1
|
Sajkowska JJ, Tsang CH, Kozielewicz P. Application of FRET- and BRET-based live-cell biosensors in deorphanization and ligand discovery studies on orphan G protein-coupled receptors. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100174. [PMID: 39084335 DOI: 10.1016/j.slasd.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bioluminescence- and fluorescence-based resonance energy transfer assays have gained considerable attention in pharmacological research as high-throughput scalable tools applicable to drug discovery. To this end, G protein-coupled receptors represent the biggest target class for marketed drugs, and among them, orphan G protein-coupled receptors have the biggest untapped therapeutic potential. In this review, the cases where biophysical methods, BRET and FRET, were employed for deorphanization and ligand discovery studies on orphan G protein-coupled receptors are listed and discussed.
Collapse
Affiliation(s)
- Joanna J Sajkowska
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Choi Har Tsang
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden
| | - Paweł Kozielewicz
- Department of Physiology and Pharmacology, Molecular Pharmacology of GPCRs, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
2
|
Pinto MF, Sirina J, Holliday ND, McWhirter CL. High-throughput kinetics in drug discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100170. [PMID: 38964171 DOI: 10.1016/j.slasd.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
The importance of a drug's kinetic profile and interplay of structure-kinetic activity with PK/PD has long been appreciated in drug discovery. However, technical challenges have often limited detailed kinetic characterization of compounds to the latter stages of projects. This review highlights the advances that have been made in recent years in techniques, instrumentation, and data analysis to increase the throughput of detailed kinetic and mechanistic characterization, enabling its application earlier in the drug discovery process.
Collapse
Affiliation(s)
- Maria Filipa Pinto
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom
| | - Julija Sirina
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom
| | - Nicholas D Holliday
- Excellerate Bioscience Ltd, 21 The Triangle, NG2 Business Park, Nottingham, NG2 1AE, United Kingdom; School of Life Sciences, The Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Claire L McWhirter
- Artios Pharma Ltd, B940, Babraham Research Campus, Cambridge CB22 3FH, United Kingdom.
| |
Collapse
|
3
|
Cunha MR, Catta-Preta CMC, Takarada JE, Moreira GA, Massirer KB, Couñago RM. A novel BRET-based assay to investigate binding and residence times of unmodified ligands to the human lysosomal ion channel TRPML1 in intact cells. J Biol Chem 2023:104807. [PMID: 37172730 DOI: 10.1016/j.jbc.2023.104807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Here we report a Bioluminescence Resonance Energy Transfer (BRET) assay as a novel way to investigate the binding of unlabeled ligands to the human Transient Receptor Potential Mucolipin 1 (hTRPML1), a lysosomal ion channel involved in several genetic diseases and cancer progression. This novel BRET assay can be used to determine equilibrium and kinetic binding parameters of unlabeled compounds to hTRPML1 using intact human-derived cells, thus complementing the information obtained using functional assays based on ion channel activation. We expect this new BRET assay to expedite the identification and optimization of cell-permeable ligands that interact with hTRPML1 within the physiologically-relevant environment of lysosomes.
Collapse
Affiliation(s)
- Micael R Cunha
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Carolina M C Catta-Preta
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Current address: Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jéssica E Takarada
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Gabriela A Moreira
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Katlin B Massirer
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
| |
Collapse
|
4
|
Shave S, Pham NT, Auer M. CLAffinity: A Software Tool for Identification of Optimum Ligand Affinity for Competition-Based Primary Screens. J Chem Inf Model 2022; 62:2264-2268. [PMID: 35442032 PMCID: PMC9131445 DOI: 10.1021/acs.jcim.2c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/02/2022]
Abstract
A simplistic assumption in setting up a competition assay is that a low affinity labeled ligand can be more easily displaced from a target protein than a high affinity ligand, which in turn produces a more sensitive assay. An often-cited paper correctly rallies against this assumption and recommends the use of the highest affinity ligand available for experiments aiming to determine competitive inhibitor affinities. However, we have noted this advice being applied incorrectly to competition-based primary screens where the goal is optimum assay sensitivity, enabling a clear yes/no binding determination for even low affinity interactions. The published advice only applies to secondary, confirmatory assays intended for accurate affinity determination of primary screening hits. We demonstrate that using very high affinity ligands in competition-based primary screening can lead to reduced assay sensitivity and, ultimately, the discarding of potentially valuable active compounds. We build on techniques developed in our PyBindingCurve software for a mechanistic understanding of complex biological interaction systems, developing the "CLAffinity tool" for simulating competition experiments using protein, ligand, and inhibitor concentrations common to drug screening campaigns. CLAffinity reveals optimum labeled ligand affinity ranges based on assay parameters, rather than general rules to optimize assay sensitivity. We provide the open source CLAffinity software toolset to carry out assay simulations and a video summarizing key findings to aid in understanding, along with a simple lookup table allowing identification of optimal dynamic ranges for competition-based primary screens. The application of our freely available software and lookup tables will lead to the consistent creation of more performant competition-based primary screens identifying valuable hit compounds, particularly for difficult targets.
