1
|
Youzi M, Kianezhad M, Vaezi M, Nejat Pishkenari H. Motion of nanovehicles on pristine and vacancy-defected silicene: implications for controlled surface motion. Phys Chem Chem Phys 2023; 25:28895-28910. [PMID: 37855185 DOI: 10.1039/d3cp02835f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Understanding the motion of surface-rolling nanomachines has attracted lots of attention in recent studies, due to their ability in carrying molecular payloads and nanomaterials on the surface. Controlling the surface motion of these nanovehicles is beneficial in the fabrication of nano-transportation systems. In the present study, molecular dynamics (MD) simulations alongside the potential energy analysis have been utilized to investigate the motion of C60 and C60-based nanovehicles on the silicene monolayer. Nano-machine simulations are performed using molecular mechanic forcefield. Compared with graphene and hexagonal boron-nitride, the molecules experience a higher energy barrier on the silicene, which leads to a lower diffusion coefficient and higher activation energy of C60 and nanomachines. Overcoming the maximum energy barrier against sliding motion is more probable at higher temperatures where the nanomachines receive higher thermal energy. After evaluating the motion of molecules around local vacancies, we introduce a nanoroad structure that can restrict surface motion. The motion of C60 and nanovehicles over the surface is limited to the width of nanorods up to a certain temperature. To increase the controllability of the motion, a thermal gradient has been applied to the surface and the molecules move toward the lower temperature regions, where they find lower energy levels. Comparing the results of this study with other investigations regarding the surface motion of molecules on boron-nitride and graphene surfaces brings forth the idea of controlling the motion by silicene-based hybrid substrates, which can be further investigated.
Collapse
Affiliation(s)
- Mehrdad Youzi
- Department of Civil and Environmental Engineering, University of California Irvine, Irvine, USA
| | - Mohammad Kianezhad
- Department of Structural Engineering, University of California-San Diego, La Jolla, CA, 92093-0085, USA
| | - Mehran Vaezi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
2
|
Sabbaghi S, Bazargan V, Hosseinian E. Defect engineering for thermal transport properties of nanocrystalline molybdenum diselenide. NANOSCALE 2023; 15:12634-12647. [PMID: 37462987 DOI: 10.1039/d3nr01839c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Molybdenum diselenide (MoSe2) is attracting great attention as a transition metal dichalcogenide (TMDC) due to its unique applications in micro-electronics and beyond. In this study, the role of defects in the thermal transport properties of single-layer MoSe2 is investigated using non-equilibrium molecular dynamics (NEMD) simulations. Specifically, this work quantifies how different microstructural defects such as vacancies and grain boundaries (GBs) and their concentration (N) alter the thermal conductivity (TC) of single crystal and nanocrystalline MoSe2. These results show a significant drop in thermal conductivity as the concentration of defects increases. Specifically, point defects lower the TC of MoSe2 in the form of N-β where β is 0.5, 0.48 and 0.36 for VMo, VMo-Se and VSe vacancies, respectively. This study also examines the impact of grain boundaries on the thermal conductivity of nanocrystalline MoSe2. These results suggest that GB migration and stress-assisted twinning along with localized phase transformation (2H to 1T) are the primary factors affecting the thermal conductivity of nanocrystalline MoSe2. Based on MD simulations, TC of polycrystalline MoSe2 increases with the average grain size (d̄) in the form of d̄4.5. For example, the TC of nanocrystalline MoSe2 with d̄ = 11 nm is around 40% lower than the TC of the pristine monocrystalline sample with the same dimensions. Finally, the influence of sample size and temperature is studied to determine the sensitivity of quantitative thermal properties to the length scale and phonon scattering, respectively. The results of this work could provide valuable insights into the role of defects in engineering the thermal properties of next generation semiconductor-based devices.
