1
|
Repo M, Koskimaa S, Paavola S, Kurppa K. Serological testing for celiac disease in children. Expert Rev Gastroenterol Hepatol 2025; 19:155-164. [PMID: 39893645 DOI: 10.1080/17474124.2025.2462245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Celiac disease is one of the most common chronic immune-mediated gastrointestinal conditions, characterized by the presence of disease-specific serum antibodies against self-antigen transglutaminase 2. Even though modern serological assays can identify most untreated celiac disease patients and are also increasingly being used to establish a diagnosis, several challenges are associated with the tests, including a lack of standardization, the variable sensitivity and specificity of commercial assays, and inadequate sensitivity for monitoring adherence to a gluten-free diet. AREAS COVERED This narrative review outlines the current use of serological tests in case-finding and screening, as well as in the follow-up of dietary treatment. Additionally, the possible challenges and pitfalls of serological tests, along with future directions, are addressed. EXPERT OPINION The excellent accuracy of modern autoantibody tests, especially for greatly elevated levels of transglutaminase 2 antibodies and positive endomysial antibodies, enables using serological testing in establishing a diagnosis. However, better international standardization of the assays is required, the necessity of endomysial antibody testing needs to be further scrutinized, and additional research is needed to improve noninvasive tools for follow-up and to further expand the no-biopsy criteria for celiac disease.
Collapse
Affiliation(s)
- Marleena Repo
- Department of Pediatrics, Tampere University Hospital and Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Sara Koskimaa
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Saana Paavola
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital and Wellbeing Services County of Pirkanmaa, Tampere, Finland
| | - Kalle Kurppa
- Department of Pediatrics, Tampere University Hospital and Wellbeing Services County of Pirkanmaa, Tampere, Finland
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
- The University Consortium of Seinäjoki, Seinäjoki, Finland
| |
Collapse
|
2
|
Carreras J. Celiac Disease Deep Learning Image Classification Using Convolutional Neural Networks. J Imaging 2024; 10:200. [PMID: 39194989 DOI: 10.3390/jimaging10080200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Celiac disease (CD) is a gluten-sensitive immune-mediated enteropathy. This proof-of-concept study used a convolutional neural network (CNN) to classify hematoxylin and eosin (H&E) CD histological images, normal small intestine control, and non-specified duodenal inflammation (7294, 11,642, and 5966 images, respectively). The trained network classified CD with high performance (accuracy 99.7%, precision 99.6%, recall 99.3%, F1-score 99.5%, and specificity 99.8%). Interestingly, when the same network (already trained for the 3 class images), analyzed duodenal adenocarcinoma (3723 images), the new images were classified as duodenal inflammation in 63.65%, small intestine control in 34.73%, and CD in 1.61% of the cases; and when the network was retrained using the 4 histological subtypes, the performance was above 99% for CD and 97% for adenocarcinoma. Finally, the model added 13,043 images of Crohn's disease to include other inflammatory bowel diseases; a comparison between different CNN architectures was performed, and the gradient-weighted class activation mapping (Grad-CAM) technique was used to understand why the deep learning network made its classification decisions. In conclusion, the CNN-based deep neural system classified 5 diagnoses with high performance. Narrow artificial intelligence (AI) is designed to perform tasks that typically require human intelligence, but it operates within limited constraints and is task-specific.
Collapse
Affiliation(s)
- Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
3
|
Sharma L, Rahman F, Sharma RA. The emerging role of biotechnological advances and artificial intelligence in tackling gluten sensitivity. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39145745 DOI: 10.1080/10408398.2024.2392158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Gluten comprises an intricate network of hundreds of related but distinct proteins, mainly "gliadins" and "glutenins," which play a vital role in determining the rheological properties of wheat dough. However, ingesting gluten can trigger severe conditions in susceptible individuals, including celiac disease, wheat allergy, or non-celiac gluten sensitivity, collectively known as gluten-related disorders. This review provides a panoramic view, delving into the various aspects of gluten-triggered disorders, including symptoms, diagnosis, mechanism, and management. Though a gluten-free diet remains the primary option to manage gluten-related disorders, the emerging microbial and plant biotechnology tools are playing a transformative role in reducing the immunotoxicity of gluten. The enzymatic hydrolysis of gluten and the development of gluten-reduced/free wheat lines using RNAi and CRISPR/Cas technology are laying the foundation for creating safer wheat products. In addition to biotechnological interventions, the emerging artificial intelligence technologies are also bringing about a paradigm shift in the diagnosis and management of gluten-related disorders. Here, we provide a comprehensive overview of the latest developments and the potential these technologies hold for tackling gluten sensitivity.
