1
|
Jones J, Matope A, Barreaux P, Gleave K, Steen K, Ranson H, McCall PJ, Foster GM. Video augmentation of the WHO cone assay to quantify mosquito behavioural responses to insecticide-treated nets. Parasit Vectors 2023; 16:420. [PMID: 37968752 PMCID: PMC10652617 DOI: 10.1186/s13071-023-06029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Insecticide-treated nets (ITNs) using pyrethroids have been the main vector control tools deployed in malaria endemic countries and are responsible for the dramatic reduction in African malaria cases in the early 2000s. The World Health Organization (WHO) cone test was designed to assess the rapid toxicity effects of pyrethroid exposure on mosquito vectors but has yielded no insights beyond 60-min knockdown and 24-h mortality. As dual-active-ingredient (AI) ITNs become more widespread, bioassays that can provide realistic assessment of single- and dual-treated ITNs (i.e. nets with more than one active ingredient) are urgently needed. METHODS We present an augmentation of the cone test that enables accurate quantification of vector behavioural responses (specifically movement, spatial and temporal occupancy) to ITNs using video recording and bespoke software that uses background segmentation methods to detect spatial changes in the movement of mosquitoes within the cone. Four strains of Anopheles gambiae sensu lato (s.l.) were exposed to four ITNs (PermaNet 2.0, PermaNet 3.0, Olyset Net, Interceptor G2) and untreated nets in these modified cone tests. Life history data (post-exposure blood-feeding, blood meal weight, longevity) for individual mosquitoes were recorded. RESULTS All mosquitoes responded to the presence of ITNs, spending from 1.48 to 3.67 times more time in the upper region of the cone, depending on the ITN type. Of all ITNs, PermaNet 2.0 provoked the smallest change in behavioural response. Activity in the cone influenced observed post-exposure longevity, and in resistant strains exposed to Interceptor G2, the higher the activity, the greater the risk of dying, as long as the proportion of activity at the net surface was less than 50%. All ITNs inhibited blood-feeding, and smaller blood meals were taken when mosquitoes fed. CONCLUSIONS The additional mosquito behaviour data obtained by using this modification to the WHO cone test provides unique insight into the innate responses of different mosquito strains on untreated nets and the entomological mode of action of ITNs, important evidence when evaluating ITN characteristics.
Collapse
Affiliation(s)
- Jeff Jones
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Agnes Matope
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Priscille Barreaux
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Katherine Gleave
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Keith Steen
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Hilary Ranson
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Philip J McCall
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Geraldine M Foster
- Department of Vector Biology Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| |
Collapse
|
2
|
Barreaux P, Ranson H, Foster GM, McCall PJ. Pyrethroid-treated bed nets impair blood feeding performance in insecticide resistant mosquitoes. Sci Rep 2023; 13:10055. [PMID: 37344580 DOI: 10.1038/s41598-023-35958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
The blood feeding performance of female mosquitoes directly impacts their ability to transmit malaria. Yet their host seeking and blood feeding behaviours in the presence of insecticide-treated nets (ITNs) are still poorly understood. This work explores how both insecticide resistant and susceptible Anopheles gambiae s.l. mosquitoes interact with pyrethroid nets (PermaNet 2.0 or Olyset net) or an untreated net (UTN) while attempting to blood feed on a human arm. Regardless of mosquito resistance status, the ITNs did not efficiently prevent host searching but reduced blood feeding success by 34.1 (29.31-38.95) %. The Permanet and Olyset net reduced to 227.5 (208.19-246.77) sec and 235.9 (214.03-257.74) sec the average blood feeding duration from 369.9 (342.78-397.04) sec with the UTN. The ingested blood volume was on average 22% lower for all mosquitoes exposed to insecticide. When feeding through ITNs, the blood volume flow rate of the susceptible strain increased by 35%, but no significant difference was found in the resistant strain. Thus, whilst the presence of the insecticide in ITNs reduced mosquito blood feeding success and blood volume, the mosquito's ability to respond by accelerating her rate of blood ingestion may further reduce the impact of ITNs on resistant mosquitoes.
