1
|
Zhu X, Ma Z, Xie F, Wang J. ASH2L, Core Subunit of H3K4 Methylation Complex, Regulates Amelogenesis. J Dent Res 2024; 103:81-90. [PMID: 37990471 DOI: 10.1177/00220345231207309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Histone methylation assumes a crucial role in the intricate process of enamel development. Our study has illuminated the substantial prevalence of H3K4me3 distribution, spanning from the cap stage to the late bell stage of dental germs. In order to delve into the role of H3K4me3 modification in amelogenesis and unravel the underlying mechanisms, we performed a conditional knockout of Ash2l, a core subunit essential for the establishment of H3K4me3 within the dental epithelium of mice. The absence of Ash2l resulted in reduced H3K4me3 modification, subsequently leading to abnormal morphology of dental germ at the late bell stage. Notably, knockout of Ash2l resulted in a loss of polarity in ameloblasts and odontoblasts. The proliferation and apoptosis of the inner enamel epithelium cells underwent dysregulation. Moreover, there was a notable reduction in the expression of matrix-related genes, Amelx and Dspp, accompanied with impaired enamel and dentin formation. Cut&Tag-seq (cleavage under targets and tagmentation sequencing) analysis substantiated a reduction of H3K4me3 modification on Shh, Trp63, Sp6, and others in the dental epithelium of Ash2l knockout mice. Validation through real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence consistently affirmed the observed downregulation of Shh and Sp6 in the dental epithelium following Ash2l knockout. Intriguingly, the expression of Trp63 isomers, DNp63 and TAp63, was perturbed in Ash2l defect dental epithelium. Furthermore, the downstream target of TAp63, P21, exhibited aberrant expression within the cervical loop of mandibular first molars and incisors. Collectively, our findings suggest that ASH2L orchestrates the regulation of crucial amelogenesis-associated genes, such as Shh, Trp63, and others, by modulating H3K4me3 modification. Loss of ASH2L and H3K4me3 can lead to aberrant differentiation, proliferation, and apoptosis of the dental epithelium by affecting the expression of Shh, Trp63, and others genes, thereby contributing to the defects of amelogenesis.
Collapse
Affiliation(s)
- X Zhu
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Z Ma
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - F Xie
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - J Wang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Barsoum M, Sayadi-Boroujeni R, Stenzel AT, Bussmann P, Lüscher-Firzlaff J, Lüscher B. Sequential deregulation of histone marks, chromatin accessibility and gene expression in response to PROTAC-induced degradation of ASH2L. Sci Rep 2023; 13:22565. [PMID: 38114530 PMCID: PMC10730889 DOI: 10.1038/s41598-023-49284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
The trithorax protein ASH2L is essential for organismal and tissue development. As a subunit of COMPASS/KMT2 complexes, ASH2L is necessary for methylation of histone H3 lysine 4 (H3K4). Mono- and tri-methylation at this site mark active enhancers and promoters, respectively, although the functional relevance of H3K4 methylation is only partially understood. ASH2L has a long half-life, which results in a slow decrease upon knockout. This has made it difficult to define direct consequences. To overcome this limitation, we employed a PROTAC system to rapidly degrade ASH2L and address direct effects. ASH2L loss resulted in inhibition of proliferation of mouse embryo fibroblasts. Shortly after ASH2L degradation H3K4me3 decreased with its half-life varying between promoters. Subsequently, H3K4me1 increased at promoters and decreased at some enhancers. H3K27ac and H3K27me3, histone marks closely linked to H3K4 methylation, were affected with considerable delay. In parallel, chromatin compaction increased at promoters. Of note, nascent gene transcription was not affected early but overall RNA expression was deregulated late after ASH2L loss. Together, these findings suggest that downstream effects are ordered but relatively slow, despite the rapid loss of ASH2L and inactivation of KMT2 complexes. It appears that the systems that control gene transcription are well buffered and strong effects are only beginning to unfold after considerable delay.