Collapse
Affiliation(s)
- Lakshay Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, India
| | - Farhanur Rahman
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, India
| | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
4
|
Hartmann Tolić I, Habijan M, Galić I, Nyarko EK. Advancements in Computer-Aided Diagnosis of Celiac Disease: A Systematic Review. Biomimetics (Basel) 2024; 9:493. [PMID: 39194472 DOI: 10.3390/biomimetics9080493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Celiac disease, a chronic autoimmune condition, manifests in those genetically prone to it through damage to the small intestine upon gluten consumption. This condition is estimated to affect approximately one in every hundred individuals worldwide, though it often goes undiagnosed. The early and accurate diagnosis of celiac disease (CD) is critical to preventing severe health complications, with computer-aided diagnostic approaches showing significant promise. However, there is a shortage of review literature that encapsulates the field's current state and offers a perspective on future advancements. Therefore, this review critically assesses the literature on the role of imaging techniques, biomarker analysis, and computer models in improving CD diagnosis. We highlight the diagnostic strengths of advanced imaging and the non-invasive appeal of biomarker analyses, while also addressing ongoing challenges in standardization and integration into clinical practice. Our analysis stresses the importance of computer-aided diagnostics in fast-tracking the diagnosis of CD, highlighting the necessity for ongoing research to refine these approaches for effective implementation in clinical settings. Future research in the field will focus on standardizing CAD protocols for broader clinical use and exploring the integration of genetic and protein data to enhance early detection and personalize treatment strategies. These advancements promise significant improvements in patient outcomes and broader implications for managing autoimmune diseases.
Collapse
Affiliation(s)
- Ivana Hartmann Tolić
- Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University, 31000 Osijek, Croatia
| | - Marija Habijan
- Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University, 31000 Osijek, Croatia
| | - Irena Galić
- Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University, 31000 Osijek, Croatia
| | - Emmanuel Karlo Nyarko
- Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University, 31000 Osijek, Croatia
| |
Collapse
|
5
|
Orhan A, Akbayrak H, Çiçek ÖF, Harmankaya İ, Vatansev H. A user-friendly machine learning approach for cardiac structures assessment. Front Cardiovasc Med 2024; 11:1426888. [PMID: 39036503 PMCID: PMC11257907 DOI: 10.3389/fcvm.2024.1426888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Background Machine learning is increasingly being used to diagnose and treat various diseases, including cardiovascular diseases. Automatic image analysis can expedite tissue analysis and save time. However, using machine learning is limited among researchers due to the requirement of technical expertise. By offering extensible features through plugins and scripts, machine-learning platforms make these techniques more accessible to researchers with limited programming knowledge. The misuse of anabolic-androgenic steroids is prevalent, particularly among athletes and bodybuilders, and there is strong evidence of their detrimental effects on ventricular myocardial capillaries and muscle cells. However, most studies rely on qualitative data, which can lead to bias and limited reliability. We present a user-friendly approach using machine learning algorithms to measure the effects of exercise and anabolic-androgenic steroids on cardiac ventricular capillaries and myocytes in an experimental animal model. Method Male Wistar rats were divided into four groups (n = 28): control, exercise-only, anabolic-androgenic steroid-alone, and exercise with anabolic-androgenic steroid. Histopathological analysis of heart tissue was conducted, with images processed and analyzed using the Trainable Weka Segmentation plugin in Fiji software. Machine learning classifiers were trained to segment capillary and myocyte nuclei structures, enabling quantitative morphological measurements. Results Exercise significantly increased capillary density compared to other groups. However, in the exercise + anabolic-androgenic steroid group, steroid use counteracted this effect. Anabolic-androgenic steroid alone did not significantly impact capillary density compared to the control group. Additionally, the exercise group had a significantly shorter intercapillary distance than all other groups. Again, using steroids in the exercise + anabolic-androgenic steroid group diminished this positive effect. Conclusion Despite limited programming skills, researchers can use artificial intelligence techniques to investigate the adverse effects of anabolic steroids on the heart's vascular network and muscle cells. By employing accessible tools like machine learning algorithms and image processing software, histopathological images of capillary and myocyte structures in heart tissues can be analyzed.
