1
|
N'Guessan R, Camara S, Rowland M, Ahoua Alou LP, Wolie RZ, Zoh MG, N'Guessan B, Tia IZ, Oumbouke WA, Thomas MB, Koffi AA. Attractive targeted sugar bait: the pyrrole insecticide chlorfenapyr and the anti-malarial pharmaceutical artemether-lumefantrine arrest Plasmodium falciparum development inside wild pyrethroid-resistant Anopheles gambiae s.s. mosquitoes. Malar J 2023; 22:344. [PMID: 37946208 PMCID: PMC10636997 DOI: 10.1186/s12936-023-04758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Attractive targeted sugar bait (ATSB) is a novel approach to vector control, offering an alternative mode of insecticide delivery via the insect alimentary canal, with potential to deliver a variety of compounds new to medical entomology and malaria control. Its potential to control mosquitoes was recently demonstrated in major field trials in Africa. The pyrrole chlorfenapyr is an insecticide new to malaria vector control, and through its unique mode of action-disruption of ATP mediated energy transfer in mitochondria-it may have direct action on energy transfer in the flight muscle cells of mosquitoes. It may also have potential to disrupt mitochondrial function in malarial parasites co-existing within the infected mosquito. However, little is known about the impact of such compounds on vector competence in mosquitoes responsible for malaria transmission. METHODS In this study, ATSBs containing chlorfenapyr insecticide and, as a positive control, the anti-malarial drugs artemether/lumefantrine (A/L) were compared for their effect on Plasmodium falciparum development in wild pyrethroid-resistant Anopheles gambiae sensu stricto (s.s.) and for their capacity to reduce vector competence. Female mosquitoes were exposed to ATSB containing either sublethal dose of chlorfenapyr (CFP: 0.025%) or concentrations of A/L ranging from 0.4/2.4 mg/ml to 2.4/14.4 mg/ml, either shortly before or after taking infective blood meals. The impact of their component compounds on the prevalence and intensity of P. falciparum infection were compared between treatments. RESULTS Both the prevalence and intensity of infection were significantly reduced in mosquitoes exposed to either A/L or chlorfenapyr, compared to unexposed negative control mosquitoes. The A/L dose (2.4/14.4 mg/ml) totally erased P. falciparum parasites: 0% prevalence of infection in female mosquitoes exposed compared to 62% of infection in negative controls (df = 1, χ2 = 31.23 p < 0.001). The dose of chlorfenapyr (0.025%) that killed < 20% females in ATSB showed a reduction in oocyte density of 95% per midgut (0.18/3.43 per midgut). CONCLUSION These results are evidence that chlorfenapyr, in addition to its direct killing effect on the vector, has the capacity to block Plasmodium transmission by interfering with oocyte development inside pyrethroid-resistant mosquitoes, and through this dual action may potentiate its impact under field conditions.
Collapse
Affiliation(s)
- Raphael N'Guessan
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire. Raphael.N'
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire. Raphael.N'
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK. Raphael.N'
| | - Soromane Camara
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire.
