1
|
Liang J, Liu B, Christensen MJ, Li C, Zhang X, Nan Z. The effects of Pseudomonas strains isolated from Achnatherum inebrians on plant growth: A genomic perspective. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70011. [PMID: 39387603 PMCID: PMC11465459 DOI: 10.1111/1758-2229.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Achnatherum inebrians is a perennial grass widely distributed in northwest China. Nearly all wild A. inebrians plants are infected by Epichloë endophytes. In this study, bacteria from the phyllosphere were isolated from leaves of both endophyte-free and endophyte-infected A. inebrians and sequenced for identification. Pseudomonas, comprising 48.12% of the culturable bacterial communities, was the most dominant bacterial genus. Thirty-four strains from 12 Pseudomonas species were used to inoculate A. inebrians seeds and plants. Results indicated that Epichloë significantly increased the diversity and richness index of the phyllosphere. Pseudomonas Sp1, Sp3, Sp5 and Sp7 had a significantly positive effect on plant growth and photosynthesis, whereas Sp10, Sp11 and Sp12 had a significantly negative effect. Whole-genome and pan-genome analysis suggested that the variability in the effects of Pseudomonas on A. inebrians was related to differences in genome composition and genomic islands.
Collapse
Affiliation(s)
- Jinjin Liang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Bowen Liu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | | | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Xingxu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| |
Collapse
|
2
|
Zhang W, Gundel PE, Jáuregui R, Card SD, Mace WJ, Johnson RD, Bastías DA. The growth promotion in endophyte symbiotic plants does not penalise the resistance to herbivores and bacterial microbiota. PLANT, CELL & ENVIRONMENT 2024; 47:2865-2878. [PMID: 38616528 DOI: 10.1111/pce.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
A trade-off between growth and defence against biotic stresses is common in plants. Fungal endophytes of the genus Epichloë may relieve this trade-off in their host grasses since they can simultaneously induce plant growth and produce antiherbivore alkaloids that circumvent the need for host defence. The Epichloë ability to decouple the growth-defence trade-off was evaluated by subjecting ryegrass with and without Epichloë endophytes to an exogenous treatment with gibberellin (GA) followed by a challenge with Rhopalosiphum padi aphids. In agreement with the endophyte-mediated trade-off decoupling hypothesis, the GA-derived promotion of plant growth increased the susceptibility to aphids in endophyte-free plants but did not affect the insect resistance in endophyte-symbiotic plants. In line with the unaltered insect resistance, the GA treatment did not reduce the concentration of Epichloë-derived alkaloids. The Epichloë mycelial biomass was transiently increased by the GA treatment but at the expense of hyphal integrity. The response of the phyllosphere bacterial microbiota to both GA treatment and Epichloë was also evaluated. Only Epichloë, and not the GA treatment, altered the composition of the phyllosphere microbiota and the abundance of certain bacterial taxa. Our findings clearly demonstrate that Epichloë does indeed relieve the plant growth-defence trade-off.
Collapse
Affiliation(s)
- Wei Zhang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Pedro E Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ruy Jáuregui
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Stuart D Card
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wade J Mace
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Richard D Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
3
|
Christian N, Perlin MH. Plant-endophyte communication: Scaling from molecular mechanisms to ecological outcomes. Mycologia 2024; 116:227-250. [PMID: 38380970 DOI: 10.1080/00275514.2023.2299658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/22/2023] [Indexed: 02/22/2024]
Abstract
Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function.