Collapse
Affiliation(s)
- Steven Shave
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland EH9
3BF, United Kingdom
| | - Nhan T. Pham
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland EH9
3BF, United Kingdom
| | - Manfred Auer
- School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, Scotland EH9
3BF, United Kingdom
| |
Collapse
|
5
|
Egyed A, Kiss DJ, Keserű GM. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 2022; 13:847788. [PMID: 35355719 PMCID: PMC8959758 DOI: 10.3389/fphar.2022.847788] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.
Collapse
Affiliation(s)
| | | | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Lay CS, Thomas DA, Evans JP, Campbell M, McCombe K, Phillipou AN, Gordon LJ, Jones EJ, Riching K, Mahmood M, Messenger C, Carver CE, Gatfield KM, Craggs PD. Development of an intracellular quantitative assay to measure compound binding kinetics. Cell Chem Biol 2022; 29:287-299.e8. [PMID: 34520747 DOI: 10.1016/j.chembiol.2021.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/09/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
Contemporary drug discovery typically quantifies the effect of a molecule on a biological target using the equilibrium-derived measurements of IC50, EC50, or KD. Kinetic descriptors of drug binding are frequently linked with the effectiveness of a molecule in modulating a disease phenotype; however, these parameters are yet to be fully adopted in early drug discovery. Nanoluciferase bioluminescence resonance energy transfer (NanoBRET) can be used to measure interactions between fluorophore-conjugated probes and luciferase fused target proteins. Here, we describe an intracellular NanoBRET competition assay that can be used to quantify cellular kinetic rates of compound binding to nanoluciferase-fused bromodomain and extra-terminal (BET) proteins. Comparative rates are generated using a cell-free NanoBRET assay and by utilizing orthogonal recombinant protein-based methodologies. A screen of known pan-BET inhibitors is used to demonstrate the value of this approach in the investigation of kinetic selectivity between closely related proteins.
Collapse
Affiliation(s)
- Charles S Lay
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Daniel A Thomas
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; Arctoris, Oxford OX14 4SA, UK
| | - John P Evans
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Matthew Campbell
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Kristopher McCombe
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Alexander N Phillipou
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Laurie J Gordon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Emma J Jones
- Protein and Cellular Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | | | - Mahnoor Mahmood
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Cassie Messenger
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Charlotte E Carver
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Kelly M Gatfield
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK; GSK-Francis Crick Institute Linklabs, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
7
|
Zheng Y, Wágner G, Hauwert N, Ma X, Vischer HF, Leurs R. New Chemical Biology Tools for the Histamine Receptor Family. Curr Top Behav Neurosci 2022; 59:3-28. [PMID: 35851442 DOI: 10.1007/7854_2022_360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The histamine research community has in the last decade been very active and generated a number of exciting new chemical biology tools for the study of histamine receptors, their ligands, and their pharmacology. In this paper we describe the development of histamine receptor structural biology, the use of receptor conformational biosensors, and the development of new ligands for covalent or fluorescent labeling or for photopharmacological approaches (photocaging and photoswitching). These new tools allow new approaches to study histamine receptors and hopefully will lead to better insights in the molecular aspects of histamine receptors and their ligands.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Gábor Wágner
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Niels Hauwert
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Xiaoyuan Ma
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Henry F Vischer
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Kinetic intracellular assay measures compound binding kinetics at intracellular targets within living cells. FUTURE DRUG DISCOVERY 2021. [DOI: 10.4155/fdd-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Wang Z, Bosma R, Kuhne S, van den Bor J, Garabitian W, Vischer HF, Wijtmans M, Leurs R, de Esch IJ. Exploring the Effect of Cyclization of Histamine H 1 Receptor Antagonists on Ligand Binding Kinetics. ACS OMEGA 2021; 6:12755-12768. [PMID: 34056427 PMCID: PMC8154229 DOI: 10.1021/acsomega.0c06358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
There is an increasing interest in guiding hit optimization by considering the target binding kinetics of ligands. However, compared to conventional structure-activity relationships, structure-kinetics relationships have not been as thoroughly explored, even for well-studied archetypical drug targets such as the histamine H1 receptor (H1R), a member of the family A G-protein coupled receptor. In this study, we show that the binding kinetics of H1R antagonists at the H1R is dependent on the cyclicity of both the aromatic head group and the amine moiety of H1R ligands, the chemotypes that are characteristic for the first-generation H1R antagonists. Fusing the two aromatic rings of H1R ligands into one tricyclic aromatic head group prolongs the H1R residence time for benchmark H1R ligands as well as for tailored synthetic analogues. The effect of constraining the aromatic rings and the basic amines is systematically explored, leading to a coherent series and detailed discussions of structure-kinetics relationships. This study shows that cyclicity has a pronounced effect on the binding kinetics.
