1
|
Franchineau G, Jonkman AH, Piquilloud L, Yoshida T, Costa E, Rozé H, Camporota L, Piraino T, Spinelli E, Combes A, Alcala GC, Amato M, Mauri T, Frerichs I, Brochard LJ, Schmidt M. Electrical Impedance Tomography to Monitor Hypoxemic Respiratory Failure. Am J Respir Crit Care Med 2024; 209:670-682. [PMID: 38127779 DOI: 10.1164/rccm.202306-1118ci] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.
Collapse
Affiliation(s)
- Guillaume Franchineau
- Service de Medecine Intensive Reanimation, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Annemijn H Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lise Piquilloud
- Adult Intensive Care Unit, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eduardo Costa
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Hadrien Rozé
- Department of Thoraco-Abdominal Anesthesiology and Intensive Care, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
- Réanimation Polyvalente, Centre Hospitalier Côte Basque, Bayonne, France
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Department of Adult Critical Care, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Thomas Piraino
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Critical Care, Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alain Combes
- Sorbonne Université, Groupe de Recherche Clinique 30, Réanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aigüe, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Service de Médecine Intensive - Réanimation, Assistance Publique-Hôpitaux de Paris (APHP) Hôpital Pitié-Salpêtrière, Paris, France
| | - Glasiele C Alcala
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Marcelo Amato
- Pulmonary Division, Cardiopulmonary Department, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Centre of Schleswig-Holstein Campus Kiel, Kiel, Germany; and
| | - Laurent J Brochard
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Matthieu Schmidt
- Sorbonne Université, Groupe de Recherche Clinique 30, Réanimation et Soins Intensifs du Patient en Insuffisance Respiratoire Aigüe, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, Service de Médecine Intensive - Réanimation, Assistance Publique-Hôpitaux de Paris (APHP) Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
2
|
Heines SJH, Becher TH, van der Horst ICC, Bergmans DCJJ. Clinical Applicability of Electrical Impedance Tomography in Patient-Tailored Ventilation: A Narrative Review. Tomography 2023; 9:1903-1932. [PMID: 37888742 PMCID: PMC10611090 DOI: 10.3390/tomography9050150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Electrical Impedance Tomography (EIT) is a non-invasive bedside imaging technique that provides real-time lung ventilation information on critically ill patients. EIT can potentially become a valuable tool for optimising mechanical ventilation, especially in patients with acute respiratory distress syndrome (ARDS). In addition, EIT has been shown to improve the understanding of ventilation distribution and lung aeration, which can help tailor ventilatory strategies according to patient needs. Evidence from critically ill patients shows that EIT can reduce the duration of mechanical ventilation and prevent lung injury due to overdistension or collapse. EIT can also identify the presence of lung collapse or recruitment during a recruitment manoeuvre, which may guide further therapy. Despite its potential benefits, EIT has not yet been widely used in clinical practice. This may, in part, be due to the challenges associated with its implementation, including the need for specialised equipment and trained personnel and further validation of its usefulness in clinical settings. Nevertheless, ongoing research focuses on improving mechanical ventilation and clinical outcomes in critically ill patients.
Collapse
Affiliation(s)
- Serge J. H. Heines
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
| | - Tobias H. Becher
- Department of Anesthesiology and Intensive Care Medicine, Campus Kiel, University Medical Centre Schleswig-Holstein, 24118 Kiel, Germany;
| | - Iwan C. C. van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Dennis C. J. J. Bergmans
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands; (I.C.C.v.d.H.); (D.C.J.J.B.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Ribeiro De Santis Santiago R, Xin Y, Gaulton TG, Alcala G, León Bueno de Camargo ED, Cereda M, Britto Passos Amato M, Berra L. Lung Imaging Acquisition with Electrical Impedance Tomography: Tackling Common Pitfalls. Anesthesiology 2023; 139:329-341. [PMID: 37402247 DOI: 10.1097/aln.0000000000004613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Electrical impedance tomography is a powerful tool for lung imaging that can be employed at the bedside in multiple clinical scenarios. Diagnosing and preventing interpretation pitfalls will ensure reliable data and allow for appropriate clinical decision-making.