Collapse
Affiliation(s)
- Natalie Christian
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Michael H Perlin
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
4
|
Liang J, Gao G, Zhong R, Liu B, Christensen MJ, Ju Y, Zhang W, Li Y, Li C, Zhang X, Nan Z. Effect of Epichloë gansuensis Endophyte on Seed-Borne Microbes and Seed Metabolites in Achnatherum inebrians. Microbiol Spectr 2023; 11:e0135022. [PMID: 36786621 PMCID: PMC10100691 DOI: 10.1128/spectrum.01350-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
The seed-borne microbiota and seed metabolites of the grass Achnatherum inebrians, either host to Epichloë gansuensis (endophyte infected [EI]) or endophyte free (EF), were investigated. This study determined the microbial communities both within the seed (endophytic) and on the seed surface (epiphytic) and of the protective glumes by using Illumina sequencing technology. Epichloë gansuensis decreased the richness of the seed-borne microbiota except for the epiphytic fungi of glumes and also decreased the diversity of seed-borne microbiota. In addition, metabolites of seeds and glumes were detected using liquid chromatography-mass spectrometry (LC-MS). Unlike with the seeds of EF plants, the presence of E. gansuensis resulted in significant changes in the content of 108 seed and 31 glume metabolites. A total of 319 significant correlations occurred between seed-borne microbiota and seed metabolites; these correlations comprised 163 (147 bacterial and 16 fungal) positive correlations and 156 (136 bacterial and 20 fungal) negative correlations. Meanwhile, there were 42 significant correlations between glume microbiota and metabolites; these correlations comprised 28 positive (10 bacterial and 18 fungal) and 14 negative (9 bacterial and 5 fungal) correlations. The presence of E. gansuensis endophyte altered the communities and diversities of seed-borne microbes and altered the composition and content of seed metabolites, and there were many close and complex relationships between microbes and metabolites. IMPORTANCE The present study was to investigate seed-borne microbiota and seed metabolites in Achnatherum inebrians using high-throughput sequencing and LC-MS technology. Epichloë gansuensis decreased the richness of the seed-borne microbiota except for the epiphytic fungi of glumes and also decreased the diversity of seed-borne microbiota. Compared with endophyte-free plants, the content of 108 seed and 31 glume metabolites of endophyte-infected plants was significantly changed. There were 319 significant correlations between seed-borne microbiota and seed metabolites and 42 significant correlations between glume microbiota and metabolites.
Collapse
Affiliation(s)
- Jinjin Liang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Guoyu Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Rui Zhong
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Bowen Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | | | - Yawen Ju
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu, China
| | - Wu Zhang
- School of Geographical Science, Lingnan Normal University, Zhanjiang, China
| | - Yanzhong Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Epichloë Endophytes Shape the Foliar Endophytic Fungal Microbiome and Alter the Auxin and Salicylic Acid Phytohormone Levels in Two Meadow Fescue Cultivars. J Fungi (Basel) 2023; 9:jof9010090. [PMID: 36675911 PMCID: PMC9861471 DOI: 10.3390/jof9010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Plants harbor a large diversity of endophytic microbes. Meadow fescue (Festuca pratensis) is a cool-season grass known for its symbiotic relationship with the systemic and vertically-via seeds-transmitted fungal endophyte Epichloë uncinata, yet its effects on plant hormones and the microbial community is largely unexplored. Here, we sequenced the endophytic bacterial and fungal communities in the leaves and roots, analyzing phytohormone concentrations and plant performance parameters in Epichloë-symbiotic (E+) and Epichloë-free (E-) individuals of two meadow fescue cultivars. The endophytic microbial community differed between leaf and root tissues independent of Epichloë symbiosis, while the fungal community was different in the leaves of Epichloë-symbiotic and Epichloë-free plants in both cultivars. At the same time, Epichloë symbiosis decreased salicylic acid and increased auxin concentrations in leaves. Epichloë-symbiotic plants showed higher biomass and higher seed mass at the end of the season. Our results demonstrate that Epichloë symbiosis alters the leaf fungal microbiota, which coincides with changes in phytohormone concentrations, indicating that Epichloë endophytes affect both plant immune responses and other fungal endophytes. Whether the effect of Epichloë endophytes on other fungal endophytes is connected to changes in phytohormone concentrations remains to be elucidated.
Collapse
|
6
|
Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World. J Fungi (Basel) 2022; 8:jof8111142. [DOI: 10.3390/jof8111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Plants harbor a variety of fungal symbionts both above- and belowground, yet little is known about how these fungi interact within hosts, especially in a world where resource availability is changing due to human activities. Systemic vertically transmitted endophytes such as Epichloë spp. may have particularly strong effects on the diversity and composition of later-colonizing symbionts such as root fungal endophytes, especially in primary successional systems. We made use of a long-term field experiment in Great Lakes sand dunes to test whether Epichloë colonization of the dune-building grass, Ammophila breviligulata, could alter fungal root endophyte species richness or community composition in host plants. We also tested whether nitrogen addition intensified the effects of Epichlöe on the root endophyte community. We found that Epichloë increased richness of root endophytes in Ammophila by 17% overall, but only shifted community composition of root endophytes under nitrogen-enriched conditions. These results indicate that Epichlöe acts as a key species within Ammophila, changing richness and composition of the root mycobiome and integrating above- and belowground mycobiome interactions. Further, effects of Epichloë on root endophyte communities were enhanced by N addition, indicating that this fungal species may become even more important in future environments.
