher Rolfes
- Global Center for Medical Innovation, Translational Training and Testing Laboratories, Inc. (T3 Labs), Atlanta, GA 30313, USA;
| | - Jesse D. Parreira
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; (A.M.); (J.D.P.)
| | - Omer T. Inan
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA; (J.P.K.); (J.S.Z.); (O.T.I.)
| | - Jin-Oh Hahn
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; (A.M.); (J.D.P.)
| |
Collapse
|
7
|
Rabineau J, Nonclercq A, Leiner T, van de Borne P, Migeotte PF, Haut B. Closed-Loop Multiscale Computational Model of Human Blood Circulation. Applications to Ballistocardiography. Front Physiol 2021; 12:734311. [PMID: 34955874 PMCID: PMC8697684 DOI: 10.3389/fphys.2021.734311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac mechanical activity leads to periodic changes in the distribution of blood throughout the body, which causes micro-oscillations of the body's center of mass and can be measured by ballistocardiography (BCG). However, many of the BCG findings are based on parameters whose origins are poorly understood. Here, we generate simulated multidimensional BCG signals based on a more exhaustive and accurate computational model of blood circulation than previous attempts. This model consists in a closed loop 0D-1D multiscale representation of the human blood circulation. The 0D elements include the cardiac chambers, cardiac valves, arterioles, capillaries, venules, and veins, while the 1D elements include 55 systemic and 57 pulmonary arteries. The simulated multidimensional BCG signal is computed based on the distribution of blood in the different compartments and their anatomical position given by whole-body magnetic resonance angiography on a healthy young subject. We use this model to analyze the elements affecting the BCG signal on its different axes, allowing a better interpretation of clinical records. We also evaluate the impact of filtering and healthy aging on the BCG signal. The results offer a better view of the physiological meaning of BCG, as compared to previous models considering mainly the contribution of the aorta and focusing on longitudinal acceleration BCG. The shape of experimental BCG signals can be reproduced, and their amplitudes are in the range of experimental records. The contributions of the cardiac chambers and the pulmonary circulation are non-negligible, especially on the lateral and transversal components of the velocity BCG signal. The shapes and amplitudes of the BCG waveforms are changing with age, and we propose a scaling law to estimate the pulse wave velocity based on the time intervals between the peaks of the acceleration BCG signal. We also suggest new formulas to estimate the stroke volume and its changes based on the BCG signal expressed in terms of acceleration and kinetic energy.
Collapse
Affiliation(s)
- Jeremy Rabineau
- TIPs, Université Libre de Bruxelles, Brussels, Belgium
- LPHYS, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, Netherlands
| | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Benoit Haut
- TIPs, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
The Latest Progress and Development Trend in the Research of Ballistocardiography (BCG) and Seismocardiogram (SCG) in the Field of Health Care. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198896] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current status of the research of Ballistocardiography (BCG) and Seismocardiogram (SCG) in the field of medical treatment, health care and nursing was analyzed systematically, and the important direction in the research was explored, to provide reference for the relevant researches. This study, based on two large databases, CNKI and PubMed, used the bibliometric analysis method to review the existing documents in the past 20 years, and made analyses on the literature of BCG and SCG for their annual changes, main countries/regions, types of research, frequently-used subject words, and important research subjects. The results show that the developed countries have taken a leading position in the researches in this field, and have made breakthroughs in some subjects, but their research results have been mainly gained in the area of research and development of the technologies, and very few have been actually industrialized into commodities. This means that in the future the researchers should focus on the transformation of BCG and SCG technologies into commercialized products, and set up quantitative health assessment models, so as to become the daily tools for people to monitor their health status and manage their own health, and as the main approaches of improving the quality of life and preventing diseases for individuals.