Collapse
Affiliation(s)
| | | | | | - Jelle van den Bor
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Wrej Garabitian
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F. Vischer
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maikel Wijtmans
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J.P. de Esch
- Amsterdam Institute of Molecular
and Life Sciences (AIMMS), Division of Medicinal Chemistry, Faculty
of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Amangeldiuly N, Karlov D, Fedorov MV. Baseline Model for Predicting Protein–Ligand Unbinding Kinetics through Machine Learning. J Chem Inf Model 2020; 60:5946-5956. [DOI: 10.1021/acs.jcim.0c00450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nurlybek Amangeldiuly
- Center for Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitry Karlov
- Center for Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maxim V. Fedorov
- Center for Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Department of Physics, Scottish Universities Physics Alliance (SUPA), University of Strathclyde, Glasgow G4 0NG, U.K
| |
Collapse
|
11
|
Schuetz DA, Richter L, Martini R, Ecker GF. A structure-kinetic relationship study using matched molecular pair analysis. RSC Med Chem 2020; 11:1285-1294. [PMID: 34085042 PMCID: PMC8126976 DOI: 10.1039/d0md00178c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifetime of a binary drug–target complex is increasingly acknowledged as an important parameter for drug efficacy and safety. With a better understanding of binding kinetics and better knowledge about kinetic parameter optimization, intentionally induced prolongation of the drug–target residence time through structural changes of the ligand could become feasible. In this study we assembled datasets from 21 publications and the K4DD (Kinetic for Drug Discovery) database to conduct large scale data analysis. This resulted in 3812 small molecules annotated to 78 different targets from five protein classes (GPCRs: 273, kinases: 3238, other enzymes: 240, HSPs: 160, ion channels: 45). Performing matched molecular pair (MMP) analysis to further investigate the structure–kinetic relationship (SKR) in this data collection allowed us to identify a fundamental contribution of a ligand's polarity to its association rate, and in selected cases, also to its dissociation rate. However, we furthermore observed that the destabilization of the transition state introduced by increased polarity is often accompanied by simultaneous destabilization of the ground state resulting in an unaffected or even worsened residence time. Supported by a set of case studies, we provide concepts on how to alter ligands in ways to trigger on-rates, off-rates, or both. A large-scale study employing matched molecular pair (MMP) analysis to uncover the contribution of a compound's polarity to its association and dissociation rates.![]()
Collapse
Affiliation(s)
- Doris A Schuetz
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Lars Richter
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Riccardo Martini
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna UZA 2, Althanstrasse 14 1090 Vienna Austria
| |
Collapse
|
12
|
van der Velden WJC, Heitman LH, Rosenkilde MM. Perspective: Implications of Ligand-Receptor Binding Kinetics for Therapeutic Targeting of G Protein-Coupled Receptors. ACS Pharmacol Transl Sci 2020; 3:179-189. [PMID: 32296761 DOI: 10.1021/acsptsci.0c00012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The concept of ligand-receptor binding kinetics has been broadly applied in drug development pipelines focusing on G protein-coupled receptors (GPCRs). The ligand residence time (RT) for a receptor describes how long a ligand-receptor complex exists, and is defined as the reciprocal of the dissociation rate constant (k off). RT has turned out to be a valuable parameter for GPCR researchers focusing on drug development as a good predictor of in vivo efficacy. The positive correlation between RT and in vivo efficacy has been established for several drugs targeting class A GPCRs (e.g., the neurokinin-1 receptor (NK1R), the β2 adrenergic receptor (β2AR), and the muscarinic 3 receptor (M3R)) and for drugs targeting class B1 (e.g., the glucagon-like peptide 1 receptor (GLP-1R)). Recently, the association rate constant (k on) has gained similar attention as another parameter affecting in vivo efficacy. In the current perspective, we address the importance of studying ligand-receptor binding kinetics for therapeutic targeting of GPCRs, with an emphasis on how binding kinetics can be altered by subtle molecular changes in the ligands and/or the receptors and how such changes affect treatment outcome. Moreover, we speculate on the impact of binding kinetic parameters for functional selectivity and sustained receptor signaling from endosomal compartments; phenomena that have gained increasing interest in attempts to improve therapeutic targeting of GPCRs.
