1
|
Saunders AAE, Thomson RE, Goodman CA, Anderson RL, Gregorevic P. Striated muscle: an inadequate soil for cancers. Cancer Metastasis Rev 2024; 43:1511-1527. [PMID: 38995522 PMCID: PMC11554797 DOI: 10.1007/s10555-024-10199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Many organs of the body are susceptible to cancer development. However, striated muscles-which include skeletal and cardiac muscles-are rarely the sites of primary cancers. Most deaths from cancer arise due to complications associated with the development of secondary metastatic tumours, for which there are few effective therapies. However, as with primary cancers, the establishment of metastatic tumours in striated muscle accounts for a disproportionately small fraction of secondary tumours, relative to the proportion of body composition. Examining why primary and metastatic cancers are comparatively rare in striated muscle presents an opportunity to better understand mechanisms that can influence cancer cell biology. To gain insights into the incidence and distribution of muscle metastases, this review presents a definitive summary of the 210 case studies of metastasis in muscle published since 2010. To examine why metastases rarely form in muscles, this review considers the mechanisms currently proposed to render muscle an inhospitable environment for cancers. The "seed and soil" hypothesis proposes that tissues' differences in susceptibility to metastatic colonization are due to differing host microenvironments that promote or suppress metastatic growth to varying degrees. As such, the "soil" within muscle may not be conducive to cancer growth. Gaining a greater understanding of the mechanisms that underpin the resistance of muscles to cancer may provide new insights into mechanisms of tumour growth and progression, and offer opportunities to leverage insights into the development of interventions with the potential to inhibit metastasis in susceptible tissues.
Collapse
Affiliation(s)
- Alastair A E Saunders
- Centre for Muscle Research, and Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rachel E Thomson
- Centre for Muscle Research, and Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Craig A Goodman
- Centre for Muscle Research, and Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robin L Anderson
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, and Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
- Department of Neurology, The University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
2
|
Hammoudeh SM, Ng Y, Wei BR, Madsen TD, Yadav MP, Simpson RM, Weigert R, Randazzo PA. Tongue orthotopic xenografts to study fusion-negative rhabdomyosarcoma invasion and metastasis in live animals. CELL REPORTS METHODS 2024; 4:100802. [PMID: 38964316 PMCID: PMC11294838 DOI: 10.1016/j.crmeth.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
PAX3/7 fusion-negative rhabdomyosarcoma (FN-RMS) is a childhood mesodermal lineage malignancy with a poor prognosis for metastatic or relapsed cases. Limited understanding of advanced FN-RMS is partially attributed to the absence of sequential invasion and dissemination events and the challenge in studying cell behavior, using, for example, non-invasive intravital microscopy (IVM), in currently used xenograft models. Here, we developed an orthotopic tongue xenograft model of FN-RMS to study cell behavior and the molecular basis of invasion and metastasis using IVM. FN-RMS cells are retained in the tongue and invade locally into muscle mysial spaces and vascular lumen, with evidence of hematogenous dissemination to the lungs and lymphatic dissemination to lymph nodes. Using IVM of tongue xenografts reveals shifts in cellular phenotype, migration to blood and lymphatic vessels, and lymphatic intravasation. Insight from this model into tumor invasion and metastasis at the tissue, cellular, and subcellular level can guide new therapeutic avenues for advanced FN-RMS.
