1
|
Abdillah AM, Lee JY, Lee YR, Yun JW. Modulatory roles of capsaicin on thermogenesis in C2C12 myoblasts and the skeletal muscle of mice. Chem Biol Interact 2025; 407:111380. [PMID: 39800145 DOI: 10.1016/j.cbi.2025.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice. We employed molecular dynamics (MD), quantitative real-time polymerase chain reactions (qRT-PCR), immunoblots, staining methods, and assay kits to investigate the role of capsaicin on thermogenesis and its modulatory roles on the transient receptor potential cation channel subfamily V member 1 (TRPV1) and α-/β-adrenergic receptors (ARs) using in vitro and in vivo models. Our findings demonstrate that capsaicin treatment in high-fat diet-induced obese mice reduces weight gain and elevates the expression of UCP- and ATP-dependent thermogenic effectors through ATP-consuming calcium and creatine futile cycles. In vitro and in vivo models capsaicin treatment elevated the expression of sarcoendoplasmic/endoplasmic reticulum calcium ATPases (SERCA-1 and -2), ryanodine receptors (RYR-1 and -2), uncoupling proteins (UCP-2 and -3), creatine kinase B (CKB), and creatine kinase mitochondrial 2 (CKMT2), through activation of TRPV1, α1-, β2-, and β3-AR as well as the suppressed expression of α2-AR. Furthermore, our results also indicate that capsaicin promotes myotube development and enhances lipid metabolism in C2C12 cells. We found that capsaicin increased intracellular Ca2+ levels and the expression of the voltage-dependent anion channel (VDAC) and mitochondrial calcium uniporter (MCU), suggesting that elevated mitochondrial Ca2+ levels boost the expression of oxidative phosphorylation protein complexes via the activation of the ATP-futile cycle. Mechanistic studies in C2C12 cells revealed that TRPV1 is likely dispensable for capsaicin-induced thermogenesis, and TRPV1 and α1-AR may synergistically induce thermogenesis. Collectively, our findings have uncovered a novel mechanism of UCP- and ATP-dependent thermogenesis and its associated pathways in both cellular and animal models which is crucial for designing therapeutic strategies to address obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Alfin Mohammad Abdillah
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jae Young Lee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Young Rok Lee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
2
|
Elowe CR, Stager M. Serca Uncoupling May Facilitate Cold Acclimation in Dark-Eyed Juncos (Junco hyemalis) without Regulation by Sarcolipin or Phospholamban. Integr Comp Biol 2024; 64:1836-1847. [PMID: 38650061 DOI: 10.1093/icb/icae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Homeothermic endotherms defend their body temperature in cold environments using a number of behavioral and physiological mechanisms. Maintaining a stable body temperature primarily requires heat production through shivering or non-shivering thermogenesis (NST). Although the use of NST is well established in mammalian systems, the mechanisms and extent to which NST is used in birds are poorly understood. In mammals, one well-characterized mechanism of NST is through uncoupling of Ca2+ transport from ATP hydrolysis by sarco/endoplasmic reticulum ATPase (SERCA) in the skeletal muscle, which generates heat and may contribute to Ca2+ signaling for fatigue resistance and mitochondrial biogenesis. Two small proteins-sarcolipin (SLN) and phospholamban (PLN)-are known to regulate SERCA in mammals, but recent work shows inconsistent responses of SLN to cold acclimation in birds. In this study, we measured SERCA uncoupling in the pectoralis flight muscle of control (18°C) and cold-acclimated (-8°C) dark-eyed juncos (Junco hyemalis) that exhibited suppressed SLN transcription in the cold. We measured SERCA activity and Ca2+ uptake rates for the first time in cold-acclimated birds and found greater SERCA uncoupling in the muscle of juncos in the cold. However, SERCA uncoupling was not related to SLN or PLN transcription or measures of mitochondrial biogenesis. Nonetheless, SERCA uncoupling reduced an individual's risk of hypothermia in the cold. Therefore, while SERCA uncoupling in the cold could be indicative of NST, it does not appear to be mediated by known regulatory proteins in these birds. These results prompt interesting questions about the significance of SLN and PLN in birds and the role of SERCA uncoupling in response to environmental conditions.
Collapse
Affiliation(s)
- Cory R Elowe
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
| | - Maria Stager
- Department of Biology, University of Massachusetts, 221 Morrill Science Center III, 611 North Pleasant Street, Amherst, MA 01003-9297, USA
| |
Collapse
|
3
|
Digranes N, Hoeberg E, Lervik A, Hubin A, Nordgreen J, Haga HA. Motor effects of fentanyl in isoflurane-anaesthetized pigs and the subsequent effect of ketanserin or naloxone. Vet Anaesth Analg 2024; 51:491-499. [PMID: 39142980 DOI: 10.1016/j.vaa.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE To examine the effect of ketanserin and naloxone on fentanyl-induced motor activity in isoflurane-anaesthetized pigs. STUDY DESIGN Randomized, blinded, prospective two-group study. ANIMALS A group of 12 crossbred pigs weighing 22-31 kg. METHODS Fentanyl was administered to isoflurane-anaesthetized pigs at 7.5 μg kg-1 hour-1 for 40 minutes intravenously, followed by an intravenous injection of naloxone 0.1 mg kg-1 or ketanserin 1 mg kg-1. Electromyography (EMG) and accelerometry were used to record motor unit activity and tremors, respectively. To test the effect of drug administration on motor activity, data from a 5 minute period at baseline, immediately before and after antagonist injection were compared in a mixed model; p < 0.05. RESULTS Results are reported with the median difference, 95% confidence intervals and corresponding p-values in brackets. Fentanyl significantly increased EMG activity [30.51 (1.84-81.02) μV, p = 0.004] and induced tremors [0.09 (0.02-0.18) m s-2, p < 0.001] in 10 of 12 pigs. Ketanserin significantly reduced EMG [32.22 (6.29-136.80) μV, p = 0.001] and tremor [0.10 (0.03-0.15) m s-2, p = 0.007] activity. No significant effect was found for naloxone on EMG [26.76 (-13.28-91.17) μV, p = 0.4] or tremors [0.08 (-0.01-0.19) m s-2, p = 0.08]. CONCLUSIONS AND CLINICAL RELEVANCE Fentanyl can induce motor activity in anaesthetized pigs, with a suggested link to the serotonergic system. This study shows that ketanserin can antagonize this activity, which supports the role of serotonin. This knowledge contributes to the general understanding of the motor effects of fentanyl and especially the problem of tremors in anaesthetized pigs.