Collapse
Affiliation(s)
- Soroush Sabbaghi
- Department of Mechanical Engineering, University of Tehran, Tehran, Iran.
| | - Vahid Bazargan
- Department of Mechanical Engineering, University of Tehran, Tehran, Iran.
| | - Ehsan Hosseinian
- Department of Mechanical Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Duan F, Wei D, Chen A, Zheng X, Wang H, Qin G. Efficient modulation of thermal transport in two-dimensional materials for thermal management in device applications. NANOSCALE 2023; 15:1459-1483. [PMID: 36541854 DOI: 10.1039/d2nr06413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the development of chip technology, the density of transistors on integrated circuits is increasing and the size is gradually shrinking to the micro-/nanoscale, with the consequent problem of heat dissipation on chips becoming increasingly serious. For device applications, efficient heat dissipation and thermal management play a key role in ensuring device operation reliability. In this review, we summarize the thermal management applications based on 2D materials from both theoretical and experimental perspectives. The regulation approaches of thermal transport can be divided into two main types: intrinsic structure engineering (acting on the intrinsic structure) and non-structure engineering (applying external fields). On one hand, the thermal transport properties of 2D materials can be modulated by defects and disorders, size effect (including length, width, and the number of layers), heterostructures, structure regulation, doping, alloy, functionalizing, and isotope purity. On the other hand, strain engineering, electric field, and substrate can also modulate thermal transport efficiently without changing the intrinsic structure of the materials. Furthermore, we propose a perspective on the topic of using magnetism and light field to modulate the thermal transport properties of 2D materials. In short, we comprehensively review the existing thermal management modulation applications as well as the latest research progress, and conclude with a discussion and perspective on the applications of 2D materials in thermal management, which will be of great significance to the development of next-generation nanoelectronic devices.
Collapse
Affiliation(s)
- Fuqing Duan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Donghai Wei
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ailing Chen
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Xiong Zheng
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Huimin Wang
- Hunan Key Laboratory for Micro-Nano Energy Materials & Device and School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Guangzhao Qin
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
4
|
Sharifi M, Heidaryan E. Thermal rectification in ultra-narrow hydrogen functionalized graphene: a non-equilibrium molecular dynamics study. J Mol Model 2022; 28:298. [PMID: 36066753 DOI: 10.1007/s00894-022-05306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
In this study, the non-equilibrium molecular dynamics simulation (NEMD) has been used to evaluate the thermal properties, especially the rectification of ultra-narrow edge-functionalized graphene with hydrogen atoms. The system's small width equals 4.91 Å (equivalent to two hexagonal rings). The dependence of the thermal rectification on the mean temperature, hydrogen concentration, and temperature difference between the two baths was investigated. Results reveal that the thermal rectification increases to 100% at 550 K by increasing the mean temperature. Also, it is disclosed that hydrogen concentration plays a vibrant role in thermal rectification. As a result of maximum phonon scattering at the interface, a thorough rectification is obtained in a half-fully hydrogenated system. As well, the effects of temperature difference of baths ΔT on thermal rectification has been calculated. As a result, the thermal rectification decreases even though the current heat increases with ΔT. Finally, the thermal resistance at the interface using a mismatching factor between the two-phonon density of states (DOS) on both sides of the interface has been explained.
Collapse
Affiliation(s)
- Marjan Sharifi
- Applied Multi-Phase Fluid Dynamics Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ehsan Heidaryan
- Department of Chemical Engineering, Engineering School, University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
5
|
Bhavyashree M, Rondiya SR, Hareesh K. Exploring the emerging applications of the advanced 2-dimensional material borophene with its unique properties. RSC Adv 2022; 12:12166-12192. [PMID: 35481099 PMCID: PMC9023120 DOI: 10.1039/d2ra00677d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Borophene, a crystalline allotrope of monolayer boron, with a combination of triangular lattice and hexagonal holes, has stimulated wide interest in 2-dimensional materials and their applications. Although their properties are theoretically confirmed, they are yet to be explored and confirmed experimentally. In this review article, we present advancements in research on borophene, its synthesis, and unique properties, including its advantages for various applications with theoretical predictions. The uniqueness of borophene over graphene and other 2-dimensional (2D) materials is also highlighted along with their various structural stabilities. The strategy for its theoretical simulations, leading to the experimental synthesis, could also be helpful for the exploration of many newer 2D materials.
