1
|
Cruickshank D, Hamilton DE, Iloba I, Jensen GS. Secreted Metabolites from Pseudomonas, Staphylococcus, and Borrelia Biofilm: Modulation of Immunogenicity by a Nutraceutical Enzyme and Botanical Blend. Microorganisms 2024; 12:991. [PMID: 38792820 PMCID: PMC11124038 DOI: 10.3390/microorganisms12050991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Bacterial biofilms are hardy, adaptable colonies, evading immune recognition while triggering and sustaining inflammation. The goals for this study were to present a method for testing the immunogenicity of secreted metabolites from pathogenic biofilm and to document whether biofilm treated with a nutraceutical enzyme and botanical blend (NEBB) showed evidence of reprogrammed bacterial metabolism, potentially becoming more recognizable to the immune system. We screened immune-modulating properties of metabolites from established biofilm from Pseudomonas aeruginosa (Pa), Stapholycoccus simulans (Ss), and Borrelia burgdorferi (Bb). Secreted metabolites significantly increased the cytokine production by human peripheral blood mononuclear cells, including Interleukin-1-beta (IL-1β), Interleukin-6 (IL-6), macrophage inflammatory protein-1-alpha (MIP-1α), tumor necrosis factor-alpha (TNF-α), interleukin-1 receptor antagonist (IL-1ra), and interleukin-10 (IL-10). Pa metabolites triggered the most robust increase in IL-1β, whereas Bb metabolites triggered the most robust increase in IL-10. NEBB-disrupted biofilm produced metabolites triggering altered immune modulation compared to metabolites from untreated biofilm. Metabolites from NEBB-disrupted biofilm triggered increased MIP-1α levels and reduced IL-10 levels, suggesting a reduced ability to suppress the recruitment of phagocytes compared to untreated biofilm. The results suggest that nutraceutical biofilm disruption offers strategies for inflammation management in chronic infectious illnesses. Further clinical studies are warranted to evaluate clinical correlations in infected human hosts.
Collapse
Affiliation(s)
| | | | - Ifeanyi Iloba
- NIS Labs, 1437 Esplanade, Klamath Falls, OR 97601, USA;
| | | |
Collapse
|
2
|
Fitzgerald BL, Graham B, Delorey MJ, Pegalajar-Jurado A, Islam MN, Wormser GP, Aucott JN, Rebman AW, Soloski MJ, Belisle JT, Molins CR. Metabolic Response in Patients With Post-treatment Lyme Disease Symptoms/Syndrome. Clin Infect Dis 2021; 73:e2342-e2349. [PMID: 32975577 PMCID: PMC8492154 DOI: 10.1093/cid/ciaa1455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Post-treatment Lyme disease symptoms/syndrome (PTLDS) occurs in approximately 10% of patients with Lyme disease following antibiotic treatment. Biomarkers or specific clinical symptoms to identify patients with PTLDS do not currently exist and the PTLDS classification is based on the report of persistent, subjective symptoms for ≥6 months following antibiotic treatment for Lyme disease. METHODS Untargeted liquid chromatography-mass spectrometry metabolomics was used to determine longitudinal metabolic responses and biosignatures in PTLDS and clinically cured non-PTLDS Lyme patients. Evaluation of biosignatures included (1) defining altered classes of metabolites, (2) elastic net regularization to define metabolites that most strongly defined PTLDS and non-PTLDS patients at different time points, (3) changes in the longitudinal abundance of metabolites, and (4) linear discriminant analysis to evaluate robustness in a second patient cohort. RESULTS This study determined that observable metabolic differences exist between PTLDS and non-PTLDS patients at multiple time points. The metabolites with differential abundance included those from glycerophospholipid, bile acid, and acylcarnitine metabolism. Distinct longitudinal patterns of metabolite abundance indicated a greater metabolic variability in PTLDS versus non-PTLDS patients. Small numbers of metabolites (6 to 40) could be used to define PTLDS versus non-PTLDS patients at defined time points, and the findings were validated in a second cohort of PTLDS and non-PTLDS patients. CONCLUSIONS These data provide evidence that an objective metabolite-based measurement can distinguish patients with PTLDS and help understand the underlying biochemistry of PTLDS.
