1
|
Wang Y, Zhu T, Shi Q, Zhu G, Zhu S, Hou F. Tumor-draining lymph nodes: opportunities, challenges, and future directions in colorectal cancer immunotherapy. J Immunother Cancer 2024; 12:e008026. [PMID: 38242718 PMCID: PMC10806546 DOI: 10.1136/jitc-2023-008026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are potential immunotherapy targets that could expand the population of patients with colorectal cancer (CRC) who may benefit from immunotherapy. Currently, pathological detection of tumor cell infiltration limits the acquisition of immune information related to the resected lymph nodes. Understanding the immune function and metastatic risk of specific stages of lymph nodes can facilitate better discussions on the removal or preservation of lymph nodes, as well as the timing of immunotherapy. This review summarized the contribution of TDLNs to CRC responses to immune checkpoint blockade therapy, local immunotherapy, adoptive cell therapy, and cancer vaccines, and discussed the significance of these findings for the development of diagnostics based on TDLNs and the potential implications for guiding immunotherapy after a definitive diagnosis. Molecular pathology and immune spectrum diagnosis of TDLNs will promote significant advances in the selection of immunotherapy options and predicting treatment efficacy.
Collapse
Affiliation(s)
- Yao Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghui Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siwei Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Spiliopoulou P, Vornicova O, Genta S, Spreafico A. Shaping the Future of Immunotherapy Targets and Biomarkers in Melanoma and Non-Melanoma Cutaneous Cancers. Int J Mol Sci 2023; 24:1294. [PMID: 36674809 PMCID: PMC9862040 DOI: 10.3390/ijms24021294] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in treating cutaneous melanoma have resulted in impressive patient survival gains. Refinement of disease staging and accurate patient risk classification have significantly improved our prognostic knowledge and ability to accurately stratify treatment. Undoubtedly, the most important step towards optimizing patient outcomes has been the advent of cancer immunotherapy, in the form of immune checkpoint inhibition (ICI). Immunotherapy has established its cardinal role in the management of both early and late-stage melanoma. Through leveraging outcomes in melanoma, immunotherapy has also extended its benefit to other types of skin cancers. In this review, we endeavor to summarize the current role of immunotherapy in melanoma and non-melanoma skin cancers, highlight the most pertinent immunotherapy-related molecular biomarkers, and lastly, shed light on future research directions.
Collapse
Affiliation(s)
- Pavlina Spiliopoulou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Olga Vornicova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Mount Sinai Hospital, University Health Network, Toronto, ON M5G 1X5, Canada
| | - Sofia Genta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
3
|
Hong MMY, Maleki Vareki S. Addressing the Elephant in the Immunotherapy Room: Effector T-Cell Priming versus Depletion of Regulatory T-Cells by Anti-CTLA-4 Therapy. Cancers (Basel) 2022; 14:1580. [PMID: 35326731 PMCID: PMC8946681 DOI: 10.3390/cancers14061580] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Cytotoxic T-lymphocyte Associated Protein 4 (CTLA-4) is an immune checkpoint molecule highly expressed on regulatory T-cells (Tregs) that can inhibit the activation of effector T-cells. Anti-CTLA-4 therapy can confer long-lasting clinical benefits in cancer patients as a single agent or in combination with other immunotherapy agents. However, patient response rates to anti-CTLA-4 are relatively low, and a high percentage of patients experience severe immune-related adverse events. Clinical use of anti-CTLA-4 has regained interest in recent years; however, the mechanism(s) of anti-CTLA-4 is not well understood. Although activating T-cells is regarded as the primary anti-tumor mechanism of anti-CTLA-4 therapies, mounting evidence in the literature suggests targeting intra-tumoral Tregs as the primary mechanism of action of these agents. Tregs in the tumor microenvironment can suppress the host anti-tumor immune responses through several cell contact-dependent and -independent mechanisms. Anti-CTLA-4 therapy can enhance the priming of T-cells by blockading CD80/86-CTLA-4 interactions or depleting Tregs through antibody-dependent cellular cytotoxicity and phagocytosis. This review will discuss proposed fundamental mechanisms of anti-CTLA-4 therapy, novel uses of anti-CTLA-4 in cancer treatment and approaches to improve the therapeutic efficacy of anti-CTLA-4.