Collapse
|
9
|
Shin S, Mousavi A, Lyle S, Jang E, Yousefian P, Mukkamala R, Jang DG, Kwon UK, Kim YH, Hahn JO. Posture-Dependent Variability in Wrist Ballistocardiogram-Photoplethysmogram Pulse Transit Time: Implication to Cuff-Less Blood Pressure Tracking. IEEE Trans Biomed Eng 2021; 69:347-355. [PMID: 34197317 DOI: 10.1109/tbme.2021.3094200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Toward the ultimate goal of robust cuff-less blood pressure (BP) tracking with wrist wearables against postural changes, the goal of this work was to investigate posture-dependent variability in pulse transit time (PTT) measured with ballistocardiogram (BCG) and photoplethysmogram (PPG) signal pair at the wrist. METHODS BCG and PPG signals were acquired from 25 subjects under the combination of 3 body (standing, sitting, and supine) and 3 arm (vertical in head-to-foot direction, placed on the chest, and holding a shoulder) postures. PTT was computed as the time interval between the BCG J wave and the PPG foot, and the impact of the 9 postures on PTT was analyzed by invoking an array of possible physical mechanisms. RESULTS Our work suggests that (i) wrist BCG-PPG PTT is consistent under standing and sitting postures with vertically held arms; and (ii) changes in wrist orientation and height as well as restrictions in body and arm movement may alter wrist BCG-PPG PTT via distortions in the wrist BCG and PPG waveforms. The results indicate that wrist BCG-PPG PTT varies with respect to postures even when BP remains constant. CONCLUSION The potential of cuff-less BP tracking via wrist BCG-PPG PTT demonstrated under standing posture with arms vertically down in the head-to-foot direction may not generalize to other body and arm postures. SIGNIFICANCE Understanding the physical mechanisms responsible for posture-induced BCG-PPG PTT variability may increase the versatility of the wrist BCG for cuff-less BP tracking.
Collapse
|
10
|
Estimating Sleep Stages Using a Head Acceleration Sensor. SENSORS 2021; 21:s21030952. [PMID: 33535422 PMCID: PMC7867075 DOI: 10.3390/s21030952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 11/25/2022]
Abstract
Sleep disruption from causes, such as changes in lifestyle, stress from aging, family issues, or life pressures are a growing phenomenon that can lead to serious health problems. As such, sleep disorders need to be identified and addressed early on. In recent years, studies have investigated sleep patterns through body movement information collected by wristwatch-type devices or cameras. However, these methods capture only the individual’s awake and sleep states and lack sufficient information to identify specific sleep stages. The aim of this study was to use a 3-axis accelerometer attached to an individual’s head to capture information that can identify three specific sleep stages: rapid eye movement (REM) sleep, light sleep, and deep sleep. These stages are measured by heart rate features captured by a ballistocardiogram and body movement. The sleep experiment was conducted for two nights among eight healthy adult men. According to the leave-one-out cross-validation results, the F-scores were: awake 76.6%, REM sleep 52.7%, light sleep 78.2%, and deep sleep 67.8%. The accuracy was 74.6% for the four estimates. This proposed measurement system was able to estimate the sleep stages with high accuracy simply by using the acceleration in the individual’s head.
Collapse
|
11
|
Chang IS, Mak S, Armanfard N, Boger J, Grace SL, Arcelus A, Chessex C, Mihailidis A. Quantification of Resting-State Ballistocardiogram Difference Between Clinical and Non-Clinical Populations for Ambient Monitoring of Heart Failure. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2020; 8:2700811. [PMID: 33094034 PMCID: PMC7571868 DOI: 10.1109/jtehm.2020.3029690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/12/2022]
Abstract
A ballistocardiogram (BCG) is a versatile bio-signal that enables ambient remote monitoring of heart failure (HF) patients in a home setting, achieved through embedded sensors in the surrounding environment. Numerous methods of analysis are available for extracting physiological information using the BCG; however, most have been developed based on non-clinical subjects. While the difference between clinical and non-clinical populations are expected, quantification of the difference may serve as a useful tool. In this work, the differences in resting-state BCGs of the two cohorts in a sitting posture were quantified. An instrumented chair was used to collect the BCG from 29 healthy adults and 26 NYHA HF class I and II patients while seated without any stress test for five minutes. Five 20-second epochs per subject were used to calculate the waveform fluctuation metric at rest (WFMR). The WFMR was obtained in two steps. The ensemble average of the segmented BCG heartbeats within an epoch were calculated first. Mean square errors (MSE) between different ensemble average pairs were then retrieved. The MSEs were averaged to produce the WFMR. The comparison showed that the clinical cohort had higher fluctuation than the non-clinical population and had at least 82.2% separation, suggesting that greater errors may result when existing algorithms were used. The WFMR acts as a bridge that may enable important features, including the addition of error margins in parameter estimation and ways to devise a calibration strategy when resting-state BCG is unstable.