Collapse
Affiliation(s)
- M Bhavyashree
- School of Applied Sciences (Physics), REVA University Bengaluru-560064 India
- Department of Physics, R.V. College of Engineering Bengaluru-560059 India
- Center of Excellence on Macro-Electronics, Interdisciplinary Research Center, R.V. College of Engineering Bengaluru-560059 India
| | - Sachin R Rondiya
- School of Chemistry, Cardiff University Cardiff CF10 3AT Wales UK
| | - K Hareesh
- School of Applied Sciences (Physics), REVA University Bengaluru-560064 India
- Department of Physics, R.V. College of Engineering Bengaluru-560059 India
- Center of Excellence on Macro-Electronics, Interdisciplinary Research Center, R.V. College of Engineering Bengaluru-560059 India
| |
Collapse
|
6
|
Wang X, Wang Q, Liu X, Huang Z, Liu X. Phosphorene grain boundary effect on phonon transport and phononic applications. NANOTECHNOLOGY 2022; 33:265704. [PMID: 35325884 DOI: 10.1088/1361-6528/ac60db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Grain boundaries (GBs) widely exist in black phosphorene (BP), which plays a vital role in determining the properties of 2D materials. Significant GB effect on the thermal boundary resistance in BP structures is found by using molecular dynamics calculations and lattice dynamic analysis. A remarkably high interface thermal resistance is observed. By analyzing the strain distribution and phonon vibrational spectra, we reveal this high thermal resistance originates from phonon localization and strong phonon boundary scattering induced by the local stress at the GB area. Particularly, it is interesting to find that the partial phonon modes display weak localization when GBs present. The fraction of atoms participating in a particular phonon vibrational mode has been quantified through the calculation of phonon participation ratio. In addition, the thermal boundary resistance is found size-dependent, which further induces interesting thermal rectification effect in the BP structures. A high rectification ratio is obtained by adjusting the structural length and temperature bias. These findings provide a through insight into the GB effects on individual phonon mode transmission across the GBs, and highlight that the GB effect is an important factor and should be taken into account for the applications of BP-based phononic devices.
Collapse
Affiliation(s)
- Xujun Wang
- Institute of Micro/Nano Electromechanical System, College of Mechanical Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, People's Republic of China
| | - Quanjie Wang
- Institute of Micro/Nano Electromechanical System, College of Mechanical Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, People's Republic of China
| | - Xinyu Liu
- Institute of Micro/Nano Electromechanical System, College of Mechanical Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, People's Republic of China
| | - Zixuan Huang
- Institute of Micro/Nano Electromechanical System, College of Mechanical Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, People's Republic of China
| | - Xiangjun Liu
- Institute of Micro/Nano Electromechanical System, College of Mechanical Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Dehaghani MZ, Molaei F, Yousefi F, Sajadi SM, Esmaeili A, Mohaddespour A, Farzadian O, Habibzadeh S, Mashhadzadeh AH, Spitas C, Saeb MR. An insight into thermal properties of BC 3-graphene hetero-nanosheets: a molecular dynamics study. Sci Rep 2021; 11:23064. [PMID: 34845328 PMCID: PMC8630025 DOI: 10.1038/s41598-021-02576-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Simulation of thermal properties of graphene hetero-nanosheets is a key step in understanding their performance in nano-electronics where thermal loads and shocks are highly likely. Herein we combine graphene and boron-carbide nanosheets (BC3N) heterogeneous structures to obtain BC3N-graphene hetero-nanosheet (BC3GrHs) as a model semiconductor with tunable properties. Poor thermal properties of such heterostructures would curb their long-term practice. BC3GrHs may be imperfect with grain boundaries comprising non-hexagonal rings, heptagons, and pentagons as topological defects. Therefore, a realistic picture of the thermal properties of BC3GrHs necessitates consideration of grain boundaries of heptagon-pentagon defect pairs. Herein thermal properties of BC3GrHs with various defects were evaluated applying molecular dynamic (MD) simulation. First, temperature profiles along BC3GrHs interface with symmetric and asymmetric pentagon-heptagon pairs at 300 K, ΔT = 40 K, and zero strain were compared. Next, the effect of temperature, strain, and temperature gradient (ΔT) on Kaptiza resistance (interfacial thermal resistance at the grain boundary) was visualized. It was found that Kapitza resistance increases upon an increase of defect density in the grain boundary. Besides, among symmetric grain boundaries, 5-7-6-6 and 5-7-5-7 defect pairs showed the lowest (2 × 10-10 m2 K W-1) and highest (4.9 × 10-10 m2 K W-1) values of Kapitza resistance, respectively. Regarding parameters affecting Kapitza resistance, increased temperature and strain caused the rise and drop in Kaptiza thermal resistance, respectively. However, lengthier nanosheets had lower Kapitza thermal resistance. Moreover, changes in temperature gradient had a negligible effect on the Kapitza resistance.