Collapse
Affiliation(s)
- Priscille Barreaux
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Hilary Ranson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Geraldine M Foster
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
3
|
Medjigbodo AA, Djihinto OY, Salavi EBJ, Sonounameto EG, Abbey E, Djossou L, Djogbénou LS. Organophosphate Insecticide Exposure Impacts Reproductive Success in Insensitive Acetylcholinesterase Anopheles gambiae Mosquitoes. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.903654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Extensive use of insecticides has led to the selection of resistance alleles in malaria vectors threatening the control programs. Even if mosquitoes are not killed directly in the contact of insecticide-treated bed nets, their capacity to transmit malaria parasite could be decreased because of the consequences on their life-history traits after repeated exposure. The current work investigated the effects of organochlorine, carbamate, organophosphate, and pyrethroid insecticide exposure on the reproductive success in Anopheles gambiae s.s. Two Anopheles gambiae strains, AcerKis, KisKdr, were used. According to WHO recommendations, female mosquitoes of these resistant strains were exposed to discriminant doses of DDT, chlorpyriphos-methyl, bendiocarb, and permethrin insecticides. Surviving mosquitoes were then fed and allowed to lay eggs. Fecundity was assessed by examining the number of eggs per mosquito, the number of larvae per egg batch and larval hatching rates were used to evaluate the fertility. The data showed that AcerKis females surviving chlorpyriphos-methyl exposure significantly laid few eggs. No significant difference in the hatching rate was noticed in AcerKis females exposed to bendiocarb compared to their control. No significant effect on the fecundity and fertility was observed in KisKdr females exposed to permethrin. Our finding showed that organophosphate insecticides represented here by chlorpyriphos-methyl could hamper egg-laying in insensitive acetylcholinesterase An. gambiae female mosquitoes. This knowledge could help design alternative vector control strategies targeting fecundity and fertility in resistant malaria vectors.
Collapse
|
4
|
Ngongang-Yipmo ES, Tchouakui M, Menze BD, Mugenzi LMJ, Njiokou F, Wondji CS. Reduced performance of community bednets against pyrethroid-resistant Anopheles funestus and Anopheles gambiae, major malaria vectors in Cameroon. Parasit Vectors 2022; 15:230. [PMID: 35754045 PMCID: PMC9233849 DOI: 10.1186/s13071-022-05335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) are a vital tool in the fight against malaria vectors. However, their efficacy in the field can be impacted by several factors, including patterns of usage, net age, mosquito resistance and the delayed mortality effect, all of which could influence malaria transmission. We have investigated the effectiveness of the various brands of LLINs available in markets and households in Cameroon on pyrethroid-resistant mosquitoes and assessed their post-exposure effect. METHODS Following quality control assessment on a susceptible laboratory mosquito strain, we evaluated the immediate and delayed mortality effects of exposure to LLINs (both newly bough LLINst and used ones collected from households in Elende village, Cameroon, in 2019) using standard WHO cone tests on Anopheles gambiae and Anopheles funestus populations collected from the Centre region of Cameroon. Alive female mosquitoes were genotyped for various resistance markers at different time points post-exposure to evaluate the impact of insecticide resistance on the efficacy of bednets. RESULTS The laboratory-susceptible strain experienced high mortality rates when exposed to all pyrethroid-only brands of purchased nets (Olyset® Net, Super Net, PermaNet® 2.0, Yorkool®, Royal Sentry®) (Mean±SEM: 68.66 ± 8.35% to 93.33 ± 2.90%). However, low mortality was observed among wild An. funestus mosquitoes exposed to the bednets (0 ± 0 to 28 ± 6.7%), indicating a reduced performance of these nets against field mosquitoes. Bednets collected from households also showed reduced efficacy on the laboratory strain (mortality: 19-66%), as well as displaying a significant loss of efficacy against the local wild strains (mortality: 0 ± 0% to 4 ± 2.6% for An. gambiae sensu lato and 0 ± 0% to 8 ± 3.2% for An. funestus). However, compared to the unexposed group, mosquitoes exposed to bednets showed a significantly reduced longevity, indicating that the efficacy of these nets was not completely lost. Mosquitoes with the CYP6P9a-RR and L119F-GSTe2 mutations conferring pyrethroid resistance showed greater longevity after exposure to the Olyset net than their susceptible counterparts, indicating the impact of resistance on bednet efficacy and delayed mortality. CONCLUSION These findings show that although standard bednets drastically lose their efficacy against pyrethroid-resistant field mosquitoes, they still are able to induce delayed mortality in exposed populations. The results of this study also provide evidence of the actual impact of resistance on the quality and efficacy of LLINs in use in the community, with mosquitoes carrying the CYP6P9a-RR and L119F-GSTe2 mutations conferring pyrethroid resistance living longer than their susceptible counterparts. These results highlight the need to use new-generation nets that do not rely solely on pyrethroids.