Collapse
Affiliation(s)
- Atilla Orhan
- Department of Cardiovascular Surgery, Faculty of Medicine, Selcuk University, Konya, Türkiye
| | - Hakan Akbayrak
- Department of Cardiovascular Surgery, Faculty of Medicine, Selcuk University, Konya, Türkiye
| | - Ömer Faruk Çiçek
- Department of Cardiovascular Surgery, Faculty of Medicine, Selcuk University, Konya, Türkiye
| | - İsmail Harmankaya
- Department of Pathology, Faculty of Medicine, Selcuk University, Konya, Türkiye
| | - Hüsamettin Vatansev
- Department of Biochemistry, Faculty of Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
6
|
Guillen-Grima F, Guillen-Aguinaga S, Guillen-Aguinaga L, Alas-Brun R, Onambele L, Ortega W, Montejo R, Aguinaga-Ontoso E, Barach P, Aguinaga-Ontoso I. Evaluating the Efficacy of ChatGPT in Navigating the Spanish Medical Residency Entrance Examination (MIR): Promising Horizons for AI in Clinical Medicine. Clin Pract 2023; 13:1460-1487. [PMID: 37987431 PMCID: PMC10660543 DOI: 10.3390/clinpract13060130] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The rapid progress in artificial intelligence, machine learning, and natural language processing has led to increasingly sophisticated large language models (LLMs) for use in healthcare. This study assesses the performance of two LLMs, the GPT-3.5 and GPT-4 models, in passing the MIR medical examination for access to medical specialist training in Spain. Our objectives included gauging the model's overall performance, analyzing discrepancies across different medical specialties, discerning between theoretical and practical questions, estimating error proportions, and assessing the hypothetical severity of errors committed by a physician. MATERIAL AND METHODS We studied the 2022 Spanish MIR examination results after excluding those questions requiring image evaluations or having acknowledged errors. The remaining 182 questions were presented to the LLM GPT-4 and GPT-3.5 in Spanish and English. Logistic regression models analyzed the relationships between question length, sequence, and performance. We also analyzed the 23 questions with images, using GPT-4's new image analysis capability. RESULTS GPT-4 outperformed GPT-3.5, scoring 86.81% in Spanish (p < 0.001). English translations had a slightly enhanced performance. GPT-4 scored 26.1% of the questions with images in English. The results were worse when the questions were in Spanish, 13.0%, although the differences were not statistically significant (p = 0.250). Among medical specialties, GPT-4 achieved a 100% correct response rate in several areas, and the Pharmacology, Critical Care, and Infectious Diseases specialties showed lower performance. The error analysis revealed that while a 13.2% error rate existed, the gravest categories, such as "error requiring intervention to sustain life" and "error resulting in death", had a 0% rate. CONCLUSIONS GPT-4 performs robustly on the Spanish MIR examination, with varying capabilities to discriminate knowledge across specialties. While the model's high success rate is commendable, understanding the error severity is critical, especially when considering AI's potential role in real-world medical practice and its implications for patient safety.
Collapse
Affiliation(s)
- Francisco Guillen-Grima
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
- Healthcare Research Institute of Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Preventive Medicine, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, 46980 Madrid, Spain
| | - Sara Guillen-Aguinaga
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
| | - Laura Guillen-Aguinaga
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
- Department of Nursing, Kystad Helse-og Velferdssenter, 7026 Trondheim, Norway
| | - Rosa Alas-Brun
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
| | - Luc Onambele
- School of Health Sciences, Catholic University of Central Africa, Yaoundé 1100, Cameroon;
| | - Wilfrido Ortega
- Department of Surgery, Medical and Social Sciences, University of Alcala de Henares, 28871 Alcalá de Henares, Spain;
| | - Rocio Montejo
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, 413 46 Gothenburg, Sweden;
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | | | - Paul Barach
- Jefferson College of Population Health, Philadelphia, PA 19107, USA;
- School of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Interdisciplinary Research Institute for Health Law and Science, Sigmund Freud University, 1020 Vienna, Austria
- Department of Surgery, Imperial College, London SW7 2AZ, UK
| | - Ines Aguinaga-Ontoso
- Department of Health Sciences, Public University of Navarra, 31008 Pamplona, Spain; (S.G.-A.); (L.G.-A.); (R.A.-B.)