Collapse
Affiliation(s)
- Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK 2200, Denmark
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, The Netherlands
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK 2200, Denmark
| |
Collapse
|
13
|
Soave M, Briddon SJ, Hill SJ, Stoddart LA. Fluorescent ligands: Bringing light to emerging GPCR paradigms. Br J Pharmacol 2020; 177:978-991. [PMID: 31877233 DOI: 10.1111/bph.14953] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
In recent years, several novel aspects of GPCR pharmacology have been described, which are thought to play a role in determining the in vivo efficacy of a compound. Fluorescent ligands have been used to study many of these, which have also required the development of new experimental approaches. Fluorescent ligands offer the potential to use the same fluorescent probe to perform a broad range of experiments, from single-molecule microscopy to in vivo BRET. This review provides an overview of the in vitro use of fluorescent ligands in further understanding emerging pharmacological paradigms within the GPCR field, including ligand-binding kinetics, allosterism and intracellular signalling, along with the use of fluorescent ligands to study physiologically relevant therapeutic agents.
Collapse
Affiliation(s)
- Mark Soave
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Briddon
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Stephen J Hill
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Leigh A Stoddart
- Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
14
|
Georgi V, Dubrovskiy A, Steigele S, Fernández-Montalván AE. Considerations for improved performance of competition association assays analysed with the Motulsky-Mahan's "kinetics of competitive binding" model. Br J Pharmacol 2019; 176:4731-4744. [PMID: 31444916 PMCID: PMC7029771 DOI: 10.1111/bph.14841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 06/26/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose Target engagement dynamics can influence drugs' pharmacological effects. Kinetic parameters for drug:target interactions are often quantified by evaluating competition association experiments—measuring simultaneous protein binding of labelled tracers and unlabelled test compounds over time—with Motulsky–Mahan's “kinetics of competitive binding” model. Despite recent technical improvements, the current assay formats impose practical limitations to this approach. This study aims at the characterisation, understanding and prevention of these experimental constraints, and associated analytical challenges. Experimental Approach Monte Carlo simulations were used to run virtual kinetic and equilibrium tracer binding and competition experiments in both normal and perturbed assay conditions. Data were fitted to standard equations derived from the mass action law (including Motulsky–Mahan's) and to extended versions aiming to cope with frequently observed deviations of the canonical traces. Results were compared to assess the precision and accuracy of these models and identify experimental factors influencing their performance. Key Results Key factors influencing the precision and accuracy of the Motulsky–Mahan model are the interplay between compound dissociation rates, measurement time and interval frequency, tracer concentration and binding kinetics and the relative abundance of equilibrium complexes in vehicle controls. Experimental results produced recommendations for better design of tracer characterisation experiments and new strategies to deal with systematic signal decay. Conclusions and Implications Our data advances our comprehension of the Motulsky–Mahan kinetics of competitive binding models and provides experimental design recommendations, data analysis tools, and general guidelines for its practical application to in vitro pharmacology and drug screening.