Collapse
Affiliation(s)
- Nora Digranes
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Emma Hoeberg
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Aliaksandr Hubin
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Janicke Nordgreen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Henning A Haga
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
4
|
Liu W, Liao SS, Bao MH, Huo DL, Cao J, Zhao ZJ. Lactating striped hamsters (Cricetulus barabensis) do not decrease the thermogenic capacity to cope with extreme cold temperature. ZOOLOGY 2024; 166:126195. [PMID: 39128254 DOI: 10.1016/j.zool.2024.126195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
For small non-hibernating mammals, a high thermogenic capacity is important to increase activity levels in the cold. It has been previously reported that lactating females decrease their thermogenic activity of brown adipose tissue (BAT), whereas their capacity to cope with extreme cold remains uncertain. In this study we examined food intake, body temperature and locomotor behavior, resting metabolic rate, non-shivering thermogenesis, and cytochrome c oxidase activity, and the rate of state 4 respiration of liver, skeletal muscle, and BAT in striped hamsters (Cricetulus barabensis) at peak lactation and non- breeding hamsters (controls). The lactating hamsters and non- breeding controls were acutely exposed to -15°C, and several markers indicative of thermogenic capacity were examined. In comparison to non-breeding females, lactating hamsters significantly increased food intake and body temperature, but decreased locomotor behavior, and the BAT mass, indicative of decreased BAT thermogenesis at peak lactation. Unexpectedly, lactating hamsters showed similar body temperature, resting metabolic rate, non-shivering thermogenesis with non-breeding females after acute exposure to -15°C. Furthermore, cytochrome c oxidase activity of liver, skeletal muscle and BAT, and serum thyroid hormone concentration, and BAT uncoupling protein 1 expression, in lactating hamsters were similar with that in non-breeding hamsters after acute extreme cold exposure. This suggests that lactating females have the same thermogenic capacity to survive cold temperatures compared to non-breeding animals. This is particularly important for females in the field to cope with cold environments during the period of reproduction. Our findings indicate that the females during lactation, one of the highest energy requirement periods, do not impair their thermogenic capacity in response to acute cold exposure.
Collapse
Affiliation(s)
- Wei Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Sha-Sha Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Meng-Huan Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da-Liang Huo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
5
|
Cabanzo-Olarte LC, Cardoso Bícego K, Navas Iannini CA. Behavioral responses during sickness in amphibians and reptiles: Concepts, experimental design, and implications for field studies. J Therm Biol 2024; 123:103889. [PMID: 38897001 DOI: 10.1016/j.jtherbio.2024.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
In ectothermic vertebrates, behavioral fever, where an individual actively seeks warmer areas, seems to be a primary response to pathogens. This is considered a broad and evolutionarily conserved response among vertebrates. Recent population declines in amphibians are associated with an increase of infectious disease driven largely by climate change, habitat degradation, and pollution. Immediate action through research is required to better understand and inform conservation efforts. The literature available, does not provide unifying concepts that can guide adequate experimental protocols and interpretation of data, especially when studying animals in the field. The aim of this review is to promote common understanding of terminology and facilitating improved comprehension and application of key concepts about the occurrence of both sickness behavior or behavioral fever in ectothermic vertebrates. We start with a conceptual synthesis of sickness behavior and behavioral fever, with examples in different taxa. Through this discussion we present possible paths to standardize terminology, starting from original use in endothermic tetrapods which was expanded to ectothermic vertebrates, particularly amphibians and reptiles. This conceptual expansion from humans (endothermic vertebrates) and then to ectothermic counterparts, gravitates around the concept of 'normality'. Thus, following this discussion, we highlight caveats with experimental protocols and state the need of a reference value considered normal (RVCN), which is different from experimental control and make recommendations regarding experimental procedures and stress the value of detailed documentation of behavioral responses. We also propose some future directions that could enhance interaction among disciplines, emphasizing relationships at different levels of biological organization. This is crucial given the increasing convergence of fields such as thermal physiology, immunology, and animal behavior due to emerging diseases and other global crises impacting biodiversity.
Collapse
Affiliation(s)
- Laura Camila Cabanzo-Olarte
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Carlos Arturo Navas Iannini
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Gasch K, Hykollari A, Habe M, Haubensak P, Painer-Gigler J, Smith S, Stalder G, Arnold W. Summer fades, deer change: Photoperiodic control of cellular seasonal acclimatization of skeletal muscle. iScience 2024; 27:108619. [PMID: 38155774 PMCID: PMC10753075 DOI: 10.1016/j.isci.2023.108619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
We found major seasonal changes of polyunsaturated fatty acids (PUFAs) in muscular phospholipids (PL) in a large non-hibernating mammal, the red deer (Cervus elaphus). Dietary supply of essential linoleic acid (LA) and α-linolenic acid (ALA) had no, or only weak influence, respectively. We further found correlations of PL PUFA concentrations with the activity of key metabolic enzymes, independent of higher winter expression. Activity of the sarcoplasmic reticulum (SR) Ca++-ATPase increased with SR PL concentrations of n-6 PUFA, and of cytochrome c oxidase and citrate synthase, indicators of ATP-production, with concentrations of eicosapentaenoic acid in mitochondrial PL. All detected cyclic molecular changes were controlled by photoperiod and are likely of general relevance for mammals living in seasonal environments, including humans. During winter, these changes at the molecular level presumably compensate for Arrhenius effects in the colder peripheral body parts and thus enable a thrifty life at lower body temperature.