Collapse
Affiliation(s)
- Roberta Ribeiro De Santis Santiago
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yi Xin
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy G Gaulton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Glasiele Alcala
- Pulmonary Division, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
| | - Erick Dario León Bueno de Camargo
- Federal University of ABC/Engineering, Modeling and Applied Social Sciences Centre, Biomedical Engineering, São Bernardo do Campo, Brazil
| | - Maurizio Cereda
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Electrical Impedance Tomography Can Be Used to Quantify Lung Hyperinflation during HFOV: The Pilot Study in Pigs. Diagnostics (Basel) 2022; 12:diagnostics12092081. [PMID: 36140483 PMCID: PMC9497761 DOI: 10.3390/diagnostics12092081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Dynamic hyperinflation is reported as a potential risk during high-frequency oscillatory ventilation (HFOV), and its existence has been documented both by physical models and by CT. The aim of this study is to determine the suitability of electrical impendence tomography (EIT) for the measurement of dynamic lung hyperinflation and hypoinflation during HFOV. Eleven healthy pigs were anaesthetized and ventilated using HFOV. The difference between the airway pressure at the airway opening and alveolar space was measured by EIT and esophageal balloons at three mean airway pressures (12, 18 and 24 cm H2O) and two inspiratory to expiratory time ratios (1:1, 1:2). The I:E ratio was the primary parameter associated with differences between airway and alveolar pressures. All animals showed hyperinflation at a 1:1 ratio (median 1.9 cm H2O) and hypoinflation at a 1:2 (median –4.0 cm H2O) as measured by EIT. EIT measurements had a linear correlation to esophageal balloon measurements (r2 = –0.915, p = 0.0085). EIT measurements were slightly higher than that of the esophageal balloon transducer with the mean difference of 0.57 cm H2O. Presence of a hyperinflation or hypoinflation was also confirmed independently by chest X-ray. We found that dynamic hyperinflation developed during HFOV may be detected and characterized noninvasively by EIT.
Collapse
|
5
|
Ghita M, Copot D, Ionescu CM. Lung cancer dynamics using fractional order impedance modeling on a mimicked lung tumor setup. J Adv Res 2021; 32:61-71. [PMID: 34484826 PMCID: PMC8408337 DOI: 10.1016/j.jare.2020.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction As pulmonary dysfunctions are prospective factors for developing cancer, efforts are needed to solve the limitations regarding applications in lung cancer. Fractional order respiratory impedance models can be indicative of lung cancer dynamics and tissue heterogeneity. Objective The purpose of this study is to investigate how the existence of a tumorous tissue in the lung modifies the parameters of the proposed models. The first use of a prototype forced oscillations technique (FOT) device in a mimicked lung tumor setup is investigated by comparing and interpreting the experimental findings. Methods The fractional order model parameters are determined for the mechanical properties of the healthy and tumorous lung. Two protocols have been performed for a mimicked lung tumor setup in a laboratory environment. A low frequency evaluation of respiratory impedance model and nonlinearity index were assessed using the forced oscillations technique. Results The viscoelastic properties of the lung tissue change, results being mirrored in the respiratory impedance assessment via FOT. The results demonstrate significant differences among the mimicked healthy and tumor measurements, (p-values < 0.05) for impedance values and also for heterogeneity index. However, there was no significant difference in lung function before and after immersing the mimicked lung in water or saline solution, denoting no structural changes. Conclusion Simulation tests comparing the changes in impedance support the research hypothesis. The impedance frequency response is effective in non-invasive identification of respiratory tissue abnormalities in tumorous lung, analyzed with appropriate fractional models.