Collapse
Affiliation(s)
- Mirna Barsoum
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Roksaneh Sayadi-Boroujeni
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Bayer AG, Crop Science Division, R&D, Pest Control, 40789, Monheim am Rhein, Germany
| | - Alexander T Stenzel
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
- Institute of Human Genetics, Faculty of Medicine, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Philip Bussmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Ozyerli-Goknar E, Kala EY, Aksu AC, Bulut I, Cingöz A, Nizamuddin S, Biniossek M, Seker-Polat F, Morova T, Aztekin C, Kung SHY, Syed H, Tuncbag N, Gönen M, Philpott M, Cribbs AP, Acilan C, Lack NA, Onder TT, Timmers HTM, Bagci-Onder T. Epigenetic-focused CRISPR/Cas9 screen identifies (absent, small, or homeotic)2-like protein (ASH2L) as a regulator of glioblastoma cell survival. Cell Commun Signal 2023; 21:328. [PMID: 37974198 PMCID: PMC10652464 DOI: 10.1186/s12964-023-01335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Glioblastoma is the most common and aggressive primary brain tumor with extremely poor prognosis, highlighting an urgent need for developing novel treatment options. Identifying epigenetic vulnerabilities of cancer cells can provide excellent therapeutic intervention points for various types of cancers. METHOD In this study, we investigated epigenetic regulators of glioblastoma cell survival through CRISPR/Cas9 based genetic ablation screens using a customized sgRNA library EpiDoKOL, which targets critical functional domains of chromatin modifiers. RESULTS Screens conducted in multiple cell lines revealed ASH2L, a histone lysine methyltransferase complex subunit, as a major regulator of glioblastoma cell viability. ASH2L depletion led to cell cycle arrest and apoptosis. RNA sequencing and greenCUT&RUN together identified a set of cell cycle regulatory genes, such as TRA2B, BARD1, KIF20B, ARID4A and SMARCC1 that were downregulated upon ASH2L depletion. Mass spectrometry analysis revealed the interaction partners of ASH2L in glioblastoma cell lines as SET1/MLL family members including SETD1A, SETD1B, MLL1 and MLL2. We further showed that glioblastoma cells had a differential dependency on expression of SET1/MLL family members for survival. The growth of ASH2L-depleted glioblastoma cells was markedly slower than controls in orthotopic in vivo models. TCGA analysis showed high ASH2L expression in glioblastoma compared to low grade gliomas and immunohistochemical analysis revealed significant ASH2L expression in glioblastoma tissues, attesting to its clinical relevance. Therefore, high throughput, robust and affordable screens with focused libraries, such as EpiDoKOL, holds great promise to enable rapid discovery of novel epigenetic regulators of cancer cell survival, such as ASH2L. CONCLUSION Together, we suggest that targeting ASH2L could serve as a new therapeutic opportunity for glioblastoma. Video Abstract.
Collapse
Affiliation(s)
- Ezgi Ozyerli-Goknar
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Ezgi Yagmur Kala
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Ali Cenk Aksu
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Ipek Bulut
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Ahmet Cingöz
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Sheikh Nizamuddin
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Biniossek
- Institute for Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Fidan Seker-Polat
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
| | - Tunc Morova
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Can Aztekin
- Koç University School of Medicine, Istanbul, Türkiye
| | - Sonia H Y Kung
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Hamzah Syed
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Biostatistics, Bioinformatics and Data Management Lab, KUTTAM, Istanbul, Türkiye
| | - Nurcan Tuncbag
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Department of Chemical and Biological Engineering, Koç University, Istanbul, Türkiye
| | - Mehmet Gönen
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Department of Industrial Engineering, Koç University, Istanbul, Türkiye
| | - Martin Philpott
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Ceyda Acilan
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Nathan A Lack
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Tamer T Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - H T Marc Timmers
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Türkiye.
- Koç University School of Medicine, Istanbul, Türkiye.
| |
Collapse
|
4
|
Rydström A, Grahn THM, Niroula A, Mansell E, van der Garde M, Pertesi M, Subramaniam A, Soneji S, Zubarev R, Enver T, Nilsson B, Miharada K, Larsson J, Karlsson S. Functional and molecular profiling of hematopoietic stem cells during regeneration. Exp Hematol 2023; 127:40-51. [PMID: 37666355 DOI: 10.1016/j.exphem.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Hematopoietic stem cells (HSCs) enable hematopoietic stem cell transplantation (HCT) through their ability to replenish the entire blood system. Proliferation of HSCs is linked to decreased reconstitution potential, and a precise regulation of actively dividing HSCs is thus essential to ensure long-term functionality. This regulation becomes important in the transplantation setting where HSCs undergo proliferation followed by a gradual transition to quiescence and homeostasis. Although mouse HSCs have been well studied under homeostatic conditions, the mechanisms regulating HSC activation under stress remain unclear. Here, we analyzed the different phases of regeneration after transplantation. We isolated bone marrow from mice at 8 time points after transplantation and examined the reconstitution dynamics and transcriptional profiles of stem and progenitor populations. We found that regenerating HSCs initially produced rapidly expanding progenitors and displayed distinct changes in fatty acid metabolism and glycolysis. Moreover, we observed molecular changes in cell cycle, MYC and mTOR signaling in both HSCs, and progenitor subsets. We used a decay rate model to fit the temporal transcription profiles of regenerating HSCs and identified genes with progressively decreased or increased expression after transplantation. These genes overlapped to a large extent with published gene sets associated with key aspects of HSC function, demonstrating the potential of this data set as a resource for identification of novel HSC regulators. Taken together, our study provides a detailed functional and molecular characterization of HSCs at different phases of regeneration and identifies a gene set associated with the transition from proliferation to quiescence.