Collapse
|
7
|
Dale JCM, Newman JA. A First Draft of the Core Fungal Microbiome of Schedonorus arundinaceus with and without Its Fungal Mutualist Epichloë coenophiala. J Fungi (Basel) 2022; 8:jof8101026. [PMID: 36294590 PMCID: PMC9605371 DOI: 10.3390/jof8101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Tall fescue (Schedonorus arundinaceus) is a cool-season grass which is commonly infected with the fungal endophyte Epichloë coenophiala. Although the relationship between tall fescue and E. coenophiala is well-studied, less is known about its broader fungal communities. We used next-generation sequencing of the ITS2 region to describe the complete foliar fungal microbiomes in a set of field-grown tall fescue plants over two years, and whether these fungal communities were affected by the presence of Epichloë. We used the Georgia 5 cultivar of tall fescue, grown in the field for six years prior to sampling. Plants were either uninfected with E. coenophiala, or they were infected with one of two E. coenophiala strains: The common toxic strain or the AR542 strain (sold commerically as MaxQ). We observed 3487 amplicon sequence variants (ASVs) across all plants and identified 43 ASVs which may make up a potential core microbiome. Fungal communities did not differ strongly between Epichloë treatments, but did show a great deal of variation between the two years. Plant fitness also changed over time but was not influenced by E. coenophiala infection.
Collapse
Affiliation(s)
- Jenna C. M. Dale
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| | - Jonathan A. Newman
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
8
|
Gao Y, Chen Y, Luo Y, Liu J, Tian P, Nan Z, Zhou Q. The microbiota diversity of Festuca sinensis seeds in Qinghai-Tibet Plateau and their relationship with environments. Front Microbiol 2022; 13:956489. [PMID: 35992719 PMCID: PMC9382023 DOI: 10.3389/fmicb.2022.956489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
A total of 14 Festuca sinensis seed lots were collected from different geographical locations on the Qinghai-Tibet Plateau to study the seed microbiota and determine the abiotic (temperature, precipitation, and elevation) and biotic (Epichloë sinensis infection rate) factors likely to shape the seed microbiome. The 14 seed lots had different bacterial and fungal structures and significantly different diversities (p < 0.05). The α-diversity indices of the bacteria were significantly correlated with precipitation (p < 0.05), whereas those of the fungi were significantly correlated with temperature (p < 0.05). Microbiota analysis showed that Proteobacteria, Cyanobacteria, and Bacteroidetes were the most abundant bacteria at the phylum level in the seeds, and Ascomycota and Basidiomycota were the most abundant fungi. β-diversity analysis suggested large differences in the microbial communities of each sample. Redundancy analysis showed that temperature and precipitation were the main environmental factors that drive variations in the microbial community, at the medium-high elevation (3,000–4,500 m), the impact of temperature and precipitation on microbial community is different, and the other elevations that effect on microbial community were basically identical. Spearman's correlation analysis showed that the relative abundances of the most abundant bacterial phyla were significantly correlated with temperature (p < 0.05), whereas those of the most abundant fungal phyla were significantly correlated with precipitation (p < 0.05). E. sinensis infection rates were significantly correlated with elevation and temperature (p < 0.05). These results suggest that temperature and precipitation are the key factors driving the microbial community, that temperature and elevation also had a great influence on the E. sinensis infection rate, and that environmental factors (temperature and elevation) may further affect the microbial community by regulating the E. sinensis infection rate.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Youjun Chen
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yang Luo
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junying Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Pei Tian
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Pei Tian
