1
|
Wallner A, Antonielli L, Mesguida O, Rey P, Compant S. Genomic diversity in Paenibacillus polymyxa: unveiling distinct species groups and functional variability. BMC Genomics 2024; 25:720. [PMID: 39054421 PMCID: PMC11271205 DOI: 10.1186/s12864-024-10610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Paenibacillus polymyxa is a bacterial species of high interest, as suggested by the increased number of publications on its functions in the past years. Accordingly, the number of described strains and sequenced genomes is also on the rise. While functional diversity of P. polymyxa has been suggested before, the available genomic data is now sufficient for robust comparative genomics analyses. RESULTS Using 157 genomes, we found significant disparities among strains currently affiliated to P. polymyxa. Multiple taxonomic groups were identified with conserved predicted functions putatively impacting their respective ecology. As strains of this species have been reported to exhibit considerable potential in agriculture, medicine, and bioremediation, it is preferable to clarify their taxonomic organization to facilitate reliable and durable approval as active ingredients. CONCLUSIONS Strains currently affiliated to P. polymyxa can be separated into two major species groups with differential potential in nitrogen fixation, plant interaction, secondary metabolism, and antimicrobial resistance, as inferred from genomic data.
Collapse
Affiliation(s)
- Adrian Wallner
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln, 3430, Austria.
| | - Livio Antonielli
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln, 3430, Austria
| | - Ouiza Mesguida
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, 64000, France
- GreenCell, Biopôle Clermont-Limagne, Saint Beauzire, 63360, France
| | - Patrice Rey
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, 64000, France
| | - Stéphane Compant
- Center for Health & Bioresources, Bioresources Unit, AIT Austrian Institute of Technology, Konrad Lorenz Str. 24, Tulln, 3430, Austria
| |
Collapse
|
2
|
Sharma G, Kaur B, Singh V, Raheja Y, Falco MD, Tsang A, Chadha BS. Genome and secretome insights: unravelling the lignocellulolytic potential of Myceliophthora verrucosa for enhanced hydrolysis of lignocellulosic biomass. Arch Microbiol 2024; 206:236. [PMID: 38676717 DOI: 10.1007/s00203-024-03974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Varinder Singh
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | | |
Collapse
|
3
|
Singh RP, Kumari K, Sharma PK, Ma Y. Characterization and in-depth genome analysis of a halotolerant probiotic bacterium Paenibacillus sp. S-12, a multifarious bacterium isolated from Rauvolfia serpentina. BMC Microbiol 2023; 23:192. [PMID: 37464310 PMCID: PMC10353221 DOI: 10.1186/s12866-023-02939-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Members of Paenibacillus genus from diverse habitats have attracted great attention due to their multifarious properties. Considering that members of this genus are mostly free-living in soil, we characterized the genome of a halotolerant environmental isolate belonging to the genus Paenibacillus. The genome mining unravelled the presence of CAZymes, probiotic, and stress-protected genes that suggested strain S-12 for industrial and agricultural purposes. RESULTS Molecular identification by 16 S rRNA gene sequencing showed its closest match to other Paenibacillus species. The complete genome size of S-12 was 5.69 Mb, with a GC-content 46.5%. The genome analysis of S-12 unravelled the presence of an open reading frame (ORF) encoding the functions related to environmental stress tolerance, adhesion processes, multidrug efflux systems, and heavy metal resistance. Genome annotation identified the various genes for chemotaxis, flagellar motility, and biofilm production, illustrating its strong colonization ability. CONCLUSION The current findings provides the in-depth investigation of a probiotic Paenibacillus bacterium that possessed various genome features that enable the bacterium to survive under diverse conditions. The strain shows the strong ability for probiotic application purposes.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| | - Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD-20742, USA
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
4
|
From Agricultural Wastes to Fermentation Nutrients: A Case Study of 2,3-Butanediol Production. FERMENTATION 2022. [DOI: 10.3390/fermentation9010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The goal of this study was to improve resource use efficiency in agricultural systems and agro-based industries, reduce wastes that go to landfills and incinerators, and consequently, improve the economics of 2,3-butanediol (2,3-BD) production. This study evaluated the feasibility of 2,3-BD production by replacing the mineral nutrients, and buffers with anaerobic digestate (ADE), poultry-litter (PLBC)- and forage-sorghum (FSBC)-derived biochars. Fermentation media formulations with ADE and 5–20 g/L PLBC or FSBC were evaluated for 2,3-BD production using Paenibacillus polymyxa as a biocatalyst. An optimized medium containing nutrients and buffers served as control. While 2,3-BD production in the ADE cultures was 0.5-fold of the maximum generated in the control cultures, 2,3-BD produced in the PLBC and FSBC cultures were ~1.3-fold more than the control (33.6 g/L). Cost analysis showed that ADE and biochar can replace mineral nutrients and buffers in the medium with the potential to make bio-based 2,3-BD production profitably feasible.