Collapse
Affiliation(s)
- Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Tan H M Grahn
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Abhishek Niroula
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Els Mansell
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Mark van der Garde
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Maroulio Pertesi
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Shamit Soneji
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Tariq Enver
- Stem Cell Group, Cancer Institute, University College London, United Kingdom
| | - Björn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Loeffler D. Editorial: Single cell dynamics and cell cycle length variation. Front Cell Dev Biol 2023; 11:1321316. [PMID: 37941900 PMCID: PMC10628721 DOI: 10.3389/fcell.2023.1321316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Dirk Loeffler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Pathology and Laboratory Medicine, The University of Tennessee, Memphis, TN, United States
| |
Collapse
|
6
|
Eigenschink M, Wessely I, Dijmarescu M, Förster-Waldl E, Farr A, Kiss H, Berger A, Wisgrill L. Transcriptomic analysis identifies lactoferrin-induced quiescent circuits in neonatal macrophages. Front Immunol 2023; 14:1276173. [PMID: 37868991 PMCID: PMC10590118 DOI: 10.3389/fimmu.2023.1276173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Upon birth, a hitherto naïve immune system is confronted with a plethora of microbial antigens due to intestinal bacterial colonization. To prevent excessive inflammation and disruption of the epithelial barrier, physiological mechanisms must promote immune-anergy within the neonatal gut. As high concentrations of human lactoferrin (hLF), a transferrin glycoprotein shown to modulate macrophage function, are frequently encountered in colostrum, its direct interaction with intestinal macrophages may satisfy this physiological need. Thus, the primary objective of this study was to investigate transcriptional changes induced by human lactoferrin in neonatal monocyte-derived macrophages. Methods Cord blood-derived monocytes were differentiated with M-CSF in presence or absence of 500 µg/mL hLF for 7 days and afterwards stimulated with 1 ng/mL LPS or left untreated. RNA was then isolated and subjected to microarray analysis. Results Differentiation of cord blood-derived monocytes in presence of hLF induced a distinct transcriptional program defined by cell cycle arrest in the G2/M phase, induction of IL-4/IL-13-like signaling, altered extracellular matrix interaction, and enhanced propensity for cell-cell interaction. Moreover, near-complete abrogation of transcriptional changes induced by TLR4 engagement with LPS was observed in hLF-treated samples. Discussion The global transition towards an M2-like homeostatic phenotype and the acquisition of quiescence elegantly demonstrate the ontogenetical relevance of hLF in attenuating pro-inflammatory signaling within the developing neonatal intestine. The marked anergy towards proinflammatory stimuli such as LPS further underlines the glycoprotein's potential therapeutic relevance.
Collapse
Affiliation(s)
- Michael Eigenschink
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Isabelle Wessely
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Marco Dijmarescu
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Förster-Waldl
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Alex Farr
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Herbert Kiss
- Department of Obstetrics and Gynecology, Division of Obstetrics and Feto-Maternal Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Angelika Berger
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lukas Wisgrill
- Division of Neonatology, Pediatric Intensive Care and Neuropaediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Treichel S, Filippi MD. Linking cell cycle to hematopoietic stem cell fate decisions. Front Cell Dev Biol 2023; 11:1231735. [PMID: 37645247 PMCID: PMC10461445 DOI: 10.3389/fcell.2023.1231735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem cells (HSCs) have the properties to self-renew and/or differentiate into any blood cell lineages. In order to balance the maintenance of the stem cell pool with supporting mature blood cell production, the fate decisions to self-renew or to commit to differentiation must be tightly controlled, as dysregulation of this process can lead to bone marrow failure or leukemogenesis. The contribution of the cell cycle to cell fate decisions has been well established in numerous types of stem cells, including pluripotent stem cells. Cell cycle length is an integral component of hematopoietic stem cell fate. Hematopoietic stem cells must remain quiescent to prevent premature replicative exhaustion. Yet, hematopoietic stem cells must be activated into cycle in order to produce daughter cells that will either retain stem cell properties or commit to differentiation. How the cell cycle contributes to hematopoietic stem cell fate decisions is emerging from recent studies. Hematopoietic stem cell functions can be stratified based on cell cycle kinetics and divisional history, suggesting a link between Hematopoietic stem cells activity and cell cycle length. Hematopoietic stem cell fate decisions are also regulated by asymmetric cell divisions and recent studies have implicated metabolic and organelle activity in regulating hematopoietic stem cell fate. In this review, we discuss the current understanding of the mechanisms underlying hematopoietic stem cell fate decisions and how they are linked to the cell cycle.
Collapse
Affiliation(s)
- Sydney Treichel
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Molecular and Development Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH, United States
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
8
|
Xu YJ, Dai SK, Duan CH, Zhang ZH, Liu PP, Liu C, Du HZ, Lu XK, Hu S, Li L, Teng ZQ, Liu CM. ASH2L regulates postnatal neurogenesis through Onecut2-mediated inhibition of TGF-β signaling pathway. Cell Death Differ 2023; 30:1943-1956. [PMID: 37433907 PMCID: PMC10406892 DOI: 10.1038/s41418-023-01189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023] Open
Abstract
The ability of neural stem/progenitor cells (NSPCs) to proliferate and differentiate is required through different stages of neurogenesis. Disturbance in the regulation of neurogenesis causes many neurological diseases, such as intellectual disability, autism, and schizophrenia. However, the intrinsic mechanisms of this regulation in neurogenesis remain poorly understood. Here, we report that Ash2l (Absent, small or homeotic discs-like 2), one core component of a multimeric histone methyltransferase complex, is essential for NSPC fate determination during postnatal neurogenesis. Deletion of Ash2l in NSPCs impairs their capacity for proliferation and differentiation, leading to simplified dendritic arbors in adult-born hippocampal neurons and deficits in cognitive abilities. RNA sequencing data reveal that Ash2l primarily regulates cell fate specification and neuron commitment. Furthermore, we identified Onecut2, a major downstream target of ASH2L characterized by bivalent histone modifications, and demonstrated that constitutive expression of Onecut2 restores defective proliferation and differentiation of NSPCs in adult Ash2l-deficient mice. Importantly, we identified that Onecut2 modulates TGF-β signaling in NSPCs and that treatment with a TGF-β inhibitor rectifies the phenotype of Ash2l-deficient NSPCs. Collectively, our findings reveal the ASH2L-Onecut2-TGF-β signaling axis that mediates postnatal neurogenesis to maintain proper forebrain function.