| | - Mark Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Rosine Z Wolie
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Université Nangui Abrogoua, UFR Des Sciences de la Nature, Abidjan, Côte d'Ivoire
| | - Marius G Zoh
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Brou N'Guessan
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Innocent Z Tia
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| | - Welbeck A Oumbouke
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
- Innovative Vector Control Consortium, IVCC, Liverpool, UK
| | - Matthew B Thomas
- Department of Entomology & Nematology, The University of Florida, Gainesville, FL, USA
| | - Alphonsine A Koffi
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
- Vector Control Product Evaluation Centre (VCPEC)-Institut Pierre Richet (VCPEC-IPR)/INSP, Bouaké, Côte d'Ivoire
| |
Collapse
|
2
|
Joseph Matiya D, Philbert AB, Kidima WB, Matowo JJ. The Effect of Plasmodium falciparum (Welch) (Haemospororida: Plasmodiidae) Infection on the Susceptibility of Anopheles gambiae s.l. and Anopheles funestus (Diptera: Culicidae) to Pyrethroid Insecticides in the North-Western and South-Eastern, Tanzania. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:112-121. [PMID: 36287642 DOI: 10.1093/jme/tjac163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 06/16/2023]
Abstract
The rapid development of insecticide resistance in malaria vectors threatens insecticide-based interventions. It is hypothesized that infection of insecticide-resistant vectors with Plasmodium parasites increases their vulnerability to insecticides, thus assuring the effectiveness of insecticide-based strategies for malaria control. Nonetheless, there is limited field data to support this. We investigated the effect of the Plasmodium falciparum infection on the susceptibility of Anopheles gambiae s.l. and Anopheles funestus to pyrethroids in south-eastern (Kilombero) and north-western (Muleba), Tanzania. The wild-collected mosquitoes were tested against 0.05% deltamethrin and 0.75% permethrin, then assessed for sporozoite rate and resistant gene (kdr) mutations. All Anopheles gambiae s.l. from Kilombero were An. arabiensis (Patton, 1905) while those from Muleba were 87% An. gambiae s.s (Giles, 1902) and 13% An. Arabiensis. High levels of pyrethroid resistance were observed in both areas studied. The kdr mutation was only detected in An. gambiae s.s. at the frequency of 100% in survivors and 97% in dead mosquitoes. The P. falciparum sporozoite rates were slightly higher in susceptible than in resistant mosquitoes. In Muleba, sporozoite rates in An. gambiae s.l. were 8.1% and 6.4% in dead mosquitoes and survivors, respectively (SRR = 1.28, p = 0.19). The sporozoite rates in Kilombero were 1.3% and 0.7% in the dead and survived mosquitoes, respectively (sporozoite rate ratio (SRR) = 1.9, p = 0.33). In An. funestus group sporozoite rates were 6.2% and 4.4% in dead and survived mosquitoes, respectively (SRR = 1.4, p = 0.54). These findings indicate that insecticides might still be effective in malaria control despite the rapid development of insecticide resistance in malaria vectors.
Collapse
Affiliation(s)
- Deokary Joseph Matiya
- Dar es Salaam University College of Education (DUCE), PO Box 2329, Dar es Salaam, Tanzania
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Anitha B Philbert
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Winifrida B Kidima
- University of Dar es Salaam (UDSM), PO Box 35064, Dar es Salaam, Tanzania
| | - Johnson J Matowo
- Kilimanjaro Christian Medical University College (KCMUCo), PO Box 2240, Moshi, Tanzania
| |
Collapse
|
3
|
Tainchum K, Bangs MJ, Sathantriphop S, Chareonviriyaphap T. Effect of Different Wall Surface Coverage With Deltamethrin-Treated Netting on the Reduction of Indoor-Biting Anopheles Mosquitoes (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2299-2307. [PMID: 34114017 DOI: 10.1093/jme/tjab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Indoor residual spray with deltamethrin remains the most common tool for reducing malaria transmission in Thailand. Deltamethrin is commonly used to spray the entire inner surfaces of the walls to prevent mosquitoes from resting. This study compared the mosquito landing responses on humans inside three experimental huts treated with deltamethrin at three different extents of wall coverage (25%, 50%, and full coverage), with one clean/untreated hut serving as a control. There were no significant differences between the numbers of Anopheles mosquitoes landing in the 50% and full coverage huts, whereas, in comparison to both of these, there was a significantly greater number landing in the 25% coverage hut. This study demonstrates that varying the percent coverage of indoor surfaces with deltamethrin-treated netting influences the blood-feeding success of wild Anopheles, and our findings suggest that it may be possible to reduce the extent of insecticide surface treatment while maintaining equivalent mosquito avoidance action to that seen in fully treated structures.