Collapse
Affiliation(s)
- Kristina Gasch
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Alba Hykollari
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Manuela Habe
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Patricia Haubensak
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Johanna Painer-Gigler
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| | - Walter Arnold
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Science, University of Veterinary Medicine Vienna, 1160 Vienna, Austria
| |
Collapse
|
7
|
Li W, Chen Y, Zhang Y, Zhao N, Zhang W, Shi M, Zhao Y, Cai C, Lu C, Gao P, Guo X, Li B, Kim SW, Yang Y, Cao G. Transcriptome Analysis Revealed Potential Genes of Skeletal Muscle Thermogenesis in Mashen Pigs and Large White Pigs under Cold Stress. Int J Mol Sci 2023; 24:15534. [PMID: 37958518 PMCID: PMC10650474 DOI: 10.3390/ijms242115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pigs are susceptible to cold stress due to the absence of brown fat caused by the partial deletion of uncoupling protein 1 during their evolution. Some local pig breeds in China exhibit potential cold adaptability, but research has primarily focused on fat and intestinal tissues. Skeletal muscle plays a key role in adaptive thermogenesis in mammals, yet the molecular mechanism of cold adaptation in porcine skeletal muscle remains poorly understood. This study investigated the cold adaptability of two pig breeds, Mashen pigs (MS) and Large White pigs (LW), in a four-day cold (4 °C) or normal temperature (25 °C) environment. We recorded phenotypic changes and collected blood and longissimus dorsi muscle for transcriptome sequencing. Finally, the PRSS8 gene was randomly selected for functional exploration in porcine skeletal muscle satellite cells. A decrease in body temperature and body weight in both LW and MS pigs under cold stress, accompanied by increased shivering frequency and respiratory frequency, were observed. However, the MS pigs demonstrated stable physiological homeostasis, indicating a certain level of cold adaptability. The LW pigs primarily responded to cold stress by regulating their heat production and glycolipid energy metabolism. The MS pigs exhibited a distinct response to cold stress, involving the regulation of heat production, energy metabolism pathways, and robust mitochondrial activity, as well as a stronger immune response. Furthermore, the functional exploration of PRSS8 in porcine skeletal muscle satellite cells revealed that it affected cellular energy metabolism and thermogenesis by regulating ERK phosphorylation. These findings shed light on the diverse transcriptional responses of skeletal muscle in LW and MS pigs under cold stress, offering valuable insights into the molecular mechanisms underlying cold adaptation in pigs.
Collapse
Affiliation(s)
- Wenxia Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yufen Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yunting Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Ning Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Mingyue Shi
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Sung-Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| |
Collapse
|
8
|
Pani P, Swalsingh G, Pani S, Senapati U, Sahu B, Pati B, Rout S, Bal NC. Seasonal cold induces divergent structural/biochemical adaptations in different skeletal muscles of Columba livia: evidence for nonshivering thermogenesis in adult birds. Biochem J 2023; 480:1397-1409. [PMID: 37622342 DOI: 10.1042/bcj20230245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
Birds are endothermic homeotherms even though they lack the well-studied heat producing brown adipose tissue (BAT), found in several clades of eutherian mammals. Earlier studies in ducklings have demonstrated that skeletal muscle is the primary organ of nonshivering thermogenesis (NST) plausibly via futile calcium (Ca2+)-handling through ryanodine receptor (RyR) and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). However, recruitment of futile Ca2+-cycling in adult avian skeletal muscle has not been documented. Studies in mammals show remarkable mitochondrial remodeling concurrently with muscle NST during cold. Here, we wanted to define the mitochondrial and biochemical changes in the muscles in free-ranging adult birds and whether different skeletal muscle groups undergo similar seasonal changes. We analyzed four different muscles (pectoralis, biceps, triceps and iliotibialis) from local pigeon (Columba livia) collected during summer and winter seasons in two consecutive years. Remarkable increase in mitochondrial capacity was observed as evidenced from succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activity staining in all the muscles. Interestingly, fibers with low SDH activity exhibited greater cross-sectional area during winter in all muscles except iliotibialis and became peripherally arranged in individual fascicles of pectoralis, which might indicate increased shivering. Furthermore, gene expression analysis showed that SERCA, sarcolipin and RyR are up-regulated to different levels in the muscles analyzed indicating muscle NST via futile Ca2+-cycling is recruited to varying degrees in winter. Moreover, proteins of mitochondrial-SR-tethering and biogenesis also showed differential alterations across the muscles. These data suggest that tropical winter (∼15°C) is sufficient to induce distinct remodeling across muscles in adult bird.
Collapse
Affiliation(s)
- Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | | | - Sunil Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Unmod Senapati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Benudhara Pati
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Subhasmita Rout
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
9
|
Laaß M, Kaestner A. Nasal turbinates of the dicynodont Kawingasaurus fossilis and the possible impact of the fossorial habitat on the evolution of endothermy. J Morphol 2023; 284:e21621. [PMID: 37585231 DOI: 10.1002/jmor.21621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The nasal region of the fossorial anomodont Kawingasaurus fossilis was virtually reconstructed from neutron-computed tomographic data and compared with the terrestrial species Pristerodon mackayi and other nonmammalian synapsids. The tomography of the Kawingasaurus skull reveals a pattern of maxillo-, naso-, fronto- and ethmoturbinal ridges that strongly resemble the mammalian condition. On both sides of the nasal cavity, remains of scrolled maxilloturbinals were preserved that were still partially articulated with maxilloturbinal ridges. Furthermore, possible remains of the lamina semicircularis as well as fronto- or ethmoturbinals were found. In Kawingasaurus, the maxilloturbinal ridges were longer and stronger than in Pristerodon. Except for the nasoturbinal ridges, no other ridges in the olfactory region and no remains of turbinates were recognized. This supports the hypothesis that naso-, fronto-, ethmo- and maxilloturbinals were a plesiomorphic feature of synapsids, but due to their cartilaginous nature in most taxa were, in almost all cases, not preserved. The well-developed maxilloturbinals in Kawingasaurus were probably an adaptation to hypoxia-induced hyperventilation in the fossorial habitat, maintaining the high oxygen demands of Kawingasaurus' large brain. The surface area of the respiratory turbinates in Kawingasaurus falls into the mammalian range, which suggests that they functioned as a countercurrent exchange system for thermoregulation and conditioning of the respiratory airflow. Our results suggest that the environmental conditions of the fossorial habitat led to specific sensory adaptations, accompanied by a pulse in brain evolution and of endothermy in cistecephalids, ~50 million years before the origin of endothermy in the mammalian stem line. This supports the Nocturnal Bottleneck Theory, in that we found evidence for a similar evolutionary scenario in cistecephalids as proposed for early mammals.