Collapse
Affiliation(s)
- Maria Ghita
- Corresponding author at: Ghent University, Research Group on Dynamical Systems and Control (DySC), Tech Lane Science Park 125, Ghent 9052, Belgium.
| | - Dana Copot
- Ghent University, Research Group on Dynamical Systems and Control (DySC), Tech Lane Science Park 125, Ghent 9052, Belgium
- EEDT Core Group on Decision and Control in Flanders Make Consortium, Tech Lane Science Park 131, Ghent 9052, Belgium
| | - Clara M. Ionescu
- Ghent University, Research Group on Dynamical Systems and Control (DySC), Tech Lane Science Park 125, Ghent 9052, Belgium
- EEDT Core Group on Decision and Control in Flanders Make Consortium, Tech Lane Science Park 131, Ghent 9052, Belgium
| |
Collapse
|
6
|
Becher T, Buchholz V, Hassel D, Meinel T, Schädler D, Frerichs I, Weiler N. Individualization of PEEP and tidal volume in ARDS patients with electrical impedance tomography: a pilot feasibility study. Ann Intensive Care 2021; 11:89. [PMID: 34080074 PMCID: PMC8171998 DOI: 10.1186/s13613-021-00877-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
Background In mechanically ventilated patients with acute respiratory distress syndrome (ARDS), electrical impedance tomography (EIT) provides information on alveolar cycling and overdistension as well as assessment of recruitability at the bedside. We developed a protocol for individualization of positive end-expiratory pressure (PEEP) and tidal volume (VT) utilizing EIT-derived information on recruitability, overdistension and alveolar cycling. The aim of this study was to assess whether the EIT-based protocol allows individualization of ventilator settings without causing lung overdistension, and to evaluate its effects on respiratory system compliance, oxygenation and alveolar cycling. Methods 20 patients with ARDS were included. Initially, patients were ventilated according to the recommendations of the ARDS Network with a VT of 6 ml per kg predicted body weight and PEEP adjusted according to the lower PEEP/FiO2 table. Subsequently, ventilator settings were adjusted according to the EIT-based protocol once every 30 min for a duration of 4 h. To assess global overdistension, we determined whether lung stress and strain remained below 27 mbar and 2.0, respectively. Results Prospective optimization of mechanical ventilation with EIT led to higher PEEP levels (16.5 [14–18] mbar vs. 10 [8–10] mbar before optimization; p = 0.0001) and similar VT (5.7 ± 0.92 ml/kg vs. 5.8 ± 0.47 ml/kg before optimization; p = 0.96). Global lung stress remained below 27 mbar in all patients and global strain below 2.0 in 19 out of 20 patients. Compliance remained similar, while oxygenation was significantly improved and alveolar cycling was reduced after EIT-based optimization. Conclusions Adjustment of PEEP and VT using the EIT-based protocol led to individualization of ventilator settings with improved oxygenation and reduced alveolar cycling without promoting global overdistension. Trial registrationThis study was registered at clinicaltrials.gov (NCT02703012) on March 9, 2016 before including the first patient. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00877-7.
Collapse
Affiliation(s)
- Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Valerie Buchholz
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniel Hassel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Timo Meinel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dirk Schädler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
7
|
Hahn G, Niewenhuys J, Just A, Tonetti T, Behnemann T, Rapetti F, Collino F, Vasques F, Maiolo G, Romitti F, Gattinoni L, Quintel M, Moerer O. Monitoring lung impedance changes during long-term ventilator-induced lung injury ventilation using electrical impedance tomography. Physiol Meas 2020; 41:095011. [PMID: 33035199 DOI: 10.1088/1361-6579/abb1fb] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The target of this methodological evaluation was the feasibility of long-term monitoring of changes in lung conditions by time-difference electrical impedance tomography (tdEIT). In contrast to ventilation monitoring by tdEIT, the monitoring of end-expiratory (EELIC) or end-inspiratory (EILIC) lung impedance change always requires a reference measurement. APPROACH To determine the stability of the used Pulmovista 500® EIT system, as a prerequisite it was initially secured on a resistive phantom for 50 h. By comparing the slopes of EELIC for the whole lung area up to 48 h from 36 pigs ventilated at six positive end-expiratory pressure (PEEP) levels from 0 to 18 cmH2O we found a good agreement (range of r 2 = 0.93-1.0) between absolute EIT (aEIT) and tdEIT values. This justified the usage of tdEIT with its superior local resolution compared to aEIT for long-term determination of EELIC. MAIN RESULTS The EELIC was between -0.07 Ωm day-1 at PEEP 4 and -1.04 Ωm day-1 at PEEP 18 cmH2O. The complex local time pattern for EELIC was roughly quantified by the new parameter, centre of end-expiratory change (CoEEC), in equivalence to the established centre of ventilation (CoV). The ventrally located mean of the CoV was fairly constant in the range of 42%-46% of thorax diameter; however, on the contrary, the CoEEC shifted from about 40% to about 75% in the dorsal direction for PEEP levels of 14 and 18 cmH2O. SIGNIFICANCE The observed shifts started earlier for higher PEEP levels. Changes of EELI could be precisely monitored over a period of 48 h by tdEIT on pigs.