Collapse
Affiliation(s)
- Emilie S. Ngongang-Yipmo
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Benjamin D. Menze
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA UK
| | - Leon M. J. Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Charles S. Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA UK
| |
Collapse
|
5
|
Barreaux P, Koella JC, N'Guessan R, Thomas MB. Use of novel lab assays to examine the effect of pyrethroid-treated bed nets on blood-feeding success and longevity of highly insecticide-resistant Anopheles gambiae s.l. mosquitoes. Parasit Vectors 2022; 15:111. [PMID: 35346334 PMCID: PMC8962112 DOI: 10.1186/s13071-022-05220-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Background There is a pressing need to improve understanding of how insecticide resistance affects the functional performance of insecticide-treated nets (ITNs). Standard WHO insecticide resistance monitoring assays are designed for resistance surveillance and do not necessarily provide insight into how different frequencies, mechanisms or intensities of resistance affect the ability of ITNs to reduce malaria transmission. Methods The current study presents some novel laboratory-based assays that attempt to better simulate realistic exposure of mosquitoes to ITNs and to quantify impact of exposure not only on instantaneous mortality, but also on blood-feeding and longevity, two traits that are central to transmission. The assays evaluated the performance of a standard ITN (Permanet® 2.0; Vestergaard Frandsen), a ‘next generation’ combination ITN with a resistance-breaking synergist (Permanet® 3.0) and an untreated net (UTN), against field-derived Anopheles gambiae sensu lato mosquitoes from Côte d’Ivoire exhibiting a 1500-fold increase in pyrethroid resistance relative to a standard susceptible strain. Results The study revealed that the standard ITN induced negligible instantaneous mortality against the resistant mosquitoes, whereas the resistance-breaking net caused high mortality and a reduction in blood-feeding. However, both ITNs still impacted long-term survival relative to the UTN. The impact on longevity depended on feeding status, with blood-fed mosquitoes living longer than unfed mosquitoes following ITN exposure. Exposure to both ITNs also reduced the blood-feeding success, the time spent on the net and blood-feeding duration, relative to the untreated net. Conclusion Although a standard ITN did not have as substantial instantaneous impact as the resistance-breaking net, it still had significant impacts on traits important for transmission. These results highlight the benefit of improved bioefficacy assays that allow for realistic exposure and consider sub- or pre-lethal effects to help assess the functional significance of insecticide resistance. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05220-y.
Collapse
Affiliation(s)
- Priscille Barreaux
- Liverpool School of Tropical Medicine, Liverpool, UK. .,Pennsylvania State University, State College, PA, USA. .,University of Neuchâtel, Neuchâtel, Switzerland.
| | | | - Raphael N'Guessan
- London School of Tropical Medicine, London, UK.,Vector Control Product Evaluation Centre, Institute Pierre Richet, Bouaké, Côte d'Ivoire
| | - Matthew B Thomas
- Pennsylvania State University, State College, PA, USA.,University of York, York, UK
| |
Collapse
|
6
|
Nash RK, Lambert B, NʼGuessan R, Ngufor C, Rowland M, Oxborough R, Moore S, Tungu P, Sherrard-Smith E, Churcher TS. Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100047. [PMID: 35284856 PMCID: PMC8906077 DOI: 10.1016/j.crpvbd.2021.100047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 10/27/2022]
Abstract
Resistance of anopheline mosquitoes to pyrethroid insecticides is spreading rapidly across sub-Saharan Africa, diminishing the efficacy of insecticide-treated nets (ITNs) - the primary tool for preventing malaria. The entomological efficacy of indoor vector control interventions can be measured in experimental hut trials (EHTs), where hut structures resemble local housing, but allow the collection of mosquitoes that entered, exited, blood-fed and/or died. There is a need to understand how the spread of resistance changes ITN efficacy and to elucidate factors influencing EHT results, including differences in experimental hut design, to support the development of novel vector control tools. A comprehensive database of EHTs was compiled following a systematic review to identify all known trials investigating ITNs or indoor residual spraying across sub-Saharan Africa. This analysis focuses on EHTs investigating ITNs and uses Bayesian statistical models to characterise the complex interaction between ITNs and mosquitoes, the between-study variability, and the impact of pyrethroid resistance. As resistance rises, the entomological efficacy of ITNs declines. They induce less mortality and are less likely to deter mosquitoes from entering huts. Despite this, ITNs continue to offer considerable personal protection by reducing mosquito feeding until resistance reaches high levels. There are clear associations between the different entomological impacts of ITNs, though there is still substantial variability between studies, some of which can be accounted for by hut design. The relationship between EHT outcomes and the level of resistance (as measured by discriminating dose bioassays) is highly uncertain. The meta-analyses show that EHTs are an important reproducible assay for capturing the complex entomological efficacy of ITNs on blood-feeding mosquitoes. The impact of pyrethroid resistance on these measures appears broadly consistent across a wide geographical area once hut design is accounted for, suggesting results can be extrapolated beyond the sites where the trials were conducted. Further work is needed to understand factors influencing EHT outcomes and how the relationship between outcomes and resistance varies when different methods are used to assess the level of resistance in wild mosquito populations. This will allow more precise estimates of the efficacy of these important vector control tools.