Collapse
Affiliation(s)
- Maryam Zarghami Dehaghani
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Molaei
- Mining and Geological Engineering Department, The University of Arizona, Arizona, USA
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, 45195-313, Zanjan, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Phytochemistry, SRC, Soran University, KRG, Erbil, Iraq
| | - Amin Esmaeili
- Department of Chemical Engineering, College of the North Atlantic-Qatar, 24449 Arab League St, PO Box 24449, Doha, Qatar
| | - Ahmad Mohaddespour
- College of Engineering and Technology, American University of the Middle East, Egaila, Kuwait
| | - Omid Farzadian
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Christos Spitas
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
8
|
Gholami Z, Khoeini F. Vacancy tuned thermoelectric properties and high spin filtering performance in graphene/silicene heterostructures. Sci Rep 2021; 11:15320. [PMID: 34321550 PMCID: PMC8319332 DOI: 10.1038/s41598-021-94842-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
The main contribution of this paper is to study the spin caloritronic effects in defected graphene/silicene nanoribbon (GSNR) junctions. Each step-like GSNR is subjected to the ferromagnetic exchange and local external electric fields, and their responses are determined using the nonequilibrium Green's function (NEGF) approach. To further study the thermoelectric (TE) properties of the GSNRs, three defect arrangements of divacancies (DVs) are also considered for a larger system, and their responses are re-evaluated. The results demonstrate that the defected GSNRs with the DVs can provide an almost perfect thermal spin filtering effect (SFE), and spin switching. A negative differential thermoelectric resistance (NDTR) effect and high spin polarization efficiency (SPE) larger than 99.99% are obtained. The system with the DV defects can show a large spin-dependent Seebeck coefficient, equal to Ss ⁓ 1.2 mV/K, which is relatively large and acceptable. Appropriate thermal and electronic properties of the GSNRs can also be obtained by tuning up the DV orientation in the device region. Accordingly, the step-like GSNRs can be employed to produce high efficiency spin caloritronic devices with various features in practical applications.
Collapse
Affiliation(s)
- Zainab Gholami
- grid.412673.50000 0004 0382 4160Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Farhad Khoeini
- grid.412673.50000 0004 0382 4160Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
9
|
Fracture fingerprint of polycrystalline C3N nanosheets: Theoretical basis. J Mol Graph Model 2021; 106:107899. [DOI: 10.1016/j.jmgm.2021.107899] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022]
|
10
|
Fooladpanjeh S, Yousefi F, Molaei F, Zarghami Dehaghani M, Sajadi SM, Abida O, Habibzadeh S, Hamed Mashhadzadeh A, Saeb MR. Thermal conductivity of random polycrystalline BC 3 nanosheets: A step towards realistic simulation of 2D structures. J Mol Graph Model 2021; 107:107977. [PMID: 34237665 DOI: 10.1016/j.jmgm.2021.107977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023]
Abstract
Boron carbide nanosheets (BC3NSs) are semiconductors possessing non-zero bandgap. Nevertheless, there is no estimation of their thermal conductivity for practical circumstances, mainly because of difficulties in simulation of random polycrystalline structures. In the real physics world, BC3NS with perfect monocrystalline is rare, for the nature produces structures with disordered grain regions. Therefore, it is of crucial importance to capture a more realistic picture of thermal conductivity of these nanosheets. Polycrystalline BC3NS (PCBC3NSs are herein simulated by Molecular Dynamics simulation to take their thermal conductivity fingerprint applying ΔT of 40 K. A series of PCBC3NSs were evaluated for thermal conductivity varying the number of grains (3, 5, and 10). The effect of grain rotation was also modeled in terms of Kapitza thermal resistance per grain, varying the rotation angle (θ/2 = 14.5, 16, 19, and 25°). Overall, a non-linear temperature variation was observed for PCBC3NS, particularly by increasing grain number, possibly because of more phonon scattering (shorter phonon relaxation time) arising from more structural defects. By contrast, the heat current passing across the slab decreased. The thermal conductivity of nanosheet dwindled from 149 W m-1 K-1 for monocrystalline BC3NS to the values of 129.67, 121.32, 115.04, and 102.78 W m-1 K-1 for PCBC3NSs having 2, 3, 5, and 10 grains, respectively. The increase of the grain̛s rotation angle (randomness) from 14.5° to 16°, 19° and 25° led to a rise in Kapitza thermal resistance from 2⨯10-10 m2 K·W-1 to the values of 2.3⨯ 10-10, 2.9⨯10-10, and 4.7⨯ 10-10 m2 K·W-1, respectively. Thus, natural 2D structure would facilitate phonon scattering rate at the grain boundaries, which limits heat transfer across polycrystalline nanosheets.