Collapse
Affiliation(s)
- Isaac Sungjae Chang
- Institute of Biomaterials and Biomedical Engineering, University of TorontoONM5S 3G9Canada
| | - Susanna Mak
- Division of CardiologyDepartment of MedicineMount Sinai HospitalTorontoONM5G 1X5Canada
| | - Narges Armanfard
- Department of Electrical and Computer EngineeringMcGill UniversityMontrealQCH3A 0G4Canada
| | - Jennifer Boger
- Department of Systems Design EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada.,Research Institute for AgingWaterlooONN2J 0E2Canada
| | - Sherry L Grace
- Faculty of HealthYork UniversityTorontoONM3J IP3Canada.,Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| | - Amaya Arcelus
- Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| | - Caroline Chessex
- Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| | - Alex Mihailidis
- Toronto Rehabilitation Institute, University Health NetworkTorontoONM5T 2S8Canada
| |
Collapse
|
12
|
Shin S, Yousefian P, Mousavi AS, Kim CS, Mukkamala R, Jang DG, Ko BH, Lee J, Kwon UK, Kim YH, Hahn JO. A Unified Approach to Wearable Ballistocardiogram Gating and Wave Localization. IEEE Trans Biomed Eng 2020; 68:1115-1122. [PMID: 32746068 DOI: 10.1109/tbme.2020.3010864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Toward the ultimate goal of cuff-less blood pressure (BP) trend tracking via pulse transit time (PTT) using wearable ballistocardiogram (BCG) signals, we present a unified approach to the gating of wearable BCG and the localization of wearable BCG waves. METHODS We present a unified approach to localize wearable BCG waves suited to various gating and localization reference signals. Our approach gates individual wearable BCG beats and identifies candidate waves in each wearable BCG beat using a fiducial point in a reference signal, and exploits a pre-specified probability distribution of the time interval between the BCG wave and the fiducial point in the reference signal to accurately localize the wave in each wearable BCG beat. We tested the validity of our approach using experimental data collected from 17 healthy volunteers. RESULTS We showed that our approach could localize the J wave in the wearable wrist BCG accurately with both the electrocardiogram (ECG) and the wearable wrist photoplethysmogram (PPG) signals as reference, and that the wrist BCG-PPG PTT thus derived exhibited high correlation to BP. CONCLUSION We demonstrated the proof-of-concept of a unified approach to localize wearable BCG waves suited to various gating and localization reference signals compatible with wearable measurement. SIGNIFICANCE Prior work using the BCG itself or the ECG to gate the BCG beats and localize the waves to compute PTT are not ideally suited to the wearable BCG. Our approach may foster the development of cuff-less BP monitoring technologies based on the wearable BCG.