Collapse
Affiliation(s)
- Krajana Tainchum
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- Agricultural Innovation and Management Division, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Public Health & Malaria Control Department, PT. Freeport Indonesia, International SOS, Kuala Kencana, Papua, Indonesia
| | - Sunaiyana Sathantriphop
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Theeraphap Chareonviriyaphap
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
4
|
Perrier S, Moreau E, Deshayes C, El-Adouzi M, Goven D, Chandre F, Lapied B. Compensatory mechanisms in resistant Anopheles gambiae AcerKis and KdrKis neurons modulate insecticide-based mosquito control. Commun Biol 2021; 4:665. [PMID: 34079061 PMCID: PMC8172894 DOI: 10.1038/s42003-021-02192-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023] Open
Abstract
In the malaria vector Anopheles gambiae, two point mutations in the acetylcholinesterase (ace-1R) and the sodium channel (kdrR) genes confer resistance to organophosphate/carbamate and pyrethroid insecticides, respectively. The mechanisms of compensation that recover the functional alterations associated with these mutations and their role in the modulation of insecticide efficacy are unknown. Using multidisciplinary approaches adapted to neurons isolated from resistant Anopheles gambiae AcerKis and KdrKis strains together with larval bioassays, we demonstrate that nAChRs, and the intracellular calcium concentration represent the key components of an adaptation strategy ensuring neuronal functions maintenance. In AcerKis neurons, the increased effect of acetylcholine related to the reduced acetylcholinesterase activity is compensated by expressing higher density of nAChRs permeable to calcium. In KdrKis neurons, changes in the biophysical properties of the L1014F mutant sodium channel, leading to enhance overlap between activation and inactivation relationships, diminish the resting membrane potential and reduce the fraction of calcium channels available involved in acetylcholine release. Together with the lower intracellular basal calcium concentration observed, these factors increase nAChRs sensitivity to maintain the effect of low concentration of acetylcholine. These results explain the opposite effects of the insecticide clothianidin observed in AcerKis and KdrKis neurons in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrice Chandre
- MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, 911 avenue Agropolis, Montpellier, Cedex 05, France
| | - Bruno Lapied
- Univ Angers, INRAE, SIFCIR, SFR QUASAV, Angers, France.
| |
Collapse
|
5
|
Meza FC, Roberts JM, Sobhy IS, Okumu FO, Tripet F, Bruce TJA. Behavioural and Electrophysiological Responses of Female Anopheles gambiae Mosquitoes to Volatiles from a Mango Bait. J Chem Ecol 2020; 46:387-396. [PMID: 32274623 PMCID: PMC7205772 DOI: 10.1007/s10886-020-01172-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/09/2020] [Accepted: 03/16/2020] [Indexed: 01/03/2023]
Abstract
Attractive Toxic Sugar Baits (ATSB) are used in a “lure-and-kill” approach for management of the malaria vector Anopheles gambiae, but the active chemicals were previously unknown. Here we collected volatiles from a mango, Mangifera indica, juice bait which is used in ATSBs in Tanzania and tested mosquito responses. In a Y-tube olfactometer, female mosquitoes were attracted to the mango volatiles collected 24–48 h, 48–72 h and 72–96 h after preparing the bait but volatiles collected at 96–120 h were no longer attractive. Volatile analysis revealed emission of 23 compounds in different chemical classes including alcohols, aldehydes, alkanes, benzenoids, monoterpenes, sesquiterpenes and oxygenated terpenes. Coupled GC-electroantennogram (GC-EAG) recordings from the antennae of An. gambiae showed robust responses to 4 compounds: humulene, (E)-caryophyllene, terpinolene and myrcene. In olfactometer bioassays, mosquitoes were attracted to humulene and terpinolene. (E)-caryophyllene was marginally attractive while myrcene elicited an avoidance response with female mosquitoes. A blend of humulene, (E)-caryophyllene and terpinolene was highly attractive to females (P < 0.001) when tested against a solvent blank. Furthermore, there was no preference when this synthetic blend was offered as a choice against the natural sample. Our study has identified the key compounds from mango juice baits that attract An. gambiae and this information may help to improve the ATSBs currently used against malaria vectors.