Collapse
Affiliation(s)
- Ya-Jie Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Chun-Hui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Zi-Han Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Pei-Pei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Cong Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Xu-Kun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Medical College, Soochow University, 215000, Suzhou, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhao-Qian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
9
|
Zhao Z, Dai X, Jiang G, Lin F. ASH2L Controls Ureteric Bud Morphogenesis through the Regulation of RET/GFRA1 Signaling Activity in a Mouse Model. J Am Soc Nephrol 2023; 34:988-1002. [PMID: 36758123 PMCID: PMC10278782 DOI: 10.1681/asn.0000000000000099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Causes of congenital anomalies of the kidney and urinary tract (CAKUT) remain unclear. The authors investigated whether and how inactivation of Ash2l -which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide histone H3 lysine K4 (H3K4) methylation-might contribute to CAKUT. In a mouse model, inactivation of Ash2l in the ureteric bud (UB) lineage led to CAKUT-like phenotypes. Removal of ASH2L led to deficient H3K4 trimethylation, which slowed cell proliferation at the UB tip, delaying budding and impairing branching morphogenesis. The absence of ASH2L also downregulated the expression of Ret , Gfra1 , and Wnt11 genes involved in RET/GFRA1 signaling. These findings identify ASH2L-mediated H3K4 methylation as an upstream epigenetic regulator of signaling crucial for UB morphogenesis and indicate that deficiency or dysregulation of these processes may lead to CAKUT. BACKGROUND Ureteric bud (UB) induction and branching morphogenesis are fundamental to the establishment of the renal architecture and are key determinants of nephron number. Defective UB morphogenesis could give rise to a spectrum of malformations associated with congenital anomalies of the kidney and urinary tract (CAKUT). Signaling involving glial cell line-derived neurotrophic factor and its receptor rearranged during transfection (RET) and coreceptor GFRA1 seems to be particularly important in UB development. Recent epigenome profiling studies have uncovered dynamic changes of histone H3 lysine K4 (H3K4) methylation during metanephros development, and dysregulated H3K4 methylation has been associated with a syndromic human CAKUT. METHODS To investigate whether and how inactivation of Ash2l , which encodes a subunit of the COMPASS methyltransferase responsible for genome-wide H3K4 methylation, might contribute to CAKUT, we inactivated Ash2l specifically from the UB lineage in C57BL/6 mice and examined the effects on genome-wide H3K4 methylation and metanephros development. Genes and epigenome changes potentially involved in these effects were screened using RNA-seq combined with Cleavage Under Targets and Tagmentation sequencing. RESULTS UB-specific inactivation of Ash2l caused CAKUT-like phenotypes mainly involving renal dysplasia at birth, which were associated with deficient H3K4 trimethylation. Ash2l inactivation slowed proliferation of cells at the UB tip, delaying budding and impairing UB branching morphogenesis. These effects were associated with downregulation of Ret , Gfra1 , and Wnt11 , which participate in RET/GFRA1 signaling. CONCLUSIONS These experiments identify ASH2L-dependent H3K4 methylation in the UB lineage as an upstream epigenetic regulator of RET/GFRA1 signaling in UB morphogenesis, which, if deficient, may lead to CAKUT.
Collapse
Affiliation(s)
- Ziyi Zhao
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuantong Dai
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Lin R, Wu J, You Z, Xu D, Li C, Wang W, Qian G. Induction of Hibernation and Changes in Physiological and Metabolic Indices in Pelodiscus sinensis. BIOLOGY 2023; 12:biology12050720. [PMID: 37237532 DOI: 10.3390/biology12050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Pelodiscus sinensis (P. sinensis) is a commonly cultivated turtle species with a habit of hibernation. To study the changes in histone expression and methylation of P. sinensis during hibernation induction, a model was established by artificial induction. Physiological and metabolic indices were measured, and the expression and localization of histone (H1, H2A, H2B, H3, and H4) and methylation-related genes (ASH2L, KMT2A, KMT2E, KDM1A, KDM1B, and KDM5A) were measured by quantitative PCR, immunohistochemistry, and Western blot analysis. The results indicated that the metabolism, antioxidation index, and relative expression of histone methyltransferase were significantly decreased (p < 0.05), whereas the activity and expression of histone demethyltransferase were significantly increased (p < 0.05). Although our results showed significant changes in physiological and gene expression after hibernation induction, we could not confirm that P. sinensis entered deep hibernation. Therefore, for the state after cooling-induced hibernation, cold torpor might be a more accurate description. The results indicate that the P. sinensis can enter cold torpor through artificial induction, and the expression of histones may promote gene transcription. Unlike histones expressed under normal conditions, histone methylation may activate gene transcription during hibernation induction. Western blot analysis revealed that the ASH2L and KDM5A proteins were differentially expressed in the testis at different months (p < 0.05), which may perform a role in regulating gene transcription. The immunohistochemical localization of ASH2L and KDM5A in spermatogonia and spermatozoa suggests that ASH2L and KDM5A may perform a role in mitosis and meiosis. In conclusion, this study is the first to report changes in histone-related genes in reptiles, which provides insight for further studies on the physiological metabolism and histone methylation regulation of P. sinensis during the hibernation induction and hibernation period.