Collapse
|
13
|
Xie Q, Wang M, Zhao Y, He Z, Li Y, Wang G, Lian Y. A Personalized Beat-to-Beat Heart Rate Detection System From Ballistocardiogram for Smart Home Applications. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1593-1602. [PMID: 31804943 DOI: 10.1109/tbcas.2019.2957571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents a ballistocardiogram (BCG) based beat-to-beat heart rate (HR) measurement system for healthcare applications in smart home. The BCG signal is picked up by two parallel connected piezoelectric elements, and processed by a robust HR detection algorithm. To deal with the diversity in BCG signal, a personalized heartbeat template is extracted to handle the diversity in BCG signal. The Pearson correlation coefficient is used to correlate between personalized template and the BCG signal. Heartbeats are detected by using the Hilbert Transform. The system is verified on 32 subjects with simultaneously recorded BCG and ECG signals. With the reference to ECG signal, we have achieved mean absolute relative error of the beat-to-beat intervals of 4.56%, and average absolute error ±standard deviation of absolute error for HR estimation in a 30-seconds window of 0.59 ±0.56 beats per minute. Meanwhile, 99.67% of the beat-to-beat intervals are detected on average.
Collapse
|
14
|
The Potential of Wearable Limb Ballistocardiogram in Blood Pressure Monitoring via Pulse Transit Time. Sci Rep 2019; 9:10666. [PMID: 31337783 PMCID: PMC6650495 DOI: 10.1038/s41598-019-46936-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/03/2019] [Indexed: 11/08/2022] Open
Abstract
The goal of this study was to investigate the potential of wearable limb ballistocardiography (BCG) to enable cuff-less blood pressure (BP) monitoring, by investigating the association between wearable limb BCG-based pulse transit time (PTT) and BP. A wearable BCG-based PTT was calculated using the BCG and photoplethysmogram (PPG) signals acquired by a wristband as proximal and distal timing reference (called the wrist PTT). Its efficacy as surrogate of BP was examined in comparison with PTT calculated using the whole-body BCG acquired by a customized weighing scale (scale PTT) as well as pulse arrival time (PAT) using the experimental data collected from 22 young healthy participants under multiple BP-perturbing interventions. The wrist PTT exhibited close association with both diastolic (group average r = 0.79; mean absolute error (MAE) = 5.1 mmHg) and systolic (group average r = 0.81; MAE = 7.6 mmHg) BP. The efficacy of the wrist PTT was superior to scale PTT and PAT for both diastolic and systolic BP. The association was consistent and robust against diverse BP-perturbing interventions. The wrist PTT showed superior association with BP when calculated with green PPG rather than infrared PPG. In sum, wearable limb BCG has the potential to realize convenient cuff-less BP monitoring via PTT.
Collapse
|
15
|
Unobtrusive Estimation of Cardiovascular Parameters with Limb Ballistocardiography. SENSORS 2019; 19:s19132922. [PMID: 31266256 PMCID: PMC6651596 DOI: 10.3390/s19132922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 01/13/2023]
Abstract
This study investigates the potential of the limb ballistocardiogram (BCG) for unobtrusive estimation of cardiovascular (CV) parameters. In conjunction with the reference CV parameters (including diastolic, pulse, and systolic pressures, stroke volume, cardiac output, and total peripheral resistance), an upper-limb BCG based on an accelerometer embedded in a wearable armband and a lower-limb BCG based on a strain gauge embedded in a weighing scale were instrumented simultaneously with a finger photoplethysmogram (PPG). To standardize the analysis, the more convenient yet unconventional armband BCG was transformed into the more conventional weighing scale BCG (called the synthetic weighing scale BCG) using a signal processing procedure. The characteristic features were extracted from these BCG and PPG waveforms in the form of wave-to-wave time intervals, wave amplitudes, and wave-to-wave amplitudes. Then, the relationship between the characteristic features associated with (i) the weighing scale BCG-PPG pair and (ii) the synthetic weighing scale BCG-PPG pair versus the CV parameters, was analyzed using the multivariate linear regression analysis. The results indicated that each of the CV parameters of interest may be accurately estimated by a combination of as few as two characteristic features in the upper-limb or lower-limb BCG, and also that the characteristic features recruited for the CV parameters were to a large extent relevant according to the physiological mechanism underlying the BCG.
Collapse
|