Collapse
Affiliation(s)
- Sasan Fooladpanjeh
- Department of Mechanical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan, 45195-313, Iran
| | - Fatemeh Molaei
- Mining and Geological Engineering Department, The University of Arizona, Arizona, USA
| | - Maryam Zarghami Dehaghani
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Phytochemistry, SRC, Soran University, KRG, Iraq
| | - Otman Abida
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan.
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Razzaghi L, Khalkhali M, Rajabpour A, Khoeini F. Effect of graphene and carbon-nitride nanofillers on the thermal transport properties of polymer nanocomposites: A combined molecular dynamics and finite element study. Phys Rev E 2021; 103:013310. [PMID: 33601553 DOI: 10.1103/physreve.103.013310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/18/2020] [Indexed: 11/07/2022]
Abstract
Low thermal conductivity of polymers, which is one of the considerable drawbacks of commonly used composite structures, has been the focus of many researchers aiming to achieve high-performance polymer-based nanocomposites through the inclusion of highly thermally conductive fillers inside the polymer matrices. Thus, in the present study, a multiscale scheme using nonequilibrium molecular dynamics and the finite element method is developed to explore the impact of different nanosized fillers (carbon-nitride and graphene) on the effective thermal conductivity of polyethylene-based nanocomposites. We show that the thermal conductivity of amorphous polyethylene at room temperature using the reactive bond order interatomic potential is nearly 0.36±0.05W/mK. Also, the atomistic results predict that, compared to the C_{3}N and graphene nanosheets, the C_{2}N nanofilm presents a much stronger interfacial thermal conductance with polyethylene. Furthermore, the results indicate that the effective thermal conductivity values of C_{2}N-polyethylene, C_{3}N-polyethylene, and graphene-polyethylene nanocomposite, at constant volume fractions of 1%, are about 0.47, 0.56, and 0.74W/mK, respectively. In other words, the results of our models reveal that the thermal conductivity of fillers is the dominant factor that defines the effective thermal conductivity of nanocomposites.
Collapse
Affiliation(s)
- Leila Razzaghi
- Department of Physics, University of Zanjan, Zanjan 45195-313, Iran
| | - Maryam Khalkhali
- Department of Physics, University of Zanjan, Zanjan 45195-313, Iran
| | - Ali Rajabpour
- Advanced Simulation and Computing Laboratory (ASCL), Mechanical Engineering Department, Imam Khomeini International University, Qazvin 34148-96818, Iran
| | - Farhad Khoeini
- Department of Physics, University of Zanjan, Zanjan 45195-313, Iran
| |
Collapse
|
12
|
Gholami Z, Khoeini F. Pure thermal spin current and perfect spin-filtering with negative differential thermoelectric resistance induced by proximity effect in graphene/silicene junctions. Sci Rep 2021; 11:104. [PMID: 33420296 PMCID: PMC7794392 DOI: 10.1038/s41598-020-80616-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
The spin-dependent Seebeck effect (SDSE) and thermal spin-filtering effect (SFE) are now considered as the essential aspects of the spin caloritronics, which can efficiently explore the relationships between the spin and heat transport in the materials. However, there is still a challenge to get a thermally-induced spin current with no thermal electron current. This paper aims to numerically investigate the spin-dependent transport properties in hybrid graphene/silicene nanoribbons (GSNRs), using the nonequilibrium Green’s function method. The effects of temperature gradient between the left and right leads, the ferromagnetic exchange field, and the local external electric fields are also included. The results showed that the spin-up and spin-down currents are produced and flow in opposite directions with almost equal magnitudes. This evidently shows that the carrier transport is dominated by the thermal spin current, whereas the thermal electron current is almost disappeared. A pure thermal spin current with the finite threshold temperatures can be obtained by modulating the temperature, and a negative differential thermoelectric resistance is obtained for the thermal electron current. A nearly zero charge thermopower is also obtained, which further demonstrates the emergence of the SDSE. The response of the hybrid system is then varied by changing the magnitudes of the ferromagnetic exchange field and local external electric fields. Thus, a nearly perfect SFE can be observed at room temperature, whereas the spin polarization efficiency is reached up to 99%. It is believed that the results obtained from this study can be useful to well understand the inspiring thermospin phenomena, and to enhance the spin caloritronics material with lower energy consumption.