Collapse
Affiliation(s)
- Megan M Y Hong
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada;
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
4
|
Gao R, Shi GP, Wang J. Functional Diversities of Regulatory T Cells in the Context of Cancer Immunotherapy. Front Immunol 2022; 13:833667. [PMID: 35371055 PMCID: PMC8969660 DOI: 10.3389/fimmu.2022.833667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a subset of CD4+ T cells with their immunosuppressive activities to block abnormal or excessive immune responses to self and non-autoantigens. Tregs express the transcription factor Foxp3, maintain the immune homeostasis, and prevent the initiation of anti-tumor immune effects in various ways as their mechanisms to modulate tumor development. Recognition of different phenotypes and functions of intratumoral Tregs has offered the possibilities to develop therapeutic strategies by selectively targeting Tregs in cancers with the aim of alleviating their immunosuppressive activities from anti-tumor immune responses. Several Treg-based immunotherapeutic approaches have emerged to target cytotoxic T lymphocyte antigen-4, glucocorticoid-induced tumor necrosis factor receptor, CD25, indoleamine-2, 3-dioxygenase-1, and cytokines. These immunotherapies have yielded encouraging outcomes from preclinical studies and early-phase clinical trials. Further, dual therapy or combined therapy has been approved to be better choices than single immunotherapy, radiotherapy, or chemotherapy. In this short review article, we discuss our current understanding of the immunologic characteristics of Tregs, including Treg differentiation, development, therapeutic efficacy, and future potential of Treg-related therapies among the general cancer therapy.
Collapse
Affiliation(s)
- Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Comito F, Pagani R, Grilli G, Sperandi F, Ardizzoni A, Melotti B. Emerging Novel Therapeutic Approaches for Treatment of Advanced Cutaneous Melanoma. Cancers (Basel) 2022; 14:271. [PMID: 35053435 PMCID: PMC8773625 DOI: 10.3390/cancers14020271] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
The prognosis of patients with advanced cutaneous melanoma has radically changed in the past decade. Nevertheless, primary or acquired resistance to systemic treatment occurs in many cases, highlighting the need for novel treatment strategies. This review has the purpose of summarizing the current area of interest for the treatment of metastatic or unresectable advanced cutaneous melanoma, including data from recently completed or ongoing clinical trials. The main fields of investigation include the identification of new immune checkpoint inhibitors (anti-LAG3, GITR agonist and anti-TIGIT), adoptive cell therapy, vaccines, engineered TCR therapy, IL-2 agonists, novel targets for targeted therapy (new MEK or RAF inhibitors, HDAC, IDO, ERK, Axl, ATR and PARP inhibitors), or combination strategies (antiangiogenetic agents plus immune checkpoint inhibitors, intra-tumoral immunotherapy in combination with systemic therapy). In many cases, only preliminary efficacy data from early phase trials are available, which require confirmation in larger patient cohorts. A more in-depth knowledge of the biological effects of the molecules and identifying predictive biomarkers remain crucial for selecting patient populations most likely to benefit from novel emerging treatment strategies.
Collapse
Affiliation(s)
- Francesca Comito
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Rachele Pagani
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Giada Grilli
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Francesca Sperandi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
| | - Andrea Ardizzoni
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti, 9-40138 Bologna, Italy
| | - Barbara Melotti
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15-40138 Bologna, Italy; (G.G.); (F.S.); (A.A.); (B.M.)
| |
Collapse
|
6
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
7
|
Buzzatti G, Dellepiane C, Del Mastro L. New emerging targets in cancer immunotherapy: the role of GITR. ESMO Open 2021; 4:e000738. [PMID: 32817129 PMCID: PMC7451269 DOI: 10.1136/esmoopen-2020-000738] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade, immunotherapies have revolutionised anticancer treatment. However, there is still a number of patients that do not respond or acquire resistance to these treatments. Despite several efforts to combine immunotherapy with other strategies like chemotherapy, or other immunotherapy, there is an 'urgent' need to better understand the immune landscape of the tumour microenvironment. New promising approaches, in addition to blocking co-inhibitory pathways, such those cytotoxic T-lymphocyte-associated protein 4 and programmed cell death protein 1 mediated, consist of activating co-stimulatory pathways to enhance antitumour immune responses. Among several new targets, glucocorticoid-induced TNFR-related gene (GITR) activation can promote effector T-cell function and inhibit regulatory T-cell (Treg) function. Preclinical data on GITR-agonist monoclonal antibodies (mAbs) demonstrated antitumour activity in vitro and in vivo enhancing CD8+ and CD4+ effector T-cell activity and depleting tumour-infiltrating Tregs. Phase I clinical trials reported a manageable safety profile of GITR mAbs. However, monotherapy seems not to be effective, whereas responses have been reported in combination therapy, in particular adding PD-1 blockade. Several clinical studies are ongoing and results are awaited to further develop GITR-stimulating treatments.