Collapse
|
5
|
Genome mining reveals polysaccharide-degrading potential and new antimicrobial gene clusters of novel intestinal bacterium Paenibacillus jilinensis sp. nov. BMC Genomics 2022; 23:380. [PMID: 35590262 PMCID: PMC9118873 DOI: 10.1186/s12864-022-08623-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Drug-resistant bacteria have posed a great threat to animal breeding and human health. It is obviously urgent to develop new antibiotics that can effectively combat drug-resistant bacteria. The commensal flora inhabited in the intestines become potential candidates owing to the production of a wide range of antimicrobial substances. In addition, host genomes do not encode most of the enzymes needed to degrade dietary structural polysaccharides. The decomposition of these polysaccharides mainly depends on gut commensal-derived CAZymes. Results We report a novel species isolated from the chicken intestine, designated as Paenibacillus jilinensis sp. nov. and with YPG26T (= CCTCC M2020899T) as the type strain. The complete genome of P. jilinensis YPG26T is made up of a single circular chromosome measuring 3.97 Mb in length and containing 49.34% (mol%) G + C. It carries 33 rRNA genes, 89 tRNA genes, and 3871 protein-coding genes, among which abundant carbohydrate-degrading enzymes (CAZymes) are encoded. Moreover, this strain has the capability to antagonize multiple pathogens in vitro. We identified putative 6 BGCs encoding bacteriocin, NRPs, PKs, terpenes, and protcusin by genome mining. In addition, antibiotic susceptibility testing showed sensitivity to all antibiotics tested. Conclusions This study highlights the varieties of CAZymes genes and BGCs in the genome of Paenibacillus jilinensis. These findings confirm the beneficial function of the gut microbiota and also provide a promising candidate for the development of new carbohydrate degrading enzymes and antibacterial agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08623-4.
Collapse
|
6
|
Blombach B, Grünberger A, Centler F, Wierckx N, Schmid J. Exploiting unconventional prokaryotic hosts for industrial biotechnology. Trends Biotechnol 2021; 40:385-397. [PMID: 34482995 DOI: 10.1016/j.tibtech.2021.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Developing cost-efficient biotechnological processes is a major challenge in replacing fossil-based industrial production processes. The remarkable progress in genetic engineering ensures efficient and fast tailoring of microbial metabolism for a wide range of bioconversions. However, improving intrinsic properties such as tolerance, handling, growth, and substrate consumption rates is still challenging. At the same time, synthetic biology tools are becoming easier applicable and transferable to nonmodel organisms. These trends have resulted in the exploitation of new and unconventional microbial systems with sophisticated properties, which render them promising hosts for the bio-based industry. Here, we highlight the metabolic and cellular capabilities of representative prokaryotic newcomers and discuss the potential and drawbacks of these hosts for industrial application.