Collapse
Affiliation(s)
- Michael Laaß
- Fakultät für Geowissenschaften, Geotechnik und Bergbau, TU Bergakademie Freiberg, Freiberg, Germany
- FRM II and Physics E21, Technische Universität München, Garching, Germany
| | - Anders Kaestner
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
10
|
Mota-Rojas D, Braghieri A, Ghezzi M, Ceriani MC, Martínez-Burnes J, Lendez PA, Pereira AMF, Lezama-García K, Domínguez-Oliva A, Casas-Alvarado A, Sabia E, Pacelli C, Napolitano F. Strategies and Mechanisms of Thermal Compensation in Newborn Water Buffaloes. Animals (Basel) 2023; 13:2161. [PMID: 37443964 PMCID: PMC10340076 DOI: 10.3390/ani13132161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is one of the principal causes of perinatal mortality in water buffaloes and can range from 3% to 17.9%. In ruminants, factors affecting hypothermia in newborns may be of intrinsic (e.g., level of neurodevelopment, birth weight, vitality score, amount of brown fat, skin features) or extrinsic origin (e.g., maternal care, environmental conditions, colostrum consumption). When newborn buffaloes are exposed to cold stress, thermoregulatory mechanisms such as peripheral vasoconstriction and shivering and non-shivering thermogenesis are activated to prevent hypothermia. Due to the properties of infrared thermography (IRT), as a technique that detects vasomotor changes triggered by a reduction in body temperature, evaluating the central and peripheral regions in newborn buffaloes is possible. This review aims to analyze behavioral, physiological, and morphological strategies and colostrum consumption as thermal compensation mechanisms in newborn water buffalo to cope with environmental changes affecting thermoneutrality. In addition, the importance of monitoring by IRT to identify hypothermia states will be highlighted. Going deeper into these topics related to the water buffalo is essential because, in recent years, this species has become more popular and is being bred in more geographic areas.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Ada Braghieri
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Marcelo Ghezzi
- Animal Welfare Area, Faculty of Veterinary Sciences (FCV), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), University Campus, Tandil 7000, Argentina
| | - María Carolina Ceriani
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil 7000, Argentina
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Pamela Anahí Lendez
- Faculty of Veterinary Sciences, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Veterinary Research Center (CIVETAN), CONICET-CICPBA, Arroyo Seco S/N, Campus Universitario, Tandil 7000, Argentina
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Emilio Sabia
- School of Agricultural, Forest, Food, and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Corrado Pacelli
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|
11
|
Chen W, Xu Z, You W, Zhou Y, Wang L, Huang Y, Shan T. Cold exposure alters lipid metabolism of skeletal muscle through HIF-1α-induced mitophagy. BMC Biol 2023; 21:27. [PMID: 36750818 PMCID: PMC9906913 DOI: 10.1186/s12915-023-01514-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/12/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND In addition to its contractile properties and role in movement, skeletal muscle plays an important function in regulating whole-body glucose and lipid metabolism. A central component of such regulation is mitochondria, whose quality and function are essential in maintaining proper metabolic homeostasis, with defects in processes such as autophagy and mitophagy involved in mitochondria quality control impairing skeletal muscle mass and function, and potentially leading to a number of associated diseases. Cold exposure has been reported to markedly induce metabolic remodeling and enhance insulin sensitivity in the whole body by regulating mitochondrial biogenesis. However, changes in lipid metabolism and lipidomic profiles in skeletal muscle in response to cold exposure are unclear. Here, we generated lipidomic or transcriptome profiles of mouse skeletal muscle following cold induction, to dissect the molecular mechanisms regulating lipid metabolism upon acute cold treatment. RESULTS Our results indicated that short-term cold exposure (3 days) can lead to a significant increase in intramuscular fat deposition. Lipidomic analyses revealed that a cold challenge altered the overall lipid composition by increasing the content of triglyceride (TG), lysophosphatidylcholine (LPC), and lysophosphatidylethanolamine (LPE), while decreasing sphingomyelin (SM), validating lipid remodeling during the cold environment. In addition, RNA-seq and qPCR analysis showed that cold exposure promoted the expression of genes related to lipolysis and fatty acid biosynthesis. These marked changes in metabolic effects were associated with mitophagy and muscle signaling pathways, which were accompanied by increased TG deposition and impaired fatty acid oxidation. Mechanistically, HIF-1α signaling was highly activated in response to the cold challenge, which may contribute to intramuscular fat deposition and enhanced mitophagy in a cold environment. CONCLUSIONS Overall, our data revealed the adaptive changes of skeletal muscle associated with lipidomic and transcriptomic profiles upon cold exposure. We described the significant alterations in the composition of specific lipid species and expression of genes involved in glucose and fatty acid metabolism. Cold-mediated mitophagy may play a critical role in modulating lipid metabolism in skeletal muscle, which is precisely regulated by HIF-1α signaling.
Collapse
Affiliation(s)
- Wentao Chen
- grid.13402.340000 0004 1759 700XCollege of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, 866 Yuhangtang Road, Hangzhou, 310058 China ,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Ziye Xu
- grid.13402.340000 0004 1759 700XCollege of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, 866 Yuhangtang Road, Hangzhou, 310058 China ,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Wenjing You
- grid.13402.340000 0004 1759 700XCollege of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, 866 Yuhangtang Road, Hangzhou, 310058 China ,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Yanbing Zhou
- grid.13402.340000 0004 1759 700XCollege of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, 866 Yuhangtang Road, Hangzhou, 310058 China ,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Liyi Wang
- grid.13402.340000 0004 1759 700XCollege of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, 866 Yuhangtang Road, Hangzhou, 310058 China ,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Yuqin Huang
- grid.13402.340000 0004 1759 700XCollege of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, 866 Yuhangtang Road, Hangzhou, 310058 China ,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China. .,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, 866 Yuhangtang Road, Hangzhou, 310058, China. .,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, 866 Yuhangtang Road, Hangzhou, China.