Collapse
Affiliation(s)
- Sarah M Hammoudeh
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; CCR-Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Thomas D Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Copenhagen Center for Glycomics, University of Copenhagen, Department for Cellular and Molecular Medicine, Copenhagen, Denmark
| | - Mukesh P Yadav
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; CCR-Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
3
|
Hammoudeh SM, Ng Y, Wei BR, Madsen TD, Simpson RM, Weigert R, Randazzo PA. Fusion-negative rhabdomyosarcoma orthotopic tongue xenografts for study of invasion, intravasation and metastasis in live animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558858. [PMID: 38076999 PMCID: PMC10705524 DOI: 10.1101/2023.09.21.558858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
PAX3/7 Fusion-negative rhabdomyosarcoma (FN-RMS) is a childhood mesodermal lineage malignancy with a poor prognosis for metastatic or relapsed cases. Towards achieving a more complete understanding of advanced FN-RMS, we developed an orthotopic tongue xenograft model for studies of molecular basis of FN-RMS invasion and metastasis. The behavior of FN-RMS cells injected into murine tongue was examined using in vivo bioluminescence imaging, non-invasive intravital microscopy (IVM), and histopathology and compared to the prevailing hindlimb intramuscular and subcutaneous xenografts. FN-RMS cells were retained in the tongue and invaded locally into muscle mysial spaces and vascular lumen. While evidence of hematogenous dissemination to the lungs occurred in tongue and intramuscular xenografts, evidence of local invasion and lymphatic dissemination to lymph nodes only occurred in tongue xenografts. IVM and RNA-seq of tongue xenografts reveal shifts in cellular phenotype and differentiation state in tongue xenografts. IVM also shows homing to blood and lymphatic vessels, lymphatic intravasation, and dynamic membrane protrusions. Based on these findings, the tongue orthotopic xenograft of FN-RMS is a valuable model for tumor progression studies at the tissue, cellular and subcellular levels providing insight into kinetics and molecular bases of tumor invasion and metastasis and, hence, new therapeutic avenues for advanced FN-RMS.
Collapse
Affiliation(s)
- Sarah M Hammoudeh
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- CCR-Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Thomas D Madsen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Copenhagen Center for Glycomics, University of Copenhagen, Department for Cellular and Molecular Medicine; Copenhagen, Denmark
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- CCR-Intravital Microscopy Core, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Overexpression of aberrant Wnt5a and its effect on acquisition of malignant phenotypes in adult T-cell leukemia/lymphoma (ATL) cells. Sci Rep 2021; 11:4114. [PMID: 33603066 PMCID: PMC7892546 DOI: 10.1038/s41598-021-83613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Wnt5a is a ligand of the non-canonical Wnt signaling pathway involved in cell differentiation, motility, and inflammatory response. Adult T-cell leukemia/lymphoma (ATL) is one of the most aggressive T-cell malignancies caused by infection of human T-cell leukemia virus type1 (HTLV-1). Among subtypes of ATL, acute-type ATL cells are particularly resistant to current multidrug chemotherapies and show remarkably high cell-proliferative and invasive phenotypes. Here we show a dramatic increase of WNT5A gene expression in acute-type ATL cells compared with those of indolent-type ATL cells. Treatment with IWP-2 or Wnt5a-specific knockdown significantly suppressed cell growth of ATL-derived T-cell lines. We demonstrated that the overexpression of c-Myb and FoxM1 was responsible for the synergistic activation of the WNT5A promoter. Also, a WNT5A transcript variant without the exon4 (the ΔE4-WNT5A mRNA), encoding ΔC-Wnt5 (1-136aa of 380aa), is overexpressed in acute-type ATL cells. The ΔC-Wnt5a is secreted extracellularly and enhances cellular migration/invasion to a greater extent compared with wildtype (WT)-Wnt5a. Moreover, the ΔC-Wnt5a secretion was not suppressed by IWP-2, indicating that this mutant Wnt5a is secreted via a different pathway from the WT-Wnt5a. Taken together, synergistic overexpression of the ΔC-Wnt5a by c-Myb and FoxM1 may be responsible for the malignant phenotype of acute-type ATL cells.