Collapse
Affiliation(s)
- Runlan Lin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Jiahao Wu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Ziyi You
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongjie Xu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Caiyan Li
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wang
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
11
|
Barsoum M, Stenzel AT, Bochyńska A, Kuo CC, Tsompanidis A, Sayadi-Boroujeni R, Bussmann P, Lüscher-Firzlaff J, Costa IG, Lüscher B. Loss of the Ash2l subunit of histone H3K4 methyltransferase complexes reduces chromatin accessibility at promoters. Sci Rep 2022; 12:21506. [PMID: 36513698 PMCID: PMC9747801 DOI: 10.1038/s41598-022-25881-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Changes in gene expression programs are intimately linked to cell fate decisions. Post-translational modifications of core histones contribute to control gene expression. Methylation of lysine 4 of histone H3 (H3K4) correlates with active promoters and gene transcription. This modification is catalyzed by KMT2 methyltransferases, which require interaction with 4 core subunits, WDR5, RBBP5, ASH2L and DPY30, for catalytic activity. Ash2l is necessary for organismal development and for tissue homeostasis. In mouse embryo fibroblasts (MEFs), Ash2l loss results in gene repression, provoking a senescence phenotype. We now find that upon knockout of Ash2l both H3K4 mono- and tri-methylation (H3K4me1 and me3, respectively) were deregulated. In particular, loss of H3K4me3 at promoters correlated with gene repression, especially at CpG island promoters. Ash2l loss resulted in increased loading of histone H3 and reduced chromatin accessibility at promoters, accompanied by an increase of repressing and a decrease of activating histone marks. Moreover, we observed altered binding of CTCF upon Ash2l loss. Lost and gained binding was noticed at promoter-associated and intergenic sites, respectively. Thus, Ash2l loss and reduction of H3K4me3 correlate with altered chromatin accessibility and transcription factor binding. These findings contribute to a more detailed understanding of mechanistic consequences of H3K4me3 loss and associated repression of gene transcription and thus of the observed cellular consequences.
Collapse
Affiliation(s)
- Mirna Barsoum
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander T. Stenzel
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Agnieszka Bochyńska
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Chao-Chung Kuo
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInterdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alexander Tsompanidis
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Roksaneh Sayadi-Boroujeni
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Philip Bussmann
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- grid.1957.a0000 0001 0728 696XInstitute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Greenwood DL, Ramsey HE, Nguyen PTT, Patterson AR, Voss K, Bader JE, Sugiura A, Bacigalupa ZA, Schaefer S, Ye X, Dahunsi DO, Madden MZ, Wellen KE, Savona MR, Ferrell PB, Rathmell JC. Acly Deficiency Enhances Myelopoiesis through Acetyl Coenzyme A and Metabolic-Epigenetic Cross-Talk. Immunohorizons 2022; 6:837-850. [PMID: 36547387 PMCID: PMC9935084 DOI: 10.4049/immunohorizons.2200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Hematopoiesis integrates cytokine signaling, metabolism, and epigenetic modifications to regulate blood cell generation. These processes are linked, as metabolites provide essential substrates for epigenetic marks. In this study, we demonstrate that ATP citrate lyase (Acly), which metabolizes citrate to generate cytosolic acetyl-CoA and is of clinical interest, can regulate chromatin accessibility to limit myeloid differentiation. Acly was tested for a role in murine hematopoiesis by small-molecule inhibition or genetic deletion in lineage-depleted, c-Kit-enriched hematopoietic stem and progenitor cells from Mus musculus. Treatments increased the abundance of cell populations that expressed the myeloid integrin CD11b and other markers of myeloid differentiation. When single-cell RNA sequencing was performed, we found that Acly inhibitor-treated hematopoietic stem and progenitor cells exhibited greater gene expression signatures for macrophages and enrichment of these populations. Similarly, the single-cell assay for transposase-accessible chromatin sequencing showed increased chromatin accessibility at genes associated with myeloid differentiation, including CD11b, CD11c, and IRF8. Mechanistically, Acly deficiency altered chromatin accessibility and expression of multiple C/EBP family transcription factors known to regulate myeloid differentiation and cell metabolism, with increased Cebpe and decreased Cebpa and Cebpb. This effect of Acly deficiency was accompanied by altered mitochondrial metabolism with decreased mitochondrial polarization but increased mitochondrial content and production of reactive oxygen species. The bias to myeloid differentiation appeared due to insufficient generation of acetyl-CoA, as exogenous acetate to support alternate compensatory pathways to produce acetyl-CoA reversed this phenotype. Acly inhibition thus can promote myelopoiesis through deprivation of acetyl-CoA and altered histone acetylome to regulate C/EBP transcription factor family activity for myeloid differentiation.