Collapse
Affiliation(s)
| | - Alexey Dubrovskiy
- Research and Development, Genedata AG, Basel, Switzerland.,Software Engineering, Google Inc., Zürich, Switzerland
| | | | - Amaury E Fernández-Montalván
- Drug Discovery, Pharmaceuticals, Bayer AG, Berlin, Germany.,Compound Screening, Institut de Recherches Servier, Croissy-sur-Seine, France
| |
Collapse
|
15
|
Kozielewicz P, Bowin CF, Turku A, Schulte G. A NanoBRET-Based Binding Assay for Smoothened Allows Real-time Analysis of Ligand Binding and Distinction of Two Binding Sites for BODIPY-cyclopamine. Mol Pharmacol 2019; 97:23-34. [PMID: 31707356 DOI: 10.1124/mol.119.118158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Smoothened (SMO) is a GPCR that mediates hedgehog signaling. Hedgehog binds the transmembrane protein Patched, which in turn regulates SMO activation. Overactive SMO signaling is oncogenic and is therefore a clinically established drug target. Here we establish a nanoluciferase bioluminescence resonance energy transfer (NanoBRET)-based ligand binding assay for SMO providing a sensitive and high throughput-compatible addition to the toolbox of GPCR pharmacologists. In the NanoBRET-based binding assay, SMO is N terminally tagged with nanoluciferase (Nluc) and binding of BODIPY-cyclopamine is assessed by quantifying resonance energy transfer between receptor and ligand. The assay allowed kinetic analysis of ligand-receptor binding in living HEK293 cells, competition binding experiments using commercially available SMO ligands (SANT-1, cyclopamine-KAAD, SAG1.3 and purmorphamine), and pharmacological dissection of two BODIPY-cyclopamine binding sites. This high throughput-compatible assay is superior to commonly used SMO ligand binding assays in the separation of specific from non-specific ligand binding and, provides a suitable complement to chemical biology strategies for the discovery of novel SMO-targeting drugs. SIGNIFICANCE STATEMENT: We established a NanoBRET-based binding assay for SMO with superior sensitivity compared to fluorescence-based assays. This assay allows distinction of two separate binding sites for BODIPY-cyclopamine on the SMO transmembrane core in live cells in real time. The assay is a valuable complement for drug discovery efforts and will support a better understanding of Class F GPCR pharmacology.
Collapse
Affiliation(s)
- Paweł Kozielewicz
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl-Fredrik Bowin
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ainoleena Turku
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Schulte
- Section of Receptor Biology and Signaling, Department Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Mocking TAM, Buzink MCML, Leurs R, Vischer HF. Bioluminescence Resonance Energy Transfer Based G Protein-Activation Assay to Probe Duration of Antagonism at the Histamine H 3 Receptor. Int J Mol Sci 2019; 20:ijms20153724. [PMID: 31366084 PMCID: PMC6695674 DOI: 10.3390/ijms20153724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Accepted: 07/28/2019] [Indexed: 12/30/2022] Open
Abstract
Duration of receptor antagonism, measured as the recovery of agonist responsiveness, is gaining attention as a method to evaluate the 'effective' target-residence for antagonists. These functional assays might be a good alternative for kinetic binding assays in competition with radiolabeled or fluorescent ligands, as they are performed on intact cells and better reflect consequences of dynamic cellular processes on duration of receptor antagonism. Here, we used a bioluminescence resonance energy transfer (BRET)-based assay that monitors heterotrimeric G protein activation via scavenging of released Venus-Gβ1γ2 by NanoLuc (Nluc)-tagged membrane-associated-C-terminal fragment of G protein-coupled receptor kinase 3 (masGRK3ct-Nluc) as a tool to probe duration of G protein-coupled receptor (GPCR) antagonism. The Gαi-coupled histamine H3 receptor (H3R) was used in this study as prolonged antagonism is associated with adverse events (e.g., insomnia) and consequently, short-residence time ligands might be preferred. Due to its fast and prolonged response, this assay can be used to determine the duration of functional antagonism by measuring the recovery of agonist responsiveness upon washout of pre-bound antagonist, and to assess antagonist re-equilibration time via Schild-plot analysis. Re-equilibration of pre-incubated antagonist with agonist and receptor could be followed in time to monitor the transition from insurmountable to surmountable antagonism. The BRET-based G protein activation assay can detect differences in the recovery of H3R responsiveness and re-equilibration of pre-bound antagonists between the tested H3R antagonists. Fast dissociation kinetics were observed for marketed drug pitolisant (Wakix®) in this assay, which suggests that short residence time might be beneficial for therapeutic targeting of the H3R.