Collapse
Affiliation(s)
- Zainab Gholami
- Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Farhad Khoeini
- Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran.
| |
Collapse
|
13
|
Liu X, Gao J, Zhang G, Zhao J, Zhang YW. Remarkable Role of Grain Boundaries in the Thermal Transport Properties of Phosphorene. ACS OMEGA 2020; 5:17416-17422. [PMID: 32715226 PMCID: PMC7377073 DOI: 10.1021/acsomega.0c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
In this work, we study the effect of grain boundary (GB) on the thermal transport of phosphorene by using molecular dynamics simulations. By exploring a total of 19 GBs with different GB defect types and densities, we find that there is a relatively high Kapitza thermal boundary resistance at these boundaries. By analyzing the spatial distributions of the heat flux, we find that this high thermal boundary resistance can be attributed to the strong phonon-boundary scattering at the GBs. With the same type of defect, the thermal boundary resistance is found to increase with the increase of the defect density along the GBs, which can be attributed to the nonuniform distribution of stress and lattice distortion. Finally, we investigate the anisotropy in the thermal conductivity of phosphorene with GBs and reveal a strikingly high anisotropy ratio of thermal conductivities, which is found to arise from the different influences of boundaries on the thermal transport along the zigzag and armchair directions. Our results highlight the importance of GBs in the transport behavior of phosphorene and the need to include their effects in the thermal management of phosphorene-based electronic devices.
Collapse
Affiliation(s)
- Xiangjun Liu
- Institute
of Micro/Nano Electromechanical System, College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Junfeng Gao
- Key
Laboratory of Materials Modification by Laser, Ion and Electron Beams
(Ministry of Education), Dalian University
of Technology, Dalian 116024, China
| | - Gang Zhang
- Institute
of High Performance Computing, A*STAR, 138632, Singapore
| | - Jijun Zhao
- Key
Laboratory of Materials Modification by Laser, Ion and Electron Beams
(Ministry of Education), Dalian University
of Technology, Dalian 116024, China
| | - Yong-Wei Zhang
- Institute
of High Performance Computing, A*STAR, 138632, Singapore
| |
Collapse
|
14
|
Yousefi F, Khoeini F, Rajabpour A. Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach. NANOTECHNOLOGY 2020; 31:285707. [PMID: 32217831 DOI: 10.1088/1361-6528/ab8420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate thermal rectification and thermal resistance in a hybrid pillared-graphene and graphene (PGG) system by both molecular dynamics (MD) simulation and a continuum model. First, the thermal conductivity of both pillared-graphene and graphene is calculated by employing MD simulation and Fourier's law. Our results show that the thermal conductivity of the pillared-graphene is much smaller than that of graphene by one order of magnitude. Next, by applying positive and negative temperature gradients along the longitudinal direction of the PGG, the thermal rectification is examined. The MD results indicate that for the lengths in the range of 3686 nm, the thermal rectification remains almost constant (~3%-5%). We have also studied the phonon density of states (DOS) on both sides of the interface of PGG. The DOS curves show that there is phonon scattering at low frequencies that depends on the imposed temperature gradient direction in the system. Therefore, we can introduce the PGG as a thermal rectifier at room temperature. Furthermore, next, we also explore the temperature distribution over the PGG by using the continuum model. The results obtained from the continuum model predict the MD results, such as the temperature distribution in the upper half-layer and lower full-layer graphene, the temperature gap, and also the thermal resistance at the interface. This study could help in the design of chip coolers, and phononic devices such as thermal nanodiodes.
Collapse
Affiliation(s)
- Farrokh Yousefi
- Department of Physics, University of Zanjan, Zanjan 45195-313, Iran
| | | | | |
Collapse
|