Collapse
Affiliation(s)
- Dalton L. Greenwood
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Haley E. Ramsey
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Phuong T. T. Nguyen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Andrew R. Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Jackie E. Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | - Samuel Schaefer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Debolanle O. Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew Z. Madden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kathryn E. Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael R. Savona
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - P. Brent Ferrell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
13
|
Bochyńska A, Stenzel AT, Boroujeni RS, Kuo CC, Barsoum M, Liang W, Bussmann P, Costa IG, Lüscher-Firzlaff J, Lüscher B. Induction of senescence upon loss of the Ash2l core subunit of H3K4 methyltransferase complexes. Nucleic Acids Res 2022; 50:7889-7905. [PMID: 35819198 PMCID: PMC9371893 DOI: 10.1093/nar/gkac591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Gene expression is controlled in part by post-translational modifications of core histones. Methylation of lysine 4 of histone H3 (H3K4), associated with open chromatin and gene transcription, is catalyzed by type 2 lysine methyltransferase complexes that require WDR5, RBBP5, ASH2L and DPY30 as core subunits. Ash2l is essential during embryogenesis and for maintaining adult tissues. To expand on the mechanistic understanding of Ash2l, we generated mouse embryo fibroblasts (MEFs) with conditional Ash2l alleles. Upon loss of Ash2l, methylation of H3K4 and gene expression were downregulated, which correlated with inhibition of proliferation and cell cycle progression. Moreover, we observed induction of senescence concomitant with a set of downregulated signature genes but independent of SASP. Many of the signature genes are FoxM1 responsive. Indeed, exogenous FOXM1 was sufficient to delay senescence. Thus, although the loss of Ash2l in MEFs has broad and complex consequences, a distinct set of downregulated genes promotes senescence.
Collapse
Affiliation(s)
- Agnieszka Bochyńska
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Alexander T Stenzel
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Roksaneh Sayadi Boroujeni
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Chao-Chung Kuo
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany.,Interdisciplinary Center for Clinical Research (IZKF), Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mirna Barsoum
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Weili Liang
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Philip Bussmann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Juliane Lüscher-Firzlaff
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany
| |
Collapse
|
14
|
The Ash2l SDI Domain Is Required to Maintain the Stability and Binding of DPY30. Cells 2022; 11:cells11091450. [PMID: 35563756 PMCID: PMC9103646 DOI: 10.3390/cells11091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
ASH2L and DPY30 are important for the assembly and catalytic activity of the complex associated with SET1 (COMPASS), which catalyzes histone methylation and regulates gene expression. However, the regulations among COMPASS components are not fully understood. Here, we leveraged a mouse model and cell lines to observe the outcome of Ash2l depletion and found a significant decrease in DPY30. Analyzing ASH2L ChIP-seq and RNA-seq data excluded transcriptional and translational regulation of ASH2L to DPY30. The decrease in DPY30 was further attributed to the degradation via the ubiquitin-mediated proteasomal pathway. We also verified that three amino acids in the ASH2L Sdc1 DPY30 interaction (SDI) domain are essential for the recognition and binding of DPY30. Lastly, we unexpectedly observed that overexpression of DPY30 in Ash2l-depleted cells rescued the decrease in Ccnd1 and the abnormal cell cycle, which indicates that DPY30 can participate in other complexes to regulate gene expression. Overall, our results, for the first time, reveal that the existence of DPY30 relies on the binding with ASH2L, with degradation of DPY30 via the ubiquitin-proteasome system, and they further indicate that the function of DPY30 can be independent of ASH2L.
Collapse
|
15
|
Mann Z, Sengar M, Verma YK, Rajalingam R, Raghav PK. Hematopoietic Stem Cell Factors: Their Functional Role in Self-Renewal and Clinical Aspects. Front Cell Dev Biol 2022; 10:664261. [PMID: 35399522 PMCID: PMC8987924 DOI: 10.3389/fcell.2022.664261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess two important properties such as self-renewal and differentiation. These properties of HSCs are maintained through hematopoiesis. This process gives rise to two subpopulations, long-term and short-term HSCs, which have become a popular convention for treating various hematological disorders. The clinical application of HSCs is bone marrow transplant in patients with aplastic anemia, congenital neutropenia, sickle cell anemia, thalassemia, or replacement of damaged bone marrow in case of chemotherapy. The self-renewal attribute of HSCs ensures long-term hematopoiesis post-transplantation. However, HSCs need to be infused in large numbers to reach their target site and meet the demands since they lose their self-renewal capacity after a few passages. Therefore, a more in-depth understanding of ex vivo HSCs expansion needs to be developed to delineate ways to enhance the self-renewability of isolated HSCs. The multifaceted self-renewal process is regulated by factors, including transcription factors, miRNAs, and the bone marrow niche. A developed classical hierarchical model that outlines the hematopoiesis in a lineage-specific manner through in vivo fate mapping, barcoding, and determination of self-renewal regulatory factors are still to be explored in more detail. Thus, an in-depth study of the self-renewal property of HSCs is essentially required to be utilized for ex vivo expansion. This review primarily focuses on the Hematopoietic stem cell self-renewal pathway and evaluates the regulatory molecular factors involved in considering a targeted clinical approach in numerous malignancies and outlining gaps in the current knowledge.