Collapse
Affiliation(s)
- Felician C Meza
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Of Mlabani Passage, P.O. Box 53, Ifakara, Tanzania
| | - Joe M Roberts
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Centre for Integrated Pest Management, Department of Crop and Environment Sciences, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Islam S Sobhy
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
- Department of Plant Protection, Faculty of Agriculture, Suez Canal university, 41522, Ismailia, Egypt
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Of Mlabani Passage, P.O. Box 53, Ifakara, Tanzania
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Toby J A Bruce
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
6
|
Lajeunesse MJ, Avello DA, Behrmann MS, Buschbacher TJ, Carey K, Carroll J, Chafin TJ, Elkott F, Faust AM, Fauver H, Figueroa GD, Flaig LL, Gauta SA, Gonzalez C, Graham RM, Hamdan K, Hanlon T, Hashami SN, Huynh D, Knaffl JL, Lanzas M, Libell NM, McCabe C, Metzger J, Mitchell I, Morales MA, Nayyar YR, Perkins A, Phan TA, Pidgeon NT, Ritter CL, Rosales VC, Santiago O, Stephens R, Taylor EJ, Thomas AJ, Yanez NE. Infected Mosquitoes Have Altered Behavior to Repellents: A Systematic Review and Meta-analysis. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:542-550. [PMID: 31755530 DOI: 10.1093/jme/tjz209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Here we conducted a systematic review and meta-analysis to reach a consensus on whether infected and uninfected mosquitoes respond differently to repellents. After screening 2,316 published studies, theses, and conference abstracts, we identified 18 studies that tested whether infection status modulated the effectiveness of repellents. Thirteen of these studies had outcomes available for meta-analysis, and overall, seven repellents were tested (typically DEET with 62% of outcomes), six mosquito species had repellence behaviors measured (typically Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes with 71% of outcomes), and a broad diversity of infections were tested including Sindbis virus (Togaviridae: Alphavirus) (33% of outcomes), Dengue (Flaviviridae: Flavivirus) (31%), malaria (Plasmodium berghei Vincke & Lips (Haemospororida: Plasmodiidae) or P. falciparum Welch (Haemospororida: Plasmodiidae); 25%), Zika (Flaviviridae: Flavivirus) (7%), and microsporidia (4%). Pooling all outcomes with meta-analysis, we found that repellents were less effective against infected mosquitoes-marking an average 62% reduction in protective efficacy relative to uninfected mosquitoes (pooled odds ratio = 0.38, 95% confidence interval = 0.22-0.66; k = 96). Older infected mosquitoes were also more likely to show altered responses and loss of sensitivity to repellents, emphasizing the challenge of distinguishing between age or incubation period effects. Plasmodium- or Dengue-infected mosquitoes also did not show altered responses to repellents; however, Dengue-mosquito systems used inoculation practices that can introduce variability in repellency responses. Given our findings that repellents offer less protection against infected mosquitoes and that these vectors are the most dangerous in terms of disease transmission, then trials on repellent effectiveness should incorporate infected mosquitoes to improve predictability in blocking vector-human contact.
Collapse
Affiliation(s)
- Marc J Lajeunesse
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Daniel A Avello
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Morgan S Behrmann
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | | | - Kayla Carey
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Jordyn Carroll
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Timothy J Chafin
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Fatima Elkott
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Ami M Faust
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Hope Fauver
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | | | - Louisa L Flaig
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Sarah A Gauta
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Cristian Gonzalez
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Rowan M Graham
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Khalid Hamdan
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Thomas Hanlon
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Syad N Hashami
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Dora Huynh
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Jessica L Knaffl
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Milton Lanzas
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Nicole M Libell
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Casey McCabe
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Jamie Metzger
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Isabella Mitchell
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Marisol A Morales
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Yogi R Nayyar
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Aaron Perkins
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Tam-Anh Phan
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Nicholas T Pidgeon
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Camryn L Ritter
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Veronica C Rosales
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Olivia Santiago
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Rebecca Stephens
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Ethan J Taylor
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Anup J Thomas
- Department of Integrative Biology, University of South Florida, Tampa, FL
| | - Nicholas E Yanez
- Department of Integrative Biology, University of South Florida, Tampa, FL
| |
Collapse
|