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
9
|
Liu B, Ju Y, Xia C, Zhong R, Christensen MJ, Zhang X, Nan Z. The effect of Epichloë endophyte on phyllosphere microbes and leaf metabolites in Achnatherum inebrians. iScience 2022; 25:104144. [PMID: 35402863 PMCID: PMC8991375 DOI: 10.1016/j.isci.2022.104144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/09/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022] Open
Abstract
Upon exposure to the prevailing environment, leaves become increasingly colonized by fungi and bacteria located on the surface (epiphytic) or within (endophytic) the leaves. Many cool season grasses, including Achnatherum inebrians, host a seed-borne, intercellular, mutualistic Epichloë fungal endophyte, the growth of which is synchronized with the host grass. A study utilizing illumina sequencing was used to examine the epiphytic and endophytic microbial communities in Epichloë endophyte-infected and endophyte-free A. inebrians plants growing under hot dry field conditions. The presence of Epichloë endophyte increased the Shannon and decreased Simpson diversity of bacterial and fungal communities. Sphingomonas and Hymenobacter bacteria and Filobasidium and Mycosphaerella fungi were growing largely epiphytically, whereas Methylobacterium, Escherichia-Shigella, and the fungus Blumeria were mostly found within leaves with the location of colonization influenced by the Epichloë endophyte. In addition, leaf metabolites in Epichloë-infected and Epichloë-free leaves were examined using LC/MS. Epichloë was significantly correlated with 132 metabolites. Epichloë altered the composition and diversity of phyllosphere microbial communities 414 detected metabolites were annotated, of which the 132 differential metabolites There were 229 significant correlations between metabolites and microbial phyla
Collapse
Affiliation(s)
- Bowen Liu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Yawen Ju
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Chao Xia
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Rui Zhong
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | | | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| |
Collapse
|
10
|
Laihonen M, Saikkonen K, Helander M, Vázquez de Aldana BR, Zabalgogeazcoa I, Fuchs B. Epichloë Endophyte-Promoted Seed Pathogen Increases Host Grass Resistance Against Insect Herbivory. Front Microbiol 2022; 12:786619. [PMID: 35087489 PMCID: PMC8787217 DOI: 10.3389/fmicb.2021.786619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Plants host taxonomically and functionally complex communities of microbes. However, ecological studies on plant-microbe interactions rarely address the role of multiple co-occurring plant-associated microbes. Here, we contend that plant-associated microbes interact with each other and can have joint consequences for higher trophic levels. In this study we recorded the occurrence of the plant seed pathogenic fungus Claviceps purpurea and aphids (Sitobion sp.) on an established field experiment with red fescue (Festuca rubra) plants symbiotic to a seed transmitted endophytic fungus Epichloë festucae (E+) or non-symbiotic (E-). Both fungi are known to produce animal-toxic alkaloids. The study was conducted in a semi-natural setting, where E+ and E- plants from different origins (Spain and Northern Finland) were planted in a randomized design in a fenced common garden at Kevo Subarctic Research Station in Northern Finland. The results reveal that 45% of E+ plants were infected with Claviceps compared to 31% of E- plants. Uninfected plants had 4.5 times more aphids than Claviceps infected plants. By contrast, aphid infestation was unaffected by Epichloë symbiosis. Claviceps alkaloid concentrations correlated with a decrease in aphid numbers, which indicates their insect deterring features. These results show that plant mutualistic fungi can increase the infection probability of a pathogenic fungus, which then becomes beneficial to the plant by controlling herbivorous insects. Our study highlights the complexity and context dependency of species-species and multi-trophic interactions, thus challenging the labeling of species as plant mutualists or pathogens.