Collapse
Affiliation(s)
- Zoya Mann
- Independent Researcher, New Delhi, India
| | - Manisha Sengar
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Yogesh Kumar Verma
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Albert L, Nagpal J, Steinchen W, Zhang L, Werel L, Djokovic N, Ruzic D, Hoffarth M, Xu J, Kaspareit J, Abendroth F, Royant A, Bange G, Nikolic K, Ryu S, Dou Y, Essen LO, Vázquez O. Bistable Photoswitch Allows in Vivo Control of Hematopoiesis. ACS CENTRAL SCIENCE 2022; 8:57-66. [PMID: 35106373 PMCID: PMC8796299 DOI: 10.1021/acscentsci.1c00434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Optical control has enabled functional modulation in cell culture with unparalleled spatiotemporal resolution. However, current tools for in vivo manipulation are scarce. Here, we design and implement a genuine on-off optochemical probe capable of achieving hematopoietic control in zebrafish. Our photopharmacological approach first developed conformationally strained visible light photoswitches (CS-VIPs) as inhibitors of the histone methyltransferase MLL1 (KMT2A). In blood homeostasis MLL1 plays a crucial yet controversial role. CS-VIP 8 optimally fulfils the requirements of a true bistable functional system in vivo under visible-light irradiation, and with unprecedented stability. These properties are exemplified via hematopoiesis photoinhibition with a single isomer in zebrafish. The present interdisciplinary study uncovers the mechanism of action of CS-VIPs. Upon WDR5 binding, CS-VIP 8 causes MLL1 release with concomitant allosteric rearrangements in the WDR5/RbBP5 interface. Since our tool provides on-demand reversible control without genetic intervention or continuous irradiation, it will foster hematopathology and epigenetic investigations. Furthermore, our workflow will enable exquisite photocontrol over other targets inhibited by macrocycles.
Collapse
Affiliation(s)
- Lea Albert
- Department
of Chemistry, University of Marburg, 35037 Marburg, Germany
| | - Jatin Nagpal
- APC Microbiome
Ireland, University College Cork, Cork, Ireland
| | - Wieland Steinchen
- Department
of Chemistry, University of Marburg, 35037 Marburg, Germany
- Center
for Synthetic Microbiology (SYNMIKRO), University
of Marburg, 35037 Marburg, Germany
| | - Lei Zhang
- Department
of Chemistry, University of Marburg, 35037 Marburg, Germany
| | - Laura Werel
- Department
of Chemistry, University of Marburg, 35037 Marburg, Germany
| | - Nemanja Djokovic
- Department
of Pharmaceutical Chemistry, University
of Belgrade, 11000 Belgrade, Serbia
| | - Dusan Ruzic
- Department
of Pharmaceutical Chemistry, University
of Belgrade, 11000 Belgrade, Serbia
| | - Malte Hoffarth
- Department
of Chemistry, University of Marburg, 35037 Marburg, Germany
| | - Jing Xu
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Johanna Kaspareit
- University
Medical Center, Johannes Gutenberg University Mainz, 55122 Mainz, Germany
| | - Frank Abendroth
- Department
of Chemistry, University of Marburg, 35037 Marburg, Germany
| | - Antoine Royant
- Univ.
Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
- European
Synchrotron Radiation Facility, 38043 Grenoble, France
| | - Gert Bange
- Department
of Chemistry, University of Marburg, 35037 Marburg, Germany
- Center
for Synthetic Microbiology (SYNMIKRO), University
of Marburg, 35037 Marburg, Germany
| | - Katarina Nikolic
- Department
of Pharmaceutical Chemistry, University
of Belgrade, 11000 Belgrade, Serbia
| | - Soojin Ryu
- University
Medical Center, Johannes Gutenberg University Mainz, 55122 Mainz, Germany
- College
of Medicine and Health, University of Exeter, Exeter EX4 4PY, U.K.