Collapse
Affiliation(s)
- Giulia Buzzatti
- U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Chiara Dellepiane
- U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lucia Del Mastro
- U.O. Breast Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
8
|
Papadopoulos KP, Autio K, Golan T, Dobrenkov K, Chartash E, Chen Q, Wnek R, Long GV. Phase I Study of MK-4166, an Anti-human Glucocorticoid-Induced TNF Receptor Antibody, Alone or with Pembrolizumab in Advanced Solid Tumors. Clin Cancer Res 2021; 27:1904-1911. [PMID: 33355238 PMCID: PMC9094061 DOI: 10.1158/1078-0432.ccr-20-2886] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/16/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE In this first-in-human phase I study (NCT02132754), we explored MK-4166 [humanized IgG1 agonist mAb targeting glucocorticoid-induced TNF receptor (GITR)] with and without pembrolizumab in advanced solid tumors. PATIENTS AND METHODS MK-4166 was tested alone (0.0015-900 mg i.v. every 3 weeks for four doses) or with pembrolizumab (200 mg i.v. every 3 weeks for ≤35 doses) in patients with metastatic solid tumors (dose escalation/confirmation) and advanced melanoma (expansion). Primary objectives were to evaluate the safety and tolerability and establish the MTD of MK-4166. Exploratory endpoints were objective response rate (ORR) and T cell-inflamed gene expression profile (GEP) analysis using RNA from baseline tumor samples. RESULTS A total of 113 patients were enrolled [monotherapy, n = 48; combination therapy, n = 65 (20 in the expansion)]. Forty-six patients (40.7%) had grade ≥3 adverse events, 9 (8.0%) of which were treatment related. No treatment-related deaths were observed. One dose-limiting toxicity event with monotherapy (bladder perforation in patient with neobladder) was considered related to study drug. MTD was not reached. MK-4166 pharmacodynamics showed decreased GITR availability on circulating T cells with increasing doses. One objective response (ORR, 2.2%) was achieved with combination therapy in the dose escalation/confirmation (n = 45). In the expansion, 8 of 13 patients with immune checkpoint inhibitor (ICI)-naïve melanoma achieved a response (ORR, 62%; 95% confidence interval, 32-86; 5 complete responses and 3 partial responses). None of the ICI-pretreated patients (n = 7) responded. High response rates were observed in ICI-naïve patients irrespective of GEP status. CONCLUSIONS MK-4166 900 mg i.v. every 3 weeks as monotherapy and with pembrolizumab was tolerable. Responses were observed with combination therapy, mostly in patients with ICI-naïve melanoma.
Collapse
Affiliation(s)
| | - Karen Autio
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Talia Golan
- Department of Gastrointestinal Clinic, Cancer Center, Sheba Medical Center, Ramat Gan, and Tel Aviv University, Tel Aviv, Israel
| | | | - Elliot Chartash
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Qiusheng Chen
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Richard Wnek
- Department of Medical Oncology, Merck & Co., Inc., Kenilworth, New Jersey
| | - Georgina V Long
- Department of Oncology, Melanoma Institute of Australia, The University of Sydney, Royal North Shore Hospital, and Mater Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Harui A, McLachlan SM, Rapoport B, Zarembinski TI, Roth MD. Peri-tumor administration of controlled release anti-CTLA-4 synergizes with systemic anti-PD-1 to induce systemic antitumor immunity while sparing autoimmune toxicity. Cancer Immunol Immunother 2020; 69:1737-1749. [PMID: 32333082 PMCID: PMC11027619 DOI: 10.1007/s00262-020-02579-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Combination immunotherapy targeting the PD-1 and CTLA-4 checkpoint inhibitor pathways provides substantial clinical benefit in patients with advanced-stage cancer but at the risk of dose-limiting inflammatory and autoimmune toxicity. The delicate balance that exists between unleashing tumor killing and promoting systemic autoimmune toxicity represents a major clinical challenge. We hypothesized that targeting anti-CTLA-4 so that it perfuses tumor-draining lymph nodes would provide a significant therapeutic advantage and developed an injectable hydrogel with controlled antibody release characteristics for this purpose. Injection of hydrogel-encapsulated anti-CTLA-4 at a peri-tumor location (MC-38 tumor model) produced dose-dependent antitumor responses and survival that exceeded those by anti-CTLA-4 alone (p < 0.05). Responses to 100 µg of targeted anti-CTLA-4 also equaled or exceeded those observed with a series of systemic injections delivering 600 µg (p < 0.05). While preserving antitumor activity, this approach resulted in serum anti-CTLA-4 exposure (area under the curve) that averaged only 1/16th of that measured with systemic therapy. Consistent with the marked differences in systemic exposure, systemic anti-CTLA-4 stimulated the onset of autoimmune thyroiditis in iodide-exposed NOD.H-2h4 mice, as measured by anti-thyroglobulin antibody titer, while hydrogel-encapsulated anti-CTLA-4 had a minimal effect (p ≤ 0.01). At the same time, this targeted low-dose anti-CTLA-4 approach synergized well with systemic anti-PD-1 to control tumor growth and resulted in a high frequency of complete responders that were immune to tumor re-challenge at a distant site. We conclude that targeted and controlled delivery of low-dose anti-CTLA-4 has the potential to improve the benefit-risk ratio associated with combination checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Airi Harui