Collapse
Affiliation(s)
| | | | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | | | - Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | |
Collapse
|
11
|
Bastías DA, Bustos LB, Jáuregui R, Barrera A, Acuña-Rodríguez IS, Molina-Montenegro MA, Gundel PE. Epichloë Fungal Endophytes Influence Seed-Associated Bacterial Communities. Front Microbiol 2022; 12:795354. [PMID: 35058911 PMCID: PMC8764391 DOI: 10.3389/fmicb.2021.795354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Seeds commonly harbour diverse bacterial communities that can enhance the fitness of future plants. The bacterial microbiota associated with mother plant’s foliar tissues is one of the main sources of bacteria for seeds. Therefore, any ecological factor influencing the mother plant’s microbiota may also affect the diversity of the seed’s bacterial community. Grasses form associations with beneficial vertically transmitted fungal endophytes of genus Epichloë. The interaction of plants with Epichloë endophytes and insect herbivores can influence the plant foliar microbiota. However, it is unknown whether these interactions (alone or in concert) can affect the assembly of bacterial communities in the produced seed. We subjected Lolium multiflorum plants with and without its common endophyte Epichloë occultans (E+, E-, respectively) to an herbivory treatment with Rhopalosiphum padi aphids and assessed the diversity and composition of the bacterial communities in the produced seed. The presence of Epichloë endophytes influenced the seed bacterial microbiota by increasing the diversity and affecting the composition of the communities. The relative abundances of the bacterial taxa were more similarly distributed in communities associated with E+ than E- seeds with the latter being dominated by just a few bacterial groups. Contrary to our expectations, seed bacterial communities were not affected by the aphid herbivory experienced by mother plants. We speculate that the enhanced seed/seedling performance documented for Epichloë-host associations may be explained, at least in part, by the Epichloë-mediated increment in the seed-bacterial diversity, and that this phenomenon may be applicable to other plant-endophyte associations.
Collapse
Affiliation(s)
- Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ludmila Bubica Bustos
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ruy Jáuregui
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Andrea Barrera
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ian S Acuña-Rodríguez
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Marco A Molina-Montenegro
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Coquimbo, Chile.,Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Pedro E Gundel
- IFEVA, CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
12
|
Abdullaeva Y, Ratering S, Ambika Manirajan B, Rosado-Porto D, Schnell S, Cardinale M. Domestication Impacts the Wheat-Associated Microbiota and the Rhizosphere Colonization by Seed- and Soil-Originated Microbiomes, Across Different Fields. FRONTIERS IN PLANT SCIENCE 2022; 12:806915. [PMID: 35095978 PMCID: PMC8789879 DOI: 10.3389/fpls.2021.806915] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 05/17/2023]
Abstract
The seed-transmitted microorganisms and the microbiome of the soil in which the plant grows are major drivers of the rhizosphere microbiome, a crucial component of the plant holobiont. The seed-borne microbiome can be even coevolved with the host plant as a result of adaptation and vertical transmission over generations. The reduced genome diversity and crossing events during domestication might have influenced plant traits that are important for root colonization by seed-borne microbes and also rhizosphere recruitment of microbes from the bulk soil. However, the impact of the breeding on seed-transmitted microbiome composition and the plant ability of microbiome selection from the soil remain unknown. Here, we analyzed both endorhiza and rhizosphere microbiome of two couples of genetically related wild and cultivated wheat species (Aegilops tauschii/Triticum aestivum and T. dicoccoides/T. durum) grown in three locations, using 16S rRNA gene and ITS2 metabarcoding, to assess the relative contribution of seed-borne and soil-derived microbes to the assemblage of the rhizosphere microbiome. We found that more bacterial and fungal ASVs are transmitted from seed to the endosphere of all species compared with the rhizosphere, and these transmitted ASVs were species-specific regardless of location. Only in one location, more microbial seed transmission occurred also in the rhizosphere of A. tauschii compared with other species. Concerning soil-derived microbiome, the most distinct microbial genera occurred in the rhizosphere of A. tauschii compared with other species in all locations. The rhizosphere of genetically connected wheat species was enriched with similar taxa, differently between locations. Our results demonstrate that host plant criteria for soil bank's and seed-originated microbiome recruitment depend on both plants' genotype and availability of microorganisms in a particular environment. This study also provides indications of coevolution between the host plant and its associated microbiome resulting from the vertical transmission of seed-originated taxa.
Collapse
Affiliation(s)
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | | | - David Rosado-Porto
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Justus-Liebig-University, Giessen, Germany
- Department of Biological and Environmental Sciences and Technologies – DiSTeBA, University of Salento, Lecce, Italy
| |
Collapse
|
13
|
Antagonism to Plant Pathogens by Epichloë Fungal Endophytes-A Review. PLANTS 2021; 10:plants10101997. [PMID: 34685806 PMCID: PMC8539511 DOI: 10.3390/plants10101997] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
Epichloë is a genus of filamentous fungal endophytes that has co-evolved with cool-season grasses with which they form long-term, symbiotic associations. The most agriculturally important associations for pasture persistence for grazing livestock are those between asexual vertically transmitted Epichloë strains and the pasture species, perennial ryegrass, and tall fescue. The fungus confers additional traits to their host grasses including invertebrate pest deterrence and drought tolerance. Selected strains of these mutualistic endophytes have been developed into highly efficacious biocontrol products and are widely utilized within the Americas, Australia, and New Zealand for pasture persistence. Less publicized is the antagonism Epichloë endophytes display towards multiple species of saprophytic and pathogenic microbes. This opinion piece will review the current literature on antimicrobial properties exhibited by this genus of endophyte and discuss the reasons why this trait has historically remained a research curiosity rather than a trait of commercial significance.