Collapse
|
5
|
Page A, Fusil F, Cosset FL. Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction. Viruses 2020; 12:v12121427. [PMID: 33322556 PMCID: PMC7764518 DOI: 10.3390/v12121427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Lentiviral vectors are versatile tools for gene delivery purposes. While in the earlier versions of retroviral vectors, transgene expression was controlled by the long terminal repeats (LTRs), the latter generations of vectors, including those derived from lentiviruses, incorporate internal constitutive or regulated promoters in order to regulate transgene expression. This allows to temporally and/or quantitatively control transgene expression, which is required for many applications such as for clinical applications, when transgene expression is required in specific tissues and at a specific timing. Here we review the main systems that have been developed for transgene regulated expression following lentiviral gene transfer. First, the induction of gene expression can be triggered either by external or by internal cues. Indeed, these regulated vector systems may harbor promoters inducible by exogenous stimuli, such as small molecules (e.g., antibiotics) or temperature variations, offering the possibility to tune rapidly transgene expression in case of adverse events. Second, expression can be indirectly adjusted by playing on inserted sequence copies, for instance by gene excision. Finally, synthetic networks can be developed to sense specific endogenous signals and trigger defined responses after information processing. Regulatable lentiviral vectors (LV)-mediated transgene expression systems have been widely used in basic research to uncover gene functions or to temporally reprogram cells. Clinical applications are also under development to induce therapeutic molecule secretion or to implement safety switches. Such regulatable approaches are currently focusing much attention and will benefit from the development of other technologies in order to launch autonomously controlled systems.
Collapse
|
6
|
Caballero-Palacios MC, Villegas-Ruiz V, Ramírez-Chiquito JC, Medina-Vera I, Zapata-Tarres M, Mojica-Espinosa R, Cárdenas-Cardos R, Paredes-Aguilera R, Rivera-Luna R, Juárez-Méndez S. v-myb avian myeloblastosis viral oncogene homolog expression is a potential molecular diagnostic marker for B-cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol 2020; 17:60-67. [PMID: 32779388 DOI: 10.1111/ajco.13406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND B-cell acute lymphoblastic leukemia (B-ALL) is the most commonly diagnosed childhood malignancy worldwide and is especially common in Mexico. Additionally, the number of cases has increased in recent years. Thus, it is very important to develop molecular strategies to diagnose leukemia. The aim of this study was to investigate MYB expression and to determine its impact on the diagnosis of B-ALL. METHODS We analyzed the B-ALL gene expression profile by microarray data mining. Bioinformatics analysis was performed to identify the genes that are overexpressed in leukemia. We determined that MYB was highly expressed in leukemia. Then, we validated MYB expression in 70 patients with B-ALL and in 16 healthy controls (HCs) using qRT-PCR. The results were statistically analyzed using the Kolmogorov-Smirnov Z test, Mann-Whitney U test, receiver operating characteristic curves, and the Youden index. RESULTS The microarrays showed that MYB was overexpressed in B-ALL patients with a fold change of 57.8728 and a P value of 2.56-195 . MYB expression showed great variability among the patients analyzed. However, compared to the HCs, the B-ALL patients had a P value < .0001, an area under the curve of 0.813, and a Youden index of 1.46, indicating the statistical significance. CONCLUSION MYB expression in B-ALL cells could be a potential molecular marker for childhood leukemia.
Collapse
Affiliation(s)
| | - Vanessa Villegas-Ruiz
- Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Isabel Medina-Vera
- Research Methodology Department, National Institute of Pediatrics, Mexico City, Mexico
| | - Martha Zapata-Tarres
- Department of Pediatric Oncology, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Rocio Cárdenas-Cardos
- Department of Pediatric Oncology, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Roberto Rivera-Luna
- Division of Pediatric Hemato/Oncology, National Institute of Pediatrics, Mexico City, Mexico
| | - Sergio Juárez-Méndez
- Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics, Mexico City, Mexico
| |
Collapse
|
7
|
Marampon F, Di Nisio V, Pietrantoni I, Petragnano F, Fasciani I, Scicchitano BM, Ciccarelli C, Gravina GL, Festuccia C, Del Fattore A, Tombolini M, De Felice F, Musio D, Cecconi S, Tini P, Maddalo M, Codenotti S, Fanzani A, Polimeni A, Maggio R, Tombolini V. Pro-differentiating and radiosensitizing effects of inhibiting HDACs by PXD-101 (Belinostat) in in vitro and in vivo models of human rhabdomyosarcoma cell lines. Cancer Lett 2019; 461:90-101. [DOI: 10.1016/j.canlet.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 12/11/2022]
|