Collapse
Affiliation(s)
- G Hahn
- Department of Anaesthesiology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, D-37075, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Effects of pleural effusion drainage in the mechanically ventilated patient as monitored by electrical impedance tomography and end-expiratory lung volume: A pilot study. J Crit Care 2020; 59:76-80. [DOI: 10.1016/j.jcrc.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/25/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
|
9
|
Popková M, Kuriščák E, Hála P, Janák D, Tejkl L, Bělohlávek J, Ošťádal P, Neužil P, Kittnar O, Mlček M. Increasing veno-arterial extracorporeal membrane oxygenation flow reduces electrical impedance of the lung regions in porcine acute heart failure. Physiol Res 2020; 69:609-620. [DOI: 10.33549/physiolres.934429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Veno-arterial extracorporeal membrane oxygenation (VA ECMO) is a technique used in patients with severe heart failure. The aim of this study was to evaluate its effects on left ventricular afterload and fluid accumulation in lungs with electrical impedance tomography (EIT). In eight swine, incremental increases of extracorporeal blood flow (EBF) were applied before and after the induction of ischemic heart failure. Hemodynamic parameters were continuously recorded and computational analysis of EIT was used to determine lung fluid accumulation. With an increase in EBF from 1 to 4 l/min in acute heart failure the associated increase of arterial pressure (raised by 44 %) was accompanied with significant decrease of electrical impedance of lung regions. Increasing EBF in healthy circulation did not cause lung impedance changes. Our findings indicate that in severe heart failure EIT may reflect fluid accumulation in lungs due to increasing EBF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - M Mlček
- Department of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
10
|
Segmental Bioelectrical Impedance Spectroscopy to Monitor Fluid Status in Heart Failure. Sci Rep 2020; 10:3577. [PMID: 32109235 PMCID: PMC7046702 DOI: 10.1038/s41598-020-60358-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/05/2020] [Indexed: 01/10/2023] Open
Abstract
Bioelectrical impedance spectroscopy (BIS) measures body composition, including fluid status. Acute decompensated heart failure (ADHF) is associated with fluid overload in different body compartments. This investigation aimed to evaluate the feasibility of measuring and monitoring fluid accumulation in patients with ADHF using BIS. The extracellular impedance as a surrogate marker for fluid accumulation was measured in 67 participants (25 healthy reference volunteers and 42 patients admitted with ADHF) using BIS in the “transthoracic”, “foot-to-foot”, “whole-body” and “hand-to-hand” segments. At baseline, BIS showed significantly lower extracellular resistance values for the “whole-body” (P < 0.001), “foot-to-foot” (P = 0.03), “hand-to-hand” (P < 0.001) and “transthoracic” (P = 0.014) segments in patients with ADHF than the reference cohort, revealing a specific pattern for peripheral, central and general fluid accumulation. The “foot-to-foot” (AUC = 0.8, P < 0.001) and “hand-to-hand” (AUC = 0.74, P = 0.04) segments indicated compartments of fluid accumulation with good prediction. During cardiac recompensation, BIS values changed significantly and were in line with routine parameters for monitoring ADHF. Mean bodyweight change per day correlated moderately to good with BIS values in the “whole-body” (r = −0.4), “foot-to-foot” (r = −0.8) and “transthoracic” (r = −0.4) segments. Based on our analysis, we conclude that measuring and monitoring fluid accumulation in ADHF using segmental BIS is feasible and correlates with clinical parameters during recompensation.