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Sandra M McLachlan
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Basil Rapoport
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | - Michael D Roth
- Division of Pulmonary and Critical Care, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Janssen E, Subtil B, de la Jara Ortiz F, Verheul HMW, Tauriello DVF. Combinatorial Immunotherapies for Metastatic Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12071875. [PMID: 32664619 PMCID: PMC7408881 DOI: 10.3390/cancers12071875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent and deadly forms of cancer. About half of patients are affected by metastasis, with the cancer spreading to e.g., liver, lungs or the peritoneum. The majority of these patients cannot be cured despite steady advances in treatment options. Immunotherapies are currently not widely applicable for this disease, yet show potential in preclinical models and clinical translation. The tumour microenvironment (TME) has emerged as a key factor in CRC metastasis, including by means of immune evasion-forming a major barrier to effective immuno-oncology. Several approaches are in development that aim to overcome the immunosuppressive environment and boost anti-tumour immunity. Among them are vaccination strategies, cellular transplantation therapies, and targeted treatments. Given the complexity of the system, we argue for rational design of combinatorial therapies and consider the implications of precision medicine in this context.
Collapse
Affiliation(s)
- Eline Janssen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Beatriz Subtil
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Fàtima de la Jara Ortiz
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
| | - Henk M. W. Verheul
- Department of Medical Oncology, Radboud University Medical Center, PO Box 9101, 6500 HBNijmegen, The Netherlands;
| | - Daniele V. F. Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; (E.J.); (B.S.); (F.d.l.J.O.)
- Correspondence:
| |
Collapse
|
11
|
Jeong S, Park SH. Co-Stimulatory Receptors in Cancers and Their Implications for Cancer Immunotherapy. Immune Netw 2020; 20:e3. [PMID: 32158591 PMCID: PMC7049585 DOI: 10.4110/in.2020.20.e3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-PD-1 and anti-CTLA-4 therapeutic agents, are now approved by the Food and Drug Administration for treatment of various types of cancer. However, the therapeutic efficacy of ICIs varies among patients and cancer types. Moreover, most patients do not develop durable antitumor responses after ICI therapy due to an ephemeral reversal of T-cell dysfunction. As co-stimulatory receptors play key roles in regulating the effector functions of T cells, activating co-stimulatory pathways may improve checkpoint inhibition efficacy, and lead to durable antitumor responses. Here, we review recent advances in our understating of co-stimulatory receptors in cancers, providing the necessary groundwork for the rational design of cancer immunotherapy.
Collapse
Affiliation(s)
- Seongju Jeong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea.,Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
12
|
Kunimasa K, Goto T. Immunosurveillance and Immunoediting of Lung Cancer: Current Perspectives and Challenges. Int J Mol Sci 2020; 21:E597. [PMID: 31963413 PMCID: PMC7014343 DOI: 10.3390/ijms21020597] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/08/2023] Open
Abstract
The immune system plays a dual role in tumor evolution-it can identify and control nascent tumor cells in a process called immunosurveillance and can promote tumor progression through immunosuppression via various mechanisms. Thus, bilateral host-protective and tumor-promoting actions of immunity are integrated as cancer immunoediting. In this decade, immune checkpoint inhibitors, specifically programmed cell death 1 (PD-1) pathway inhibitors, have changed the treatment paradigm of advanced non-small cell lung cancer (NSCLC). These agents are approved for the treatment of patients with NSCLC and demonstrate impressive clinical activity and durable responses in some patients. However, for many NSCLC patients, the efficacy of immune checkpoint inhibitors is limited. To optimize the full utility of the immune system for eradicating cancer, a broader understanding of cancer immunosurveillance and immunoediting is essential. In this review, we discuss the fundamental knowledge of the phenomena and provide an overview of the next-generation immunotherapies in the pipeline.
Collapse
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka 541-8567, Japan;
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan
| |
Collapse
|