Collapse
|
14
|
Influence of Tall Fescue Epichloë Endophytes on Rhizosphere Soil Microbiome. Microorganisms 2021; 9:microorganisms9091843. [PMID: 34576739 PMCID: PMC8468716 DOI: 10.3390/microorganisms9091843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/04/2023] Open
Abstract
Tall fescue (Lolium arundinaceum (Schreb.) S.J. Darbyshire) often forms a symbiotic relationship with fungal endophytes (Epichloë coenophiala), which provides increased plant performance and greater tolerance to environmental stress compared to endophyte-free tall fescue. Whether this enhanced performance of tall fescue exclusively results from the grass–fungus symbiosis, or this symbiosis additionally results in the recruitment of soil microbes in the rhizosphere that in turn promote plant growth, remain a question. We investigated the soil bacterial and fungal community composition in iron-rich soil in the southeastern USA, and possible community shifts in soil microbial populations based on endophyte infection in tall fescue by analyzing the 16s rRNA gene and ITS specific region. Our data revealed that plant-available phosphorus (P) was significantly (p < 0.05) influenced by endophyte infection in tall fescue. While the prominent soil bacterial phyla were similar, a clear fungal community shift was observed between endophyte-infected (E+) and endophyte-free (E−) tall fescue soil at the phylum level. Moreover, compared to E− soil, E+ soil showed a greater fungal diversity at the genus level. Our results, thus, indicate a possible three-way interaction between tall fescue, fungal endophyte, and soil fungal communities resulting in improved tall fescue performance.
Collapse
|
15
|
Tannenbaum I, Rodoni B, Spangenberg G, Mann R, Sawbridge T. An Assessment of the Lolium perenne (Perennial Ryegrass) Seedborne Microbiome across Cultivars, Time, and Biogeography: Implications for Microbiome Breeding. Microorganisms 2021; 9:microorganisms9061205. [PMID: 34199453 PMCID: PMC8228030 DOI: 10.3390/microorganisms9061205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Research into the bacterial component of the seed microbiome has been intensifying, with the aim of understanding its structure and potential for exploitation. We previously studied the intergenerational seed microbiome of one cultivar of perennial ryegrass with and without one strain of the commercially deployed fungal endophyte Epichloë festucae var. lolii. The work described here expands on our previous study by exploring the bacterial seed microbiome of different commercial cultivar/Epichloë festucae var. lolii combinations in collections of single seeds from the harvest year 2016. In this dataset, a cultivar effect could be seen between the seed microbiomes from cultivars Alto and Trojan. The bacterial component of the seed microbiome from pooled seeds from a single cultivar/E. festucae var. lolii combination harvested from 13 seed production farms around Canterbury in the year 2018 was also studied. This dataset allows the effect of different production locations on the bacterial seed microbiome to be examined. By comparing the two sets of data, bacteria from the genera Pantoea, Pseudomonas, Duganella, Massilia, and an unknown Enterobacteriaceae were observed to be in common. This core bacterial microbiome was stable over time but could be affected by supplemental taxa derived from the growth environment of the parental plant; differing microbiomes were seen between different seed production farms. By comparison to a collection of bacterial isolates, we demonstrated that many of the members of the core microbiome were culturable. This allows for the possibility of exploiting these microbes in the future.