Collapse
Affiliation(s)
- Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany; SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | | | - Florian Centler
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Nick Wierckx
- Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
7
|
Vu NTH, Quach TN, Dao XTT, Le HT, Le CP, Nguyen LT, Le LT, Ngo CC, Hoang H, Chu HH, Phi QT. A genomic perspective on the potential of termite-associated Cellulosimicrobium cellulans MP1 as producer of plant biomass-acting enzymes and exopolysaccharides. PeerJ 2021; 9:e11839. [PMID: 34395081 PMCID: PMC8325422 DOI: 10.7717/peerj.11839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Lignocellulose is a renewable and enormous biomass resource, which can be degraded efficiently by a range of cocktails of carbohydrate-active enzymes secreted by termite gut symbiotic bacteria. There is an urgent need to find enzymes with novel characteristics for improving the conversion processes in the production of lignocellulosic-based products. Although various studies dedicated to the genus Cellulosimicrobium as gut symbiont, genetic potential related to plant biomass-acting enzymes and exopolysaccharides production has been fully untapped to date. Methods The cellulolytic bacterial strain MP1 was isolated from termite guts and identified to the species level by phenotypic, phylogenetic, and genomic analysis. To further explore genes related to cellulose and hemicellulose degradation, the draft genome of strain MP1 was obtained by using whole-genome sequencing, assembly, and annotation through the Illumina platform. Lignocellulose degrading enzymes and levan production in the liquid medium were also examined to shed light on bacterial activities. Results Among 65 isolates obtained, the strain MP1 was the most efficient cellulase producer with cellulase activity of 0.65 ± 0.02 IU/ml. The whole genome analysis depicted that strain MP1 consists of a circular chromosome that contained 4,580,223 bp with an average GC content of 73.9%. The genome comprises 23 contigs including 67 rRNA genes, three tRNA genes, a single tmRNA gene, and 4,046 protein-coding sequences. In support of the phenotypic identification, the 16S rRNA gene sequence, average nucleotide identity, and whole-genome-based taxonomic analysis demonstrated that the strain MP1 belongs to the species Cellulosimicrobium cellulans. A total of 30 genes related to the degradation of cellulases and hemicellulases were identified in the C. cellulans MP1 genome. Of note, the presence of sacC1-levB-sacC2-ls operon responsible for levan and levan-type fructooligosaccharides biosynthesis was detected in strain MP1 genome, but not with closely related C. cellulans strains, proving this strain to be a potential candidate for further studies. Endoglucanases, exoglucanases, and xylanase were achieved by using cheaply available agro-residues such as rice bran and sugar cane bagasse. The maximum levan production by C. cellulans MP1 was 14.8 ± 1.2 g/l after 20 h of cultivation in media containing 200 g/l sucrose. To the best of our knowledge, the present study is the first genome-based analysis of a Cellulosimicrobium species which focuses on lignocellulosic enzymes and levan biosynthesis, illustrating that the C. cellulans MP1 has a great potential to be an efficient platform for basic research and industrial exploitation.
Collapse
Affiliation(s)
- Nguyen Thi-Hanh Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tung Ngoc Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Xuan Thi-Thanh Dao
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam.,Vinh University, Vinh, Vietnam
| | - Ha Thanh Le
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Chi Phuong Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam, Hanoi, Vietnam
| | - Lam Tung Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Lam Tung Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam, Hanoi, Vietnam
| | | | - Ha Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam, Hanoi, Vietnam
| | - Ha Hoang Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
8
|
Paek J, Bai L, Shin Y, Kim H, Kook JK, Chang YH. Description of Paenibacillus dokdonensis sp. nov., a new bacterium isolated from soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 33595431 DOI: 10.1099/ijsem.0.004707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two strains isolated from soil samples were designated as YH-JAE5T and YH-JAE2. The isolates were facultative anaerobic, Gram-stain-variable, motile, rod-shaped bacteria. Phylogenetic analysis indicated that the isolates belonged to the genus Paenibacillus, but the 16S rRNA gene sequence similarities were <98 % when compared with other species within the genus. Analysis of rpoB gene revealed the isolates formed a sub-cluster with P. chibensis. The only menaquinone identified was MK-7. The two isolates contained meso-diaminopimelic acid within their cell wall peptidoglycan. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phospholipid, aminophospholipids, and lipids. The major fatty acids were C15 : 0 anteiso and C15 : 0 iso. The average nucleotide identity, average amino acid identity, and digital DNA-DNA hybridization values between isolate YH-JAE5T and the most closely related reference strain (Paenibacillus chibensis KCTC 3758T) were 81.7, 84.8 and 23.4 %, respectively. The G+C content of the genomic DNA was 47.4 mol%. Thus, the polyphasic data revealed that YH-JAE2 (=KCTC 43239=JCM 34435) and YH-JAE5T (=KCTC 43059=JCM 33533) represent a new species. The name Paenibacillus dokdonensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Jayoung Paek
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Lu Bai
- Industrial bio-Materials Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Biotechnology, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc., Daejeon, 305-500, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Belinky F, Ganguly I, Poliakov E, Yurchenko V, Rogozin IB. Analysis of Stop Codons within Prokaryotic Protein-Coding Genes Suggests Frequent Readthrough Events. Int J Mol Sci 2021; 22:ijms22041876. [PMID: 33672790 PMCID: PMC7918605 DOI: 10.3390/ijms22041876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons—where an intermediate step is a nonsense substitution—show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
Collapse
Affiliation(s)
- Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Ishan Ganguly
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: (V.Y.); (I.B.R.)