Collapse
Affiliation(s)
- Tamara A M Mocking
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Maurice C M L Buzink
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Sykes DA, Jain P, Charlton SJ. Investigating the Influence of Tracer Kinetics on Competition-Kinetic Association Binding Assays: Identifying the Optimal Conditions for Assessing the Kinetics of Low-Affinity Compounds. Mol Pharmacol 2019; 96:378-392. [PMID: 31436538 DOI: 10.1124/mol.119.116764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/22/2019] [Indexed: 12/16/2022] Open
Abstract
An increased appreciation of the importance of optimizing drug-binding kinetics has lead to the development of various techniques for measuring the kinetics of unlabeled compounds. One approach is the competition-association kinetic binding method first described in the 1980s. The kinetic characteristics of the tracer employed greatly affects the reliability of estimated kinetic parameters, a barrier to successfully introducing these kinetic assays earlier in the drug discovery process. Using a modeling and Monte Carlo simulation approach, we identify the optimal tracer characteristics for determining the kinetics of the range of unlabeled ligands typically encountered during the different stages of a drug discovery program (i.e., rapidly dissociating, e.g., k off = 10 minute-1 low-affinity "hits" through to slowly dissociating e.g., k off = 0.01 minute-1 high-affinity "candidates"). For more rapidly dissociating ligands (e.g., k off = 10 minute-1), the key to obtaining accurate kinetic parameters was to employ a tracer with a relatively fast off-rate (e.g., k off = 1 minute-1) or, alternatively, to increase the tracer concentration. Reductions in assay start-time ≤1second and read frequency ≤5 seconds significantly improved the reliability of curve fitting. Timing constraints are largely dictated by the method of detection, its inherent sensitivity (e.g., TR-FRET versus radiometric detection), and the ability to inject samples online. Furthermore, we include data from TR-FRET experiments that validate this simulation approach, confirming its practical utility. These insights into the optimal experimental parameters for development of competition-association assays provide a framework for identifying and testing novel tracers necessary for profiling unlabeled competitors, particularly rapidly dissociating low-affinity competitors.
Collapse
Affiliation(s)
- David A Sykes
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (D.A.S., P.J., S.J.C.); Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (D.A.S., P.J., S.J.C.); and Excellerate Bioscience Ltd, Discovery Building, BioCity, Nottingham, United Kingdom (S.J.C.)
| | - Palash Jain
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (D.A.S., P.J., S.J.C.); Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (D.A.S., P.J., S.J.C.); and Excellerate Bioscience Ltd, Discovery Building, BioCity, Nottingham, United Kingdom (S.J.C.)
| | - Steven J Charlton
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (D.A.S., P.J., S.J.C.); Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom (D.A.S., P.J., S.J.C.); and Excellerate Bioscience Ltd, Discovery Building, BioCity, Nottingham, United Kingdom (S.J.C.)
| |
Collapse
|
18
|
Bosma R, Wang Z, Kooistra AJ, Bushby N, Kuhne S, van den Bor J, Waring MJ, de Graaf C, de Esch IJ, Vischer HF, Sheppard RJ, Wijtmans M, Leurs R. Route to Prolonged Residence Time at the Histamine H 1 Receptor: Growing from Desloratadine to Rupatadine. J Med Chem 2019; 62:6630-6644. [PMID: 31274307 PMCID: PMC6750840 DOI: 10.1021/acs.jmedchem.9b00447] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Drug–target
binding kinetics are an important predictor of in vivo drug efficacy,
yet the relationship
between ligand structures and their binding kinetics is often poorly
understood. We show that both rupatadine (1) and desloratadine
(2) have a long residence time at the histamine H1 receptor (H1R). Through development of a [3H]levocetirizine radiolabel, we find that the residence time
of 1 exceeds that of 2 more than 10-fold.
This was further explored with 22 synthesized rupatadine and desloratadine
analogues. Methylene-linked cycloaliphatic or β-branched substitutions
of desloratadine increase the residence time at the H1R,
conveying a longer duration of receptor antagonism. However, cycloaliphatic
substituents directly attached to the piperidine amine (i.e., lacking
the spacer) have decreased binding affinity and residence time compared
to their methylene-linked structural analogues. Guided by docking
studies, steric constraints within the binding pocket are hypothesized
to explain the observed differences in affinity and binding kinetics
between analogues.
Collapse
Affiliation(s)
- Reggie Bosma
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Zhiyong Wang
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Albert J Kooistra
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Nick Bushby
- Operations, BioPharmaceuticals R&D , AstraZeneca , Alderley Park , Macclesfield SK10 4TG , United Kingdom
| | - Sebastiaan Kuhne
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Jelle van den Bor
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Michael J Waring
- Medicinal Chemistry, Research and Early Development, Oncology R&D , AstraZeneca , Alderley Park , Macclesfield SK10 4TG , United Kingdom
| | - Chris de Graaf
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Iwan J de Esch
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Henry F Vischer
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Robert J Sheppard
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D , AstraZeneca , Gothenburg 431 50 , Sweden
| | - Maikel Wijtmans
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Science , VU University Amsterdam , De Boelelaan 1083 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|