| |
Collapse
|
12
|
Janovska P, Zouhar P, Bardova K, Otahal J, Vrbacky M, Mracek T, Adamcova K, Lenkova L, Funda J, Cajka T, Drahota Z, Stanic S, Rustan AC, Horakova O, Houstek J, Rossmeisl M, Kopecky J. Impairment of adrenergically-regulated thermogenesis in brown fat of obesity-resistant mice is compensated by non-shivering thermogenesis in skeletal muscle. Mol Metab 2023; 69:101683. [PMID: 36720306 PMCID: PMC9922683 DOI: 10.1016/j.molmet.2023.101683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) can be activated via the adrenergic system in response to cold or diet, contributing to both thermal and energy homeostasis. Other mechanisms, including metabolism of skeletal muscle, may also be involved in NST. However, relative contribution of these energy dissipating pathways and their adaptability remain a matter of long-standing controversy. METHODS We used warm-acclimated (30 °C) mice to characterize the effect of an up to 7-day cold acclimation (6 °C; CA) on thermoregulatory thermogenesis, comparing inbred mice with a genetic background conferring resistance (A/J) or susceptibility (C57BL/6 J) to obesity. RESULTS Both warm-acclimated C57BL/6 J and A/J mice exhibited similar cold endurance, assessed as a capability to maintain core body temperature during acute exposure to cold, which improved in response to CA, resulting in comparable cold endurance and similar induction of UCP1 protein in BAT of mice of both genotypes. Despite this, adrenergic NST in BAT was induced only in C57BL/6 J, not in A/J mice subjected to CA. Cold tolerance phenotype of A/J mice subjected to CA was not based on increased shivering, improved insulation, or changes in physical activity. On the contrary, lipidomic, proteomic and gene expression analyses along with palmitoyl carnitine oxidation and cytochrome c oxidase activity revealed induction of lipid oxidation exclusively in skeletal muscle of A/J mice subjected to CA. These changes appear to be related to skeletal muscle NST, mediated by sarcolipin-induced uncoupling of sarco(endo)plasmic reticulum calcium ATPase pump activity and accentuated by changes in mitochondrial respiratory chain supercomplexes assembly. CONCLUSIONS Our results suggest that NST in skeletal muscle could be adaptively augmented in the face of insufficient adrenergic NST in BAT, depending on the genetic background of the mice. It may provide both protection from cold and resistance to obesity, more effectively than BAT.
Collapse
Affiliation(s)
- Petra Janovska
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Petr Zouhar
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Kristina Bardova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jakub Otahal
- Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marek Vrbacky
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Tomas Mracek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Katerina Adamcova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Lucie Lenkova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jiri Funda
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Cajka
- Laboratory of Translational Metabolism and Laboratory of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Zdenek Drahota
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Sara Stanic
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic,Department of Physiology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44, Prague, Czech Republic
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Sem Sælands vei 3, 0371, Oslo, Norway
| | - Olga Horakova
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Josef Houstek
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Martin Rossmeisl
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
| | - Jan Kopecky
- Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
13
|
Mukherjee S, Choi M, Yun JW. Trans-anethole Induces Thermogenesis via Activating SERCA/SLN Axis in C2C12 Muscle Cells. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Diehl B, Oster M, Vernunft A, Wimmers K, Bostedt H. Intrinsic challenges of neonatal adaptation in swine. Arch Anim Breed 2022; 65:427-438. [PMID: 36531120 PMCID: PMC9752711 DOI: 10.5194/aab-65-427-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/20/2022] [Indexed: 09/10/2024] Open
Abstract
The losses of piglets in commercial pig farming remain at concerning levels and need to be addressed through the implementation of new sustainable breeding and management strategies. In fact, piglets are especially at risk in the first days of life. Both genetics and the farrowing process have been shown to impact piglet vitality. In addition, knowledge of the animal-intrinsic responses in adapting to extra-uterine life is particularly important but is scarcely described in the scientific literature. In this review, the three phases that constitute neonatal adaptation in the pig are systematically presented. The first phase of early adaptation involves primarily the development of cardiorespiratory function (within the first 10 min of life) as well as thermoregulatory processes and acid-base balance (up to 24 h of life). In the second phase, homeostasis is established, and organ maturation takes place (up to 14 d post natum). The final third phase aims at the development of neurological, immunological and muscular features (up to 28 d of life). The involvement of aggravating and ameliorating factors such as dystocia, low colostrum yield and heat supply is key to the development of strategies to reduce piglet losses and increase vitality. The insights are of particular value in addressing current concerns in pig farming and to further improve animal welfare in pig production across different management types.
Collapse
Affiliation(s)
- Benjamin Diehl
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University, 35392 Giessen, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Andreas Vernunft
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Hartwig Bostedt
- Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals with Veterinary Ambulance, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
15
|
Heemstra LA, Koch LG, Britton SL, Novak CM. Altered skeletal muscle sarco-endoplasmic reticulum Ca 2+-ATPase calcium transport efficiency after a thermogenic stimulus. Am J Physiol Regul Integr Comp Physiol 2022; 323:R628-R637. [PMID: 36094445 PMCID: PMC9602703 DOI: 10.1152/ajpregu.00173.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 01/22/2023]
Abstract
Exposure to predator threat induces a rapid and robust increase in skeletal muscle thermogenesis in rats. The central nervous system relays threat information to skeletal muscle through activation of the sympathetic nervous system, but muscle mechanisms mediating this thermogenesis remain unidentified. Given the relevance of sarcolipin-mediated futile calcium cycling through the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump to mammalian muscle nonshivering thermogenesis, we hypothesized that this plays a role in contextually induced muscle thermogenesis as well. This was assessed by measuring enzymatic activity of SERCA and sarcoplasmic reticulum Ca2+ transport, where the apparent coupling ratio (Ca2+ uptake rate divided by ATPase activity rate at a standard Ca2+ concentration) was predicted to decrease in association with muscle thermogenesis. Sprague-Dawley rats exposed to predator (ferret) odor (PO) showed a rapid decrease in the apparent coupling ratio in the soleus muscle, indicating SERCA uncoupling compared with control-odor-exposed rats. A rat model of high aerobic fitness and elevated muscle thermogenesis also demonstrated soleus muscle SERCA uncoupling relative to their obesity-prone, low-fitness counterparts. Both the high- and low-aerobic fitness rats showed soleus SERCA uncoupling with exposure to PO. Finally, no increase in sarcolipin expression in soleus muscle was detected with PO exposure. This dataset implicates muscle uncoupling of SERCA Ca2+ transport and ATP hydrolysis, likely through altered SERCA or sarcolipin function outside of translational regulation, as one contributor to the muscle thermogenesis provoked by exposure to predator threat. These data support the involvement of SERCA uncoupling in both muscle thermogenic induction and enhanced aerobic capacity.