Collapse
Affiliation(s)
- Rebecca K. Nash
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK,Corresponding author.
| | - Ben Lambert
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Raphael NʼGuessan
- Institut Pierre Richet, Institut National de Santé Publique, Bouaké, Côte d’Ivoire,London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Corine Ngufor
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK,Centre de Recherches Entomologiques de Cotonou, Cotonou, Benin
| | - Mark Rowland
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Richard Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Sarah Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Pwani, Tanzania,Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland,University of Basel, Petersplatz 1, 4001, Basel, Switzerland,Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Patrick Tungu
- National Institute for Medical Research (NIMR), P.O. Box 9653, Dar Es Salaam, Tanzania
| | - Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Thomas S. Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
7
|
Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors 2020; 13:295. [PMID: 32522290 PMCID: PMC7285743 DOI: 10.1186/s13071-020-04170-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since the implementation of Roll Back Malaria, the widespread use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) is thought to have played a major part in the decrease in mortality and morbidity achieved in malaria-endemic regions. In the past decade, resistance to major classes of insecticides recommended for public health has spread across many malaria vector populations. Increasingly, malaria vectors are also showing changes in vector behaviour in response to current indoor chemical vector control interventions. Changes in the time of biting and proportion of indoor biting of major vectors, as well as changes in the species composition of mosquito communities threaten the progress made to control malaria transmission. Outdoor biting mosquito populations contribute to malaria transmission in many parts of sub-Saharan Africa and pose new challenges as they cannot be reliably monitored or controlled using conventional tools. Here, we review existing and novel approaches that may be used to target outdoor communities of malaria vectors. We conclude that scalable tools designed specifically for the control and monitoring of outdoor biting and resting malaria vectors with increasingly complex and dynamic responses to intensifying malaria control interventions are urgently needed. These are crucial for integrated vector management programmes designed to challenge current and future vector populations.
Collapse
Affiliation(s)
- Seynabou Sougoufara
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Emmanuel Chinweuba Ottih
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| |
Collapse
|
8
|
Hughes A, Foster GM, Guy A, Matope A, Abe M, Towers D, McCall PJ. Quantifying late-stage host-seeking behaviour of Anopheles gambiae at the insecticidal net interface using a baited-box bioassay. Malar J 2020; 19:140. [PMID: 32264900 PMCID: PMC7140563 DOI: 10.1186/s12936-020-03213-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/28/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insecticide-treated nets (ITNs) are losing efficacy against pyrethroid-resistant malaria vector populations throughout Africa. Safeguarding bed net efficacy, vital for effective malaria control, requires greater knowledge of mosquito-ITN interactions and how this impacts on the mosquito. METHODS A purpose-built benchtop apparatus with a closed 10 cm cubic chamber (the 'Baited-box') was used to video record behaviour of individual free-flying female Anopheles gambiae during approach and blood-feeding on a human hand through untreated nets and ITNs at close range. Time and duration of defined behavioural events, and knockdown and mortality at 1- and 24-h post-exposure respectively, were recorded for pyrethroid susceptible and resistant mosquitoes. RESULTS Using three human volunteers differing in relative attractiveness to mosquitoes, 328 mosquitoes were individually tested. There were no significant differences between response rates to ITNs and untreated nets (P > 0.1) or between resistant (Tiassalé) and susceptible (Kisumu) mosquito strains, at untreated nets (P = 0.39) or PermaNet 2.0 (P = 1). The sequence of behavioural events from host-seeking to completion of blood-feeding was consistent in all tests but duration and start time of events involving net contact were reduced or delayed respectively with ITNs. Blood-feeding durations at untreated nets (means from 4.25 to 8.47 min (95% confidence interval (CI) = 3.39-9.89) at 3 human volunteers) were reduced by 37-50% at PermaNet 2.0, in susceptible (mean 2.59-4.72 min, 95% CI = 1.54-5.5, P = < 0.05) and resistant (mean 4.20 min, 95% CI = 3.42-4.97, P = 0.01) strains. Total accumulated net contact was approximately 50% lower at PermaNet and Olyset ITNs (P < 0.0001) in susceptible (two of the three volunteers) and resistant mosquitoes. Times prior to first net contact were similar at untreated nets and ITNs (P > 0.2), and neither ITN type showed detectable spatial repellency. After initial contact, blood-feeding commenced later at Olyset (mean 2.76 min, 95% CI = 1.74-3.76, P = 0.0009) and PermaNet (mean 2.4 min, 95% CI = 1.52-3.33, P = 0.0058) than untreated netting (mean 0.68 min, 95% CI = 0.42-0.94). CONCLUSIONS The baited box offers a simple method for detailed characterization of mosquito behavioural responses to insecticidal nets, for comparing entomological modes of action between nets and for defining the behavioural responses of particular mosquito strains or populations. The device has potential as a screening assay in the search for novel net treatments and for investigations into behavioural resistance mechanisms.
Collapse
Affiliation(s)
- Angela Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Geraldine M Foster
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Amy Guy
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Agnes Matope
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Mayumi Abe
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David Towers
- Optical Engineering Group, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|