1
|
Mohammadalipour A, Showalter CA, Muturi HT, Farnoud AM, Najjar SM, Burdick MM. Cholesterol depletion decreases adhesion of non-small cell lung cancer cells to E-selectin. Am J Physiol Cell Physiol 2023; 325:C471-C482. [PMID: 37399498 PMCID: PMC10511166 DOI: 10.1152/ajpcell.00197.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Lipid microdomains, ordered membrane phases containing cholesterol and glycosphingolipids, play an essential role in cancer cell adhesion and ultimately metastasis. Notably, elevated levels of cholesterol-rich lipid microdomains are found in cancer cells relative to their normal counterparts. Therefore, alterations of lipid microdomains through cholesterol modulation could be used as a strategy to prevent cancer metastasis. In this study, methyl-beta-cyclodextrin (MβCD), sphingomyelinase (SMase), and simvastatin (Simva) were used to investigate the effects of cholesterol on the adhesive behaviors of four non-small cell lung cancer (NSCLC) cell lines (H1299, H23, H460, and A549) and a small cell lung cancer (SCLC) cell line (SHP-77) on E-selectin, a vascular endothelial molecule that initiates circulating tumor cell recruitment at metastatic sites. Under hemodynamic flow conditions, the number of adherent NSCLC cells on E-selectin significantly decreased by MβCD and Simva treatments, whereas SMase treatment did not show a significant effect. Significant increases in rolling velocities were detected only for H1299 and H23 cells after MβCD treatment. In contrast, cholesterol depletion did not affect SCLC cell attachment and rolling velocities. Moreover, cholesterol depletion by MβCD and Simva induced CD44 shedding and resulted in an enhanced membrane fluidity in the NSCLC cells, whereas it did not affect the membrane fluidity of the SCLC cells which lacked detectable expression of CD44. Our finding suggests that cholesterol regulates the E-selectin-mediated adhesion of NSCLC cells by redistributing the CD44 glycoprotein and thus modulating the membrane fluidity.NEW & NOTEWORTHY This study investigates the effects of cholesterol on the adhesive behaviors of lung cancer cells in recruitment at metastatic sites. Using cholesterol-modulating compounds, we found that reducing cholesterol decreases the adhesion of non-small cell lung cancer (NSCLC) cells while having no significant effect on small cell lung cancer (SCLC) cells. The study suggests that cholesterol regulates NSCLC cell metastasis by redistributing the adhesion proteins on the cells and modulating cells' membrane fluidity.
Collapse
Affiliation(s)
- Amina Mohammadalipour
- Department of Physics and Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, Missouri, United States
| | - Christian A Showalter
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, United States
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
| | - Monica M Burdick
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, United States
- Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, Athens, Ohio, United States
| |
Collapse
|
2
|
Noori MS, Bodle SJ, Showalter CA, Streator ES, Drozek DS, Burdick MM, Goetz DJ. Sticking to the Problem: Engineering Adhesion in Molecular Endoscopic Imaging. Cell Mol Bioeng 2020; 13:113-124. [PMID: 32175025 DOI: 10.1007/s12195-020-00609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers of the digestive tract cause nearly one quarter of the cancer deaths worldwide, and nearly half of these are due to cancers of the esophagus and colon. Early detection of cancer significantly increases the rate of survival, and thus it is critical that cancer within these organs is detected early. In this regard, endoscopy is routinely used to screen for transforming/cancerous (i.e. dysplastic to fully cancerous) tissue. Numerous studies have revealed that the biochemistry of the luminal surface of such tissue within the colon and esophagus becomes altered throughout disease progression. Molecular endoscopic imaging (MEI), an emerging technology, seeks to exploit these changes for the early detection of cancer. The general approach for MEI is as follows: the luminal surface of an organ is exposed to molecular ligands, or particulate probes bearing a ligand, cognate to biochemistry unique to pre-cancerous/cancerous tissue. After a wash, the tissue is imaged to determine the presence of the probes. Detection of the probes post-washing suggests pathologic tissue. In the current review we provide a succinct, but extensive, review of ligands and target moieties that could be, or are currently being investigated, as possible cognate chemistries for MEI. This is followed by a review of the biophysics that determines, in large part, the success of a particular MEI design. The work draws an analogy between MEI and the well-advanced field of cell adhesion and provides a road map for engineering MEI to achieve assays that yield highly selective recognition of transforming/cancerous tissue in situ.
Collapse
Affiliation(s)
- Mahboubeh S Noori
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - Sarah J Bodle
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| | - Christian A Showalter
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA
| | - Evan S Streator
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA
| | - David S Drozek
- Department of Specialty Medicine, Ohio University, Athens, OH 45701 USA
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701 USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701 USA
| | - Douglas J Goetz
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH 45701 USA.,Biomedical Engineering Program, Ohio University, Athens, OH 45701 USA
| |
Collapse
|