Collapse
Affiliation(s)
- Lydia A Heemstra
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Colleen M Novak
- Department of Biological Sciences, Kent State University, Kent, Ohio
- School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
16
|
Zhang D, Ma S, Wang L, Ma H, Wang W, Xia J, Liu D. Min pig skeletal muscle response to cold stress. PLoS One 2022; 17:e0274184. [PMID: 36155652 PMCID: PMC9512212 DOI: 10.1371/journal.pone.0274184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
The increased sensitivity of pigs to ambient temperature is due to today's intensive farming. Frequent climate disasters increase the pressure on healthy pig farming. Min pigs are an indigenous pig breed in China with desirable cold resistance characteristics, and hence are ideal for obtaining cold-resistant pig breeds. Therefore, it is important to discover the molecular mechanisms that are activated in response to cold stress in the Min pig. Here, we conducted a transcriptomic analysis of the skeletal muscle of Min pigs under chronic low-temperature acclimation (group A) and acute short cold stress (group B). Cold exposure caused more genes to be upregulated. Totals of 125 and 96 differentially expressed genes (DEGs) were generated from groups A and B. Sixteen common upregulated DEGs were screened; these were concentrated in oxidative stress (SRXN1, MAFF), immune and inflammatory responses (ITPKC, AREG, MMP25, FOSL1), the nervous system (RETREG1, GADD45A, RCAN1), lipid metabolism (LRP11, LIPG, ITGA5, AMPD2), solute transport (SLC19A2, SLC28A1, SLCO4A1), and fertility (HBEGF). There were 102 and 73 genes that were specifically differentially expressed in groups A and B, respectively. The altered mRNAs were enriched in immune, endocrine, and cancer pathways. There were 186 and 91 differentially expressed lncRNAs generated from groups A and B. Analysis of the target genes suggested that they may be involved in regulating the MAPK signaling pathway for resistance to cold. The results of this study provide a comprehensive overview of cold exposure-induced transcriptional patterns in skeletal muscle of the Min pig. These results can guide future molecular studies of cold stress response in pigs for improving cold tolerance as a goal in breeding programs.
Collapse
Affiliation(s)
- Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
| | - Shouzheng Ma
- Department of Animal Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Liang Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
| | - Wentao Wang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
| | - Jiqao Xia
- Department of Animal Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, People’s Republic of China
- Department of Animal Science, Northeast Agricultural University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
17
|
Gagnon CM, Svardal H, Jasinska AJ, Danzy Cramer J, Freimer NB, Paul Grobler J, Turner TR, Schmitt CA. Evidence of selection in the uncoupling protein 1 gene region suggests local adaptation to solar irradiance in savannah monkeys ( Chlorocebus spp.). Proc Biol Sci 2022; 289:20221254. [PMID: 36100027 PMCID: PMC9470266 DOI: 10.1098/rspb.2022.1254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
In the last 300 thousand years, the genus Chlorocebus expanded from equatorial Africa into the southernmost latitudes of the continent, where colder climate was a probable driver of natural selection. We investigated population-level genetic variation in the mitochondrial uncoupling protein 1 (UCP1) gene region-implicated in non-shivering thermogenesis (NST)-in 73 wild savannah monkeys from three taxa representing this southern expansion (Chlorocebus pygerythrus hilgerti, Chlorocebus cynosuros and Chlorocebus pygerythrus pygerythrus) ranging from Kenya to South Africa. We found 17 single nucleotide polymorphisms with extended haplotype homozygosity consistent with positive selective sweeps, 10 of which show no significant linkage disequilibrium with each other. Phylogenetic generalized least-squares modelling with ecological covariates suggest that most derived allele frequencies are significantly associated with solar irradiance and winter precipitation, rather than overall low temperatures. This selection and association with irradiance is demonstrated by a relatively isolated population in the southern coastal belt of South Africa. We suggest that sunbathing behaviours common to savannah monkeys, in combination with the strength of solar irradiance, may mediate adaptations to thermal stress via NST among savannah monkeys. The variants we discovered all lie in non-coding regions, some with previously documented regulatory functions, calling for further validation and research.
Collapse
Affiliation(s)
| | - Hannes Svardal
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA 90095, USA
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Nelson B. Freimer
- Center for Neurobehavioral Genetics, University of California, Los Angeles, CA 90095, USA
| | - J. Paul Grobler
- Department of Genetics, University of the Free State, Bloemfontein, Free State 9301, South Africa
| | - Trudy R. Turner
- Department of Genetics, University of the Free State, Bloemfontein, Free State 9301, South Africa
- Department of Anthropology, University of Wisconsin, Milwaukee, Milwaukee, WI, 53201, USA
| | - Christopher A. Schmitt
- Department of Anthropology, Boston University, Boston, MA 02215, USA
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
18
|
Pani P, Bal NC. Avian adjustments to cold and non-shivering thermogenesis: whats, wheres and hows. Biol Rev Camb Philos Soc 2022; 97:2106-2126. [PMID: 35899483 DOI: 10.1111/brv.12885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
Avian cold adaptation is hallmarked by innovative strategies of both heat conservation and thermogenesis. While minimizing heat loss can reduce the thermogenic demands of body temperature maintenance, it cannot eliminate the requirement for thermogenesis. Shivering and non-shivering thermogenesis (NST) are the two synergistic mechanisms contributing to endothermy. Birds are of particular interest in studies of NST as they lack brown adipose tissue (BAT), the major organ of NST in mammals. Critical analysis of the existing literature on avian strategies of cold adaptation suggests that skeletal muscle is the principal site of NST. Despite recent progress, isolating the mechanisms involved in avian muscle NST has been difficult as shivering and NST co-exist with its primary locomotory function. Herein, we re-evaluate various proposed molecular bases of avian skeletal muscle NST. Experimental evidence suggests that sarco(endo)plasmic reticulum Ca2+ -ATPase (SERCA) and ryanodine receptor 1 (RyR1) are key in avian muscle NST, through their mediation of futile Ca2+ cycling and thermogenesis. More recent studies have shown that SERCA regulation by sarcolipin (SLN) facilitates muscle NST in mammals; however, its role in birds is unclear. Ca2+ signalling in the muscle seems to be common to contraction, shivering and NST, but elucidating its roles will require more precise measurement of local Ca2+ levels inside avian myofibres. The endocrine control of avian muscle NST is still poorly defined. A better understanding of the mechanistic details of avian muscle NST will provide insights into the roles of these processes in regulatory thermogenesis, which could further inform our understanding of the evolution of endothermy among vertebrates.