Collapse
Affiliation(s)
- Ian Tannenbaum
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (B.R.); (G.S.); (R.M.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Correspondence:
| | - Brendan Rodoni
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (B.R.); (G.S.); (R.M.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - German Spangenberg
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (B.R.); (G.S.); (R.M.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Ross Mann
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (B.R.); (G.S.); (R.M.); (T.S.)
| | - Tim Sawbridge
- Agriculture Victoria, AgriBio Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (B.R.); (G.S.); (R.M.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
16
|
Caradus JR, Johnson LJ. Epichloë Fungal Endophytes-From a Biological Curiosity in Wild Grasses to an Essential Component of Resilient High Performing Ryegrass and Fescue Pastures. J Fungi (Basel) 2020; 6:E322. [PMID: 33261217 PMCID: PMC7720123 DOI: 10.3390/jof6040322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
The relationship between Epichloë endophytes found in a wide range of temperate grasses spans the continuum from antagonistic to mutualistic. The diversity of asexual mutualistic types can be characterised by the types of alkaloids they produce in planta. Some of these are responsible for detrimental health and welfare issues of ruminants when consumed, while others protect the host plant from insect pests and pathogens. In many temperate regions they are an essential component of high producing resilient tall fescue and ryegrass swards. This obligate mutualism between fungus and host is a seed-borne technology that has resulted in several commercial products being used with high uptake rates by end-user farmers, particularly in New Zealand and to a lesser extent Australia and USA. However, this has not happened by chance. It has been reliant on multi-disciplinary research teams undertaking excellent science to understand the taxonomic relationships of these endophytes, their life cycle, symbiosis regulation at both the cellular and molecular level, and the impact of secondary metabolites, including an understanding of their mammalian toxicity and bioactivity against insects and pathogens. Additionally, agronomic trials and seed biology studies of these microbes have all contributed to the delivery of robust and efficacious products. The supply chain from science, through seed companies and retailers to the end-user farmer needs to be well resourced providing convincing information on the efficacy and ensuring effective quality control to result in a strong uptake of these Epichloë endophyte technologies in pastoral agriculture.
Collapse
Affiliation(s)
- John R. Caradus
- Grasslanz Technology Ltd., Palmerston North PB11008, New Zealand
| | | |
Collapse
|
17
|
Wang J, Hou W, Christensen MJ, Li X, Xia C, Li C, Nan Z. Role of Epichloë Endophytes in Improving Host Grass Resistance Ability and Soil Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6944-6955. [PMID: 32551564 DOI: 10.1021/acs.jafc.0c01396] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The past decade has witnessed significant advances in understanding the interaction between grasses and systemic fungal endophytes of the genus Epichloë, with evidence that plants have evolved multiple strategies to cope with abiotic stresses by reprogramming physiological responses. Soil nutrients directly affect plant growth, while soil microbes are also closely connected to plant growth and health. Epichloë endophytes could affect soil fertility by modifying soil nutrient contents and soil microbial diversity. Therefore, we analyze recent advances in our understanding of the role of Epichloë endophytes under the various abiotic stresses and the role of grass-Epichloë symbiosis on soil fertility. Various cool-season grasses are infected by Epichloë species, which contribute to health, growth, persistence, and seed survival of host grasses by regulating key systems, including photosynthesis, osmotic regulation, and antioxidants and activity of key enzymes of host physiology processes under abiotic stresses. The Epichloë endophyte offers significant prospects to magnify the crop yield, plant resistance, and food safety in ecological systems by modulating soil physiochemical properties and soil microbes. The enhancing resistance of host grasses to abiotic stresses by an Epichloë endophyte is a complex manifestation of different physiological and biochemical events through regulating soil properties and soil microbes by the fungal endophyte. The Epichloë-mediated mechanisms underlying regulation of abiotic stress responses are involved in osmotic adjustment, antioxidant machinery, photosynthetic system, and activity of key enzymes critical in developing plant adaptation strategies to abiotic stress. Therefore, the Epichloë endophytes are an attractive choice in increasing resistance of plants to abiotic stresses and are also a good candidate for improving soil fertility and regulating microbial diversity to improve plant growth.
Collapse
Affiliation(s)
- Jianfeng Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| | - Wenpeng Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| | - Michael J Christensen
- Grasslands Research Centre, AgResearch, Private Bag 11-008, Palmerston North 4442, New Zealand
| | - Xiuzhang Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, Qinghai 810016, People's Republic of China
| | - Chao Xia
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou Gansu 730000, People's Republic of China
| |
Collapse
|
18
|
Saikkonen K, Nissinen R, Helander M. Toward Comprehensive Plant Microbiome Research. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00061] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|