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
- Correspondence: (V.Y.); (I.B.R.)
| |
Collapse
|
10
|
Hwang J, Shin SC, Han JW, Hong SP, Min WK, Chung D, Kim HJ. Complete genome sequence of Paenibacillus xylanexedens PAMC 22703, a xylan-degrading bacterium. Mar Genomics 2020; 55:100788. [PMID: 32563695 DOI: 10.1016/j.margen.2020.100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
Paenibacillus is widely distributed in various environments and has the potential for use as a biotechnological agent in industrial processes. Here, we report the complete genome sequence of the marine bacterium, Paenibacillus xylanexedens PAMC 22703, which utilizes xylan. The P. xylanexedens PAMC 22703 strain was isolated from marine sediments. P. xylanexedens PAMC 22703 utilizes xylan as a carbon source to grow. The genome sequence clarified that this strain possesses genes for utilizing xylan. The complete genome sequence contained one chromosome (7,053,622 bp with 46.0% GC content) and one plasmid (44,617 bp with 44.1% C + G content). The genome harbored genes that fully deploy the xylan assimilation pathway. The complete genome sequence of P. xylanexedens PAMC 22703 would prove useful in acquiring information for its application with xylan in various industries.
Collapse
Affiliation(s)
- Junsang Hwang
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea
| | - Seung Chul Shin
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Jae Won Han
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea
| | - Sang Pil Hong
- Research Group of Traditional Food, Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Won-Ki Min
- Department of Food Science and Development, Kyungil University, Gyeongsan 38428, Republic of Korea
| | - Donghwa Chung
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Center for Food Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo Jin Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 1447, Republic of Korea; Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
11
|
Genome analysis of a wild rumen bacterium Enterobacter aerogenes LU2 - a novel bio-based succinic acid producer. Sci Rep 2020; 10:1986. [PMID: 32029880 PMCID: PMC7005296 DOI: 10.1038/s41598-020-58929-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/22/2020] [Indexed: 01/09/2023] Open
Abstract
Enterobacter aerogenes LU2 was isolated from cow rumen and recognized as a potential succinic acid producer in our previous study. Here, we present the first complete genome sequence of this new, wild strain and report its basic genetic features from a biotechnological perspective. The MinION single-molecule nanopore sequencer supported by the Illumina MiSeq platform yielded a circular 5,062,651 bp chromosome with a GC content of 55% that lacked plasmids. A total of 4,986 genes, including 4,741 protein-coding genes, 22 rRNA-, 86 tRNA-, and 10 ncRNA-encoding genes and 127 pseudogenes, were predicted. The genome features of the studied strain and other Enterobacteriaceae strains were compared. Functional studies on the genome content, metabolic pathways, growth, and carbon transport and utilization were performed. The genomic analysis indicates that succinic acid can be produced by the LU2 strain through the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. Antibiotic resistance genes were determined, and the potential for bacteriocin production was verified. Furthermore, one intact prophage region of length ~31,9 kb, 47 genomic islands (GIs) and many insertion sequences (ISs) as well as tandem repeats (TRs) were identified. No clustered regularly interspaced short palindromic repeats (CRISPRs) were found. Finally, comparative genome analysis with well-known succinic acid producers was conducted. The genome sequence illustrates that the LU2 strain has several desirable traits, which confirm its potential to be a highly efficient platform for the production of bulk chemicals.