- Living
Systems Institute, University of Exeter, Exeter EX4 QD, U.K.
| | - Yali Dou
- Norris
Comprehensive Cancer Center, University
of Southern California, Los Angeles, California 90007, United States
| | - Lars-Oliver Essen
- Department
of Chemistry, University of Marburg, 35037 Marburg, Germany
- Center
for Synthetic Microbiology (SYNMIKRO), University
of Marburg, 35037 Marburg, Germany
| | - Olalla Vázquez
- Department
of Chemistry, University of Marburg, 35037 Marburg, Germany
- Center
for Synthetic Microbiology (SYNMIKRO), University
of Marburg, 35037 Marburg, Germany
| |
Collapse
|
17
|
Zhu T, Zhao Y, Zhang P, Shao Y, He J, Xue P, Zheng W, Qu W, Jia X, Zhou Z, Lu R, He M, Zhang Y. Lead Impairs the Development of Innate Lymphoid Cells by Impeding the Differentiation of Their Progenitors. Toxicol Sci 2021; 176:410-422. [PMID: 32428222 DOI: 10.1093/toxsci/kfaa074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lead (Pb) is a heavy metal toxic to the immune system, yet the influence of Pb on innate lymphoid cells (ILC) remains to be defined. In this study, we found that occupationally relevant level of Pb exposure impaired ILC development at the progenitor level by activating Janus Kinase1. C57BL/6 mice treated with 1250 ppm, but not 125 ppm Pb acetic via drinking water for 8 weeks had reduced number of mature ILC, which was not caused by increased apoptosis or suppressed proliferation. Conversely, Pb increased the number of innate lymphoid cell progenitors (ILCP) in the bone marrow. The discordant observation indicated that an obstruction of ILCP differentiation into mature ILC during Pb exposure existed. Pb directly acted on ILCP to suppress their proliferation, indicating that ILCP were less activated during Pb exposure. Reciprocal ILCP transplantation assay confirmed that Pb impeded the differentiation of ILCP into mature ILC, as ILCP gave rise to fewer mature ILC in Pb-treated recipients compared with control recipients. In vitro assays suggested that the obstruction of ILCP differentiation by Pb exposure was due to increased activation of Janus Kinase1. Thus, Pb impeded ILCP differentiation into mature ILC to result in an accumulation of ILCP in the bone marrow and the resultant decreased number of mature ILC in lymphoid and nonlymphoid tissues in mice. Moreover, by analyses of ILC and ILCP in peripheral blood mononuclear cells of human subjects occupationally exposed to Pb, we revealed that Pb might also impede the development of ILC in human.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Zhejiang 313000, China
| | - Yiming Shao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Jinyi He
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Weiwei Zheng
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Weidong Qu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Xiaodong Jia
- Shanghai Chemical Industry Park Medical Center, Shanghai 201507, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
ASH2L drives proliferation and sensitivity to bleomycin and other genotoxins in Hodgkin's lymphoma and testicular cancer cells. Cell Death Dis 2020; 11:1019. [PMID: 33257682 PMCID: PMC7705021 DOI: 10.1038/s41419-020-03231-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
It is of clinical importance to identify biomarkers predicting the efficacy of DNA damaging drugs (genotoxins) so that nonresponders are not unduly exposed to the deleterious effects of otherwise inefficient drugs. Here, we initially focused on the bleomycin genotoxin because of the limited information about the genes implicated in the sensitivity or resistance to this compound. Using a whole-genome CRISPR/Cas9 gene knockout approach, we identified ASH2L, a core component of the H3K4 methyl transferase complex, as a protein required for bleomycin sensitivity in L1236 Hodgkin lymphoma. Knocking down ASH2L in these cells and in the NT2D1 testicular cancer cell line rendered them resistant to bleomycin, etoposide, and cisplatin but did not affect their sensitivity toward ATM or ATR inhibitors. ASH2L knockdown decreased cell proliferation and facilitated DNA repair via homologous recombination and nonhomologous end-joining mechanisms. Data from the Tumor Cancer Genome Atlas indicate that patients with testicular cancer carrying alterations in the ASH2L gene are more likely to relapse than patients with unaltered ASH2L genes. The cell models we have used are derived from cancers currently treated either partially (Hodgkin’s lymphoma), or entirely (testicular cancer) with genotoxins. For such cancers, ASH2L levels could be used as a biomarker to predict the response to genotoxins. In situations where tumors are expressing low levels of ASH2L, which may allow them to resist genotoxic treatment, the use of ATR or ATM inhibitors may be more efficacious as our data indicate that ASH2L knockdown does not affect sensitivity to these inhibitors.
Collapse
|
19
|
Jiang H. The complex activities of the SET1/MLL complex core subunits in development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194560. [PMID: 32302696 DOI: 10.1016/j.bbagrm.2020.194560] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
In mammalian cells, the SET1/MLL complexes are the main writers of the H3K4 methyl mark that is associated with active gene expression. The activities of these complexes are critically dependent on the association of the catalytic subunit with their shared core subunits, WDR5, RBBP5, ASH2L, and DPY30, collectively referred as WRAD. In addition, some of these core subunits can bind to proteins other than the SET1/MLL complex components. This review starts with discussion of the molecular activities of these core subunits, with an emphasis on DPY30 in organizing the assembly of the SET1/MLL complexes with other associated factors. This review then focuses on the roles of the core subunits in stem cells and development, as well as in diseased cell states, mainly cancer, and ends with discussion on dissecting the responsible activities of the core subunits and how we may target them for potential disease treatment. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|