Collapse
Affiliation(s)
- Punyadhara Pani
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
19
|
Watts CA, Haupt A, Smith J, Welch E, Malik A, Giacomino R, Walter D, Mavundza N, Shemery A, Caldwell HK, Novak CM. Measuring Skeletal Muscle Thermogenesis in Mice and Rats. J Vis Exp 2022:10.3791/64264. [PMID: 35969093 PMCID: PMC9969793 DOI: 10.3791/64264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle thermogenesis provides a potential avenue for better understanding metabolic homeostasis and the mechanisms underlying energy expenditure. Surprisingly little evidence is available to link the neural, myocellular, and molecular mechanisms of thermogenesis directly to measurable changes in muscle temperature. This paper describes a method in which temperature transponders are utilized to retrieve direct measurements of mouse and rat skeletal muscle temperature. Remote transponders are surgically implanted within the muscle of mice and rats, and the animals are given time to recover. Mice and rats must then be repeatedly habituated to the testing environment and procedure. Changes in muscle temperature are measured in response to pharmacological or contextual stimuli in the home cage. Muscle temperature can also be measured during prescribed physical activity (i.e., treadmill walking at a constant speed) to factor out changes in activity as contributors to the changes in muscle temperature induced by these stimuli. This method has been successfully used to elucidate mechanisms underlying muscle thermogenic control at the level of the brain, sympathetic nervous system, and skeletal muscle. Provided are demonstrations of this success using predator odor (PO; ferret odor) as a contextual stimulus and injections of oxytocin (Oxt) as a pharmacological stimulus, where predator odor induces muscle thermogenesis, and Oxt suppresses muscle temperature. Thus, these datasets display the efficacy of this method in detecting rapid changes in muscle temperature.
Collapse
Affiliation(s)
| | - Alexandra Haupt
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Jordan Smith
- College of Public Health, Kent State University, Kent, OH, USA
| | - Emily Welch
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Aalia Malik
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Roman Giacomino
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Dinah Walter
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | | | - Ashley Shemery
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Heather K. Caldwell
- School of Biomedical Sciences, Kent State University, Kent, OH, USA,Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Colleen M. Novak
- School of Biomedical Sciences, Kent State University, Kent, OH, USA,Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
20
|
Grigg G, Nowack J, Bicudo JEPW, Bal NC, Woodward HN, Seymour RS. Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians. Biol Rev Camb Philos Soc 2022; 97:766-801. [PMID: 34894040 PMCID: PMC9300183 DOI: 10.1111/brv.12822] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The whole-body (tachymetabolic) endothermy seen in modern birds and mammals is long held to have evolved independently in each group, a reasonable assumption when it was believed that its earliest appearances in birds and mammals arose many millions of years apart. That assumption is consistent with current acceptance that the non-shivering thermogenesis (NST) component of regulatory body heat originates differently in each group: from skeletal muscle in birds and from brown adipose tissue (BAT) in mammals. However, BAT is absent in monotremes, marsupials, and many eutherians, all whole-body endotherms. Indeed, recent research implies that BAT-driven NST originated more recently and that the biochemical processes driving muscle NST in birds, many modern mammals and the ancestors of both may be similar, deriving from controlled 'slippage' of Ca2+ from the sarcoplasmic reticulum Ca2+ -ATPase (SERCA) in skeletal muscle, similar to a process seen in some fishes. This similarity prompted our realisation that the capacity for whole-body endothermy could even have pre-dated the divergence of Amniota into Synapsida and Sauropsida, leading us to hypothesise the homology of whole-body endothermy in birds and mammals, in contrast to the current assumption of their independent (convergent) evolution. To explore the extent of similarity between muscle NST in mammals and birds we undertook a detailed review of these processes and their control in each group. We found considerable but not complete similarity between them: in extant mammals the 'slippage' is controlled by the protein sarcolipin (SLN), in birds the SLN is slightly different structurally and its role in NST is not yet proved. However, considering the multi-millions of years since the separation of synapsids and diapsids, we consider that the similarity between NST production in birds and mammals is consistent with their whole-body endothermy being homologous. If so, we should expect to find evidence for it much earlier and more widespread among extinct amniotes than is currently recognised. Accordingly, we conducted an extensive survey of the palaeontological literature using established proxies. Fossil bone histology reveals evidence of sustained rapid growth rates indicating tachymetabolism. Large body size and erect stature indicate high systemic arterial blood pressures and four-chambered hearts, characteristic of tachymetabolism. Large nutrient foramina in long bones are indicative of high bone perfusion for rapid somatic growth and for repair of microfractures caused by intense locomotion. Obligate bipedality appeared early and only in whole-body endotherms. Isotopic profiles of fossil material indicate endothermic levels of body temperature. These proxies led us to compelling evidence for the widespread occurrence of whole-body endothermy among numerous extinct synapsids and sauropsids, and very early in each clade's family tree. These results are consistent with and support our hypothesis that tachymetabolic endothermy is plesiomorphic in Amniota. A hypothetical structure for the heart of the earliest endothermic amniotes is proposed. We conclude that there is strong evidence for whole-body endothermy being ancient and widespread among amniotes and that the similarity of biochemical processes driving muscle NST in extant birds and mammals strengthens the case for its plesiomorphy.
Collapse
Affiliation(s)
- Gordon Grigg
- School of Biological SciencesUniversity of QueenslandBrisbaneQLD4072Australia
| | - Julia Nowack
- School of Biological and Environmental SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFU.K.
| | | | | | - Holly N. Woodward
- Oklahoma State University Center for Health SciencesTulsaOK74107U.S.A.
| | - Roger S. Seymour
- School of Biological SciencesUniversity of AdelaideAdelaideSA5005Australia
| |
Collapse
|
21
|
Atypical for northern ungulates, energy metabolism is lowest during summer in female wild boars (Sus scrofa). Sci Rep 2021; 11:18310. [PMID: 34526603 PMCID: PMC8443605 DOI: 10.1038/s41598-021-97825-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
Typically, large ungulates show a single seasonal peak of heart rate, a proxy of energy expenditure, in early summer. Different to other large ungulates, wild boar females had peak heart rates early in the year (at ~ April, 1), which likely indicates high costs of reproduction. This peak was followed by a trough over summer and a secondary summit in autumn/early winter, which coincided with the mast seeding of oak trees and the mating season. Wild boars counteracted the effects of cold temperatures by decreasing subcutaneous body temperature by peripheral vasoconstriction. They also passively gained solar radiation energy by basking in the sun. However, the shape of the seasonal rhythm in HR indicates that it was apparently not primarily caused by thermoregulatory costs but by the costs of reproduction. Wild boar farrow early in the year, visible in high HRs and sudden changes in intraperitoneal body temperature of females. Arguably, a prerequisite for this early reproduction as well as for high energy metabolism over winter is the broad variety of food consumed by this species, i.e., the omnivorous lifestyle. Extremely warm and dry summers, as experienced during the study years (2017, 2018), may increasingly become a bottleneck for food intake of wild boar.