Collapse
|
12
|
Eduardo-Correia B, Morales-Filloy H, Abad JP. Bacteria From the Multi-Contaminated Tinto River Estuary (SW, Spain) Show High Multi-Resistance to Antibiotics and Point to Paenibacillus spp. as Antibiotic-Resistance-Dissemination Players. Front Microbiol 2020; 10:3071. [PMID: 31998281 PMCID: PMC6965355 DOI: 10.3389/fmicb.2019.03071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Bacterial resistance to antibiotics is an ever-increasing phenomenon that, besides clinical settings, is generally assumed to be prevalent in environmental soils and waters. The analysis of bacteria resistant to each one of 11 antibiotics in waters and sediments of the Huelva’s estuary, a multi-contaminated environment, showed high levels of bacteria resistant mainly to Tm, among others. To further gain knowledge on the fate of multi-drug resistance (MDR) in environmental bacteria, 579 ampicillin-resistant bacteria were isolated tested for resistance to 10 antibiotics. 92.7% of the isolates were resistant to four or more antibiotic classes, indicating a high level of multi-resistance. 143 resistance profiles were found. The isolates with different MDR profiles and/or colony morphologies were phylogenetically ascribed based on 16S rDNA to phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, including 48 genera. Putative intrinsic resistance was detected in different phylogenetic groups including genera Altererythrobacter, Bacillus, Brevundimonas, Erythrobacter, Mesonia, Ochrobactrum, and Ponticaulis. Correlation of the presence of pairs of the non-intrinsic-resistances in phylogenetic groups based on the kappa index (κ) highlighted the co-habitation of some of the tested pairs at different phylogenetic levels. Maximum correlation (κ = 1.000) was found for pairs CzR/TcR in Betaproteobacteria, and CcR/TcR and EmR/SmR in Sphingobacteriia at the class level, while at the genus level, was found for CcR/TcR and NxR/TmR in Mesonia, CzR/TmR and EmR/KmR in Paenibacillus, and CcR/EmR and RpR/TcR in Pseudomonas. These results could suggest the existence of intra-class and intra-genus-transmissible genetic elements containing determinants for both members of each pair. Network analysis based on κ values higher than 0.4 indicated the sharing of paired resistances among several genera, many of them centered on the Paenibacillus node and raising the hypothesis of inter-genera transmission of resistances interconnected through members of this genus. This is the first time that a possible hotspot of resistance interchange in a particular environment may have been detected, opening up the possibility that one, or a few, bacterial members of the community could be important promoters of antibiotic resistance (AR) dissemination in this environment’s bacterial population. Further studies using the available isolates will likely give insights of the possible mechanisms and genetic elements involved.
Collapse
Affiliation(s)
- Benedito Eduardo-Correia
- Department of Molecular Biology, Faculty of Sciences-Biology Building, Universidad Autónoma de Madrid, Madrid, Spain
| | - Héctor Morales-Filloy
- Department of Molecular Biology, Faculty of Sciences-Biology Building, Universidad Autónoma de Madrid, Madrid, Spain
| | - José P Abad
- Department of Molecular Biology, Faculty of Sciences-Biology Building, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Paenibacillus lutrae sp. nov., A Chitinolytic Species Isolated from A River Otter in Castril Natural Park, Granada, Spain. Microorganisms 2019; 7:microorganisms7120637. [PMID: 31810255 PMCID: PMC6955709 DOI: 10.3390/microorganisms7120637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 11/16/2022] Open
Abstract
A highly chitinolytic facultative anaerobic, chemoheterotrophic, endospore-forming, Gram-stain-positive, rod-shaped bacterial strain N10T was isolated from the feces of a river otter in the Castril Natural Park (Granada, Spain). It is a slightly halophilic, motile, catalase-, oxidase-, ACC deaminase- and C4 and C8 lipase-positive strain. It is aerobic, respiratory and has a fermentative metabolism using oxygen as an electron acceptor, produces acids from glucose and can fix nitrogen. Phylogenetic analysis of the 16S rRNA gene sequence, multilocus sequence analysis (MLSA) of 16S rRNA, gyrB, recA and rpoB, as well as phylogenomic analyses indicate that strain N10T is a novel species of the genus Paenibacillus, with the highest 16S rRNA sequence similarity (95.4%) to P. chitinolyticus LMG 18047T and <95% similarity to other species of the genus Paenibacillus. Digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANIb) were 21.1% and <75%, respectively. Its major cellular fatty acids were anteiso-C15:0, C16:0, and iso-C15:0. G + C content ranged between 45%–50%. Using 16S rRNA phylogenetic and in silico phylogenomic analyses, together with chemotaxonomic and phenotypic data, we demonstrate that type strain N10T (= CECT 9541T =LMG 30535T) is a novel species of genus Paenibacillus and the name Paenibacillus lutrae sp. nov. is proposed.
Collapse
|