Collapse
|
11
|
Longhini F, Maugeri J, Andreoni C, Ronco C, Bruni A, Garofalo E, Pelaia C, Cavicchi C, Pintaudi S, Navalesi P. Electrical impedance tomography during spontaneous breathing trials and after extubation in critically ill patients at high risk for extubation failure: a multicenter observational study. Ann Intensive Care 2019; 9:88. [PMID: 31410738 PMCID: PMC6692788 DOI: 10.1186/s13613-019-0565-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background This study aims to assess the changes in lung aeration and ventilation during the first spontaneous breathing trial (SBT) and after extubation in a population of patients at risk of extubation failure. Methods We included 78 invasively ventilated patients eligible for their first SBT, conducted with low positive end-expiratory pressure (2 cm H2O) for 30 min. We acquired three 5-min electrical impedance tomography (EIT) records at baseline, soon after the beginning (SBT_0) and at the end (SBT_30) of SBT. In the case of SBT failure, ventilation was reinstituted; otherwise, the patient was extubated and two additional records were acquired soon after extubation (SB_0) and 30 min later (SB_30) during spontaneous breathing. Extubation failure was defined by the onset of post-extubation respiratory failure within 48 h after extubation. We computed the changes from baseline of end-expiratory lung impedance (∆EELI), tidal volume (∆Vt%), and the inhomogeneity index. Arterial blood was sampled for gas analysis. Data were compared between sub-groups stratified for SBT and extubation success/failure. Results Compared to SBT success (n = 61), SBT failure (n = 17) showed a greater reduction in ∆EELI at SBT_0 (p < 0.001) and SBT_30 (p = 0.001) and a higher inhomogeneity index at baseline (p = 0.002), SBT_0 (p = 0.003) and SBT_30 (p = 0.005). RR/Vt was not different between groups at baseline but was significantly greater at SBT_0 and SBT_30 in SBT failures, compared to SBT successes (p < 0.001 for both). No differences in ∆Vt% and arterial blood gases were observed between SBT success and failure. The ∆Vt%, ∆EELI, inhomogeneity index and arterial blood gases were not different between patients with extubation success (n = 39) and failure (n = 22) (p > 0.05 for all comparisons). Conclusions Compared to SBT success, SBT failure was characterized by more lung de-recruitment and inhomogeneity. Whether EIT may be useful to monitor SBT remains to be determined. No significant changes in lung ventilation, aeration or homogeneity related to extubation outcome occurred up to 30 min after extubation. Trial registration Retrospectively registered on clinicaltrials.gov (Identifier: NCT03894332; release date 27th March 2019). Electronic supplementary material The online version of this article (10.1186/s13613-019-0565-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Sant'Andrea Hospital, ASL VC, Vercelli, Italy
| | - Jessica Maugeri
- Anesthesia and Intensive Care, "Garibaldi Centro" Hospital, ARNAS Garibaldi, Catania, Italy
| | - Cristina Andreoni
- Anesthesia and Intensive Care, Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - Chiara Ronco
- Anesthesia and Intensive Care, Sant'Andrea Hospital, ASL VC, Vercelli, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa - Loc. Germaneto, 88100, Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa - Loc. Germaneto, 88100, Catanzaro, Italy
| | - Corrado Pelaia
- Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa - Loc. Germaneto, 88100, Catanzaro, Italy
| | - Camilla Cavicchi
- Anesthesia and Intensive Care, Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - Sergio Pintaudi
- Anesthesia and Intensive Care, "Garibaldi Centro" Hospital, ARNAS Garibaldi, Catania, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa - Loc. Germaneto, 88100, Catanzaro, Italy.
| |
Collapse
|