Collapse
Affiliation(s)
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mark J Delorey
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | | | - M Nurul Islam
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gary P Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, New York, USA
| | - John N Aucott
- The Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Lutherville, Maryland, USA
| | - Alison W Rebman
- The Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Lutherville, Maryland, USA
| | - Mark J Soloski
- The Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Lutherville, Maryland, USA
| | - John T Belisle
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Claudia R Molins
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Hamilton PT, Maluenda E, Sarr A, Belli A, Hurry G, Duron O, Plantard O, Voordouw MJ. Borrelia afzelii Infection in the Rodent Host Has Dramatic Effects on the Bacterial Microbiome of Ixodes ricinus Ticks. Appl Environ Microbiol 2021; 87:e0064121. [PMID: 34191531 PMCID: PMC8388833 DOI: 10.1128/aem.00641-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
The microbiome of blood-sucking arthropods can shape their competence to acquire and maintain infections with vector-borne pathogens. We used a controlled study to investigate the interactions between Borrelia afzelii, which causes Lyme borreliosis in Europe, and the bacterial microbiome of Ixodes ricinus, its primary tick vector. We applied a surface sterilization treatment to I. ricinus eggs to produce dysbiosed tick larvae that had a low bacterial abundance and a changed bacterial microbiome compared to those of the control larvae. Dysbiosed and control larvae fed on B. afzelii-infected mice and uninfected control mice, and the engorged larvae were left to molt into nymphs. The nymphs were tested for B. afzelii infection, and their bacterial microbiome underwent 16S rRNA amplicon sequencing. Surprisingly, larval dysbiosis had no effect on the vector competence of I. ricinus for B. afzelii, as the nymphal infection prevalence and the nymphal spirochete load were the same between the dysbiosed group and the control group. The strong effect of egg surface sterilization on the tick bacterial microbiome largely disappeared once the larvae molted into nymphs. The most important determinant of the bacterial microbiome of I. ricinus nymphs was the B. afzelii infection status of the mouse on which the nymphs had fed as larvae. Nymphs that had taken their larval blood meal from an infected mouse had a less abundant but more diverse bacterial microbiome than the control nymphs. Our study demonstrates that vector-borne infections in the vertebrate host shape the microbiome of the arthropod vector. IMPORTANCE Many blood-sucking arthropods transmit pathogens that cause infectious disease. For example, Ixodes ricinus ticks transmit the bacterium Borrelia afzelii, which causes Lyme disease in humans. Ticks also have a microbiome, which can influence their ability to acquire and transmit tick-borne pathogens such as B. afzelii. We sterilized I. ricinus eggs with bleach, and the tick larvae that hatched from these eggs had a dramatically reduced and changed bacterial microbiome compared to that of control larvae. These larvae fed on B. afzelii-infected mice, and the resultant nymphs were tested for B. afzelii and for their bacterial microbiome. We found that our manipulation of the bacterial microbiome had no effect on the ability of the tick larvae to acquire and maintain populations of B. afzelii. In contrast, we found that B. afzelii infection had dramatic effects on the bacterial microbiome of I. ricinus nymphs. Our study demonstrates that infections in the vertebrate host can shape the tick microbiome.
Collapse
Affiliation(s)
| | - Elodie Maluenda
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alessandro Belli
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Georgia Hurry
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Olivier Duron
- Centre of Research in Ecology and Evolution of Diseases (CREES), Montpellier, France
- MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement (IRD), Université Montpellier (UM), Montpellier, France
| | | | - Maarten J. Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Separovic F, Keizer DW, Sani MA. In-cell Solid-State NMR Studies of Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:610203. [PMID: 35047891 PMCID: PMC8757805 DOI: 10.3389/fmedt.2020.610203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022] Open
Abstract
Antimicrobial peptides (AMPs) have attracted attention as alternatives to classic antibiotics due to their expected limited pressure on bacterial resistance mechanisms. Yet, their modes of action, in particular in vivo, remain to be elucidated. In situ atomistic-scale details of complex biomolecular assemblies is a challenging requirement for deciphering the complex modes of action of AMPs. The large diversity of molecules that modulate complex interactions limits the resolution achievable using imaging methodology. Herein, the latest advances in in-cell solid-state NMR (ssNMR) are discussed, which demonstrate the power of this non-invasive technique to provide atomic details of molecular structure and dynamics. Practical requirements for investigations of intact bacteria are discussed. An overview of recent in situ NMR investigations of the architecture and metabolism of bacteria and the effect of AMPs on various bacterial structures is presented. In-cell ssNMR revealed that the studied AMPs have a disruptive action on the molecular packing of bacterial membranes and DNA. Despite the limited number of studies, in-cell ssNMR is emerging as a powerful technique to monitor in situ the interplay between bacteria and AMPs.
Collapse
Affiliation(s)
- Frances Separovic
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - David W. Keizer
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc-Antoine Sani
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Marc-Antoine Sani
| |
Collapse
|