Collapse
|
22
|
Bal NC, Gupta SC, Pant M, Sopariwala DH, Gonzalez-Escobedo G, Turner J, Gunn JS, Pierson CR, Harper SQ, Rafael-Fortney JA, Periasamy M. Is Upregulation of Sarcolipin Beneficial or Detrimental to Muscle Function? Front Physiol 2021; 12:633058. [PMID: 33732165 PMCID: PMC7956958 DOI: 10.3389/fphys.2021.633058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 11/25/2022] Open
Abstract
Sarcolipin (SLN) is a regulator of sarco/endo plasmic reticulum Ca2+-ATPase (SERCA) pump and has been shown to be involved in muscle nonshivering thermogenesis (NST) and energy metabolism. Interestingly, SLN expression is significantly upregulated both during muscle development and in several disease states. However, the significance of altered SLN expression in muscle patho-physiology is not completely understood. We have previously shown that transgenic over-expression of SLN in skeletal muscle is not detrimental, and can promote oxidative metabolism and exercise capacity. In contrast, some studies have suggested that SLN upregulation in disease states is deleterious for muscle function and ablation of SLN can be beneficial. In this perspective article, we critically examine both published and some new data to determine the relevance of SLN expression to disease pathology. The new data presented in this paper show that SLN levels are induced in muscle during systemic bacterial (Salmonella) infection or lipopolysaccharides (LPS) treatment. We also present data showing that SLN expression is significantly upregulated in different types of muscular dystrophies including myotubular myopathy. These data taken together reveal that upregulation of SLN expression in muscle disease is progressive and increases with severity. Therefore, we suggest that increased SLN expression should not be viewed as the cause of the disease; rather, it is a compensatory response to meet the higher energy demand of the muscle. We interpret that higher SLN/SERCA ratio positively modulate cytosolic Ca2+ signaling pathways to promote mitochondrial biogenesis and oxidative metabolism to meet higher energy demand in muscle.
Collapse
Affiliation(s)
- Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Subash C Gupta
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Meghna Pant
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Danesh H Sopariwala
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Geoffrey Gonzalez-Escobedo
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Joanne Turner
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - John S Gunn
- Departments of Microbiology and Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pathology, The Ohio State University, Columbus, OH, United States.,Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, OH, United States
| | - Scott Q Harper
- Department of Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
23
|
Fyda TJ, Spencer C, Jastroch M, Gaudry MJ. Disruption of thermogenic UCP1 predated the divergence of pigs and peccaries. J Exp Biol 2020; 223:jeb223974. [PMID: 32620708 DOI: 10.1242/jeb.223974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022]
Abstract
Uncoupling protein 1 (UCP1) governs non-shivering thermogenesis in brown adipose tissue. It has been estimated that pigs lost UCP1 ∼20 million years ago (MYA), dictating cold intolerance among piglets. Our current understanding of the root causes of UCP1 loss are, however, incomplete. Thus, examination of additional species can shed light on these fundamental evolutionary questions. Here, we investigated UCP1 in the Chacoan peccary (Catagonus wagneri), a member of the Tayassuid lineage that diverged from pigs during the late Eocene-mid Oligocene. Exons 1 and 2 have been deleted in peccary UCP1 and the remaining exons display additional inactivating mutations. A common nonsense mutation in exon 6 revealed that UCP1 was pseudogenized in a shared ancestor of pigs and peccaries. Our selection pressure analyses indicate that the inactivation occurred 36.2-44.3 MYA during the mid-late Eocene, which is much earlier than previously thought. Importantly, pseudogenized UCP1 provides the molecular rationale for cold sensitivity and current tropical biogeography of extant peccaries.
Collapse
Affiliation(s)
- Thomas Jacob Fyda
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Connor Spencer
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Michael J Gaudry
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
How climate change and wildlife management affect population structure in wild boars. Sci Rep 2020; 10:7298. [PMID: 32350377 PMCID: PMC7190818 DOI: 10.1038/s41598-020-64216-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/08/2020] [Indexed: 11/08/2022] Open
Abstract
Global climate change affects many species and contributes to the exceptional population growth of wild boar populations and thus to increasing human-wildlife conflicts. To investigate the impact of climate change on wild boar populations we extended existing models on population dynamics. We included for the first time different juvenile conditions to account for long-lasting effects of juvenile body mass on adult body mass and reproductive success. Our analysis shows that incorporating phenotypes, like body mass differences within age classes, has strong effects on projected population growth rates, population structures and the relative importance of certain vital rates. Our models indicated that an increase in winter temperatures and food availability will cause a decrease in mean body mass and litter size within Central European wild boar populations. We further analysed different hunting regimes to identify their effects on the population structure as well as their efficiency in limiting population growth. While targeting juveniles had the lowest effect on population structure, such strategies are, however, rather ineffective. In contrast, culling predominantly yearlings seems very effective. Despite being equally effective, only focusing on adults will not result in a reduction of population size due to their low proportion within populations.
Collapse
|
25
|
Bal NC, Periasamy M. Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190135. [PMID: 31928193 DOI: 10.1098/rstb.2019.0135] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thermogenesis in endotherms relies on both shivering and non-shivering thermogenesis (NST). The role of brown adipose tissue (BAT) in NST is well recognized, but the role of muscle-based NST has been contested. However, recent studies have provided substantial evidence for the importance of muscle-based NST in mammals. This review focuses primarily on the role of sarcoplasmic reticulum (SR) Ca2+-cycling in muscle NST; specifically, it will discuss recent data showing how uncoupling of sarcoendoplasmic reticulum calcium ATPase (SERCA) (inhibition of Ca2+ transport but not ATP hydrolysis) by sarcolipin (SLN) results in futile SERCA pump activity, increased ATP hydrolysis and heat production contributing to muscle NST. It will also critically examine how activation of muscle NST can be an important factor in regulating metabolic rate and whole-body energy homeostasis. In this regard, SLN has emerged as a powerful signalling molecule to promote mitochondrial biogenesis and oxidative metabolism in muscle. Furthermore, we will discuss the functional interplay between BAT and muscle, especially with respect to how reduced BAT function in mammals could be compensated by muscle-based NST. Based on the existing data, we argue that SLN-mediated thermogenesis is an integral part of muscle NST and that muscle NST potentially contributed to the evolution of endothermy within the vertebrate clade. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Naresh C Bal
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751021, India
| | - Muthu Periasamy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|