- Healthcare Research Institute of Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
7
|
Optimal classification and generalized prevalence estimates for diagnostic settings with more than two classes. Math Biosci 2023; 358:108982. [PMID: 36804385 DOI: 10.1016/j.mbs.2023.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
An accurate multiclass classification strategy is crucial to interpreting antibody tests. However, traditional methods based on confidence intervals or receiver operating characteristics lack clear extensions to settings with more than two classes. We address this problem by developing a multiclass classification based on probabilistic modeling and optimal decision theory that minimizes the convex combination of false classification rates. The classification process is challenging when the relative fraction of the population in each class, or generalized prevalence, is unknown. Thus, we also develop a method for estimating the generalized prevalence of test data that is independent of classification of the test data. We validate our approach on serological data with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) naïve, previously infected, and vaccinated classes. Synthetic data are used to demonstrate that (i) prevalence estimates are unbiased and converge to true values and (ii) our procedure applies to arbitrary measurement dimensions. In contrast to the binary problem, the multiclass setting offers wide-reaching utility as the most general framework and provides new insight into prevalence estimation best practices.
Collapse
|
8
|
LIU J, FENG XX, DUAN YF, LIU JH, ZHANG C, JIANG L, XU LJ, TIAN J, ZHAO XY, ZHANG Y, SUN K, XU B, ZHAO W, HUI RT, GAO RL, WANG JZ, YUAN JQ, HUANG X, SONG L. Using machine learning to aid treatment decision and risk assessment for severe three-vessel coronary artery disease. J Geriatr Cardiol 2022; 19:367-376. [PMID: 35722036 PMCID: PMC9170909 DOI: 10.11909/j.issn.1671-5411.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Three-vessel disease (TVD) with a SYNergy between PCI with TAXus and cardiac surgery (SYNTAX) score of ≥ 23 is one of the most severe types of coronary artery disease. We aimed to take advantage of machine learning to help in decision-making and prognostic evaluation in such patients. METHODS We analyzed 3786 patients who had TVD with a SYNTAX score of ≥ 23, had no history of previous revascularization, and underwent either coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI) after enrollment. The patients were randomly assigned to a training group and testing group. The C4.5 decision tree algorithm was applied in the training group, and all-cause death after a median follow-up of 6.6 years was regarded as the class label. RESULTS The decision tree algorithm selected age and left ventricular end-diastolic diameter (LVEDD) as splitting features and divided the patients into three subgroups: subgroup 1 (age of ≤ 67 years and LVEDD of ≤ 53 mm), subgroup 2 (age of ≤ 67 years and LVEDD of > 53 mm), and subgroup 3 (age of > 67 years). PCI conferred a patient survival benefit over CABG in subgroup 2. There was no significant difference in the risk of all-cause death between PCI and CABG in subgroup 1 and subgroup 3 in both the training data and testing data. Among the total study population, the multivariable analysis revealed significant differences in the risk of all-cause death among patients in three subgroups. CONCLUSIONS The combination of age and LVEDD identified by machine learning can contribute to decision-making and risk assessment of death in patients with severe TVD. The present results suggest that PCI is a better choice for young patients with severe TVD characterized by left ventricular dilation.
Collapse
Affiliation(s)
- Jie LIU
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Xing FENG
- Endocrinology and Cardiovascular Disease Centre, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Endocrinology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | | | - Jun-Hao LIU
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ce ZHANG
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin JIANG
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lian-Jun XU
- Cardiomyopathy Ward, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian TIAN
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Yan ZHAO
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yin ZHANG
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai SUN
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo XU
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei ZHAO
- Information Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ru-Tai HUI
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Run-Lin GAO
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Zheng WANG
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin-Qing YUAN
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin HUANG
- Department of Endocrinology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
- Solar activity Prediction Center, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
| | - Lei SONG
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiomyopathy Ward, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Busnatu Ș, Niculescu AG, Bolocan A, Petrescu GED, Păduraru DN, Năstasă I, Lupușoru M, Geantă M, Andronic O, Grumezescu AM, Martins H. Clinical Applications of Artificial Intelligence-An Updated Overview. J Clin Med 2022; 11:jcm11082265. [PMID: 35456357 PMCID: PMC9031863 DOI: 10.3390/jcm11082265] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Artificial intelligence has the potential to revolutionize modern society in all its aspects. Encouraged by the variety and vast amount of data that can be gathered from patients (e.g., medical images, text, and electronic health records), researchers have recently increased their interest in developing AI solutions for clinical care. Moreover, a diverse repertoire of methods can be chosen towards creating performant models for use in medical applications, ranging from disease prediction, diagnosis, and prognosis to opting for the most appropriate treatment for an individual patient. In this respect, the present paper aims to review the advancements reported at the convergence of AI and clinical care. Thus, this work presents AI clinical applications in a comprehensive manner, discussing the recent literature studies classified according to medical specialties. In addition, the challenges and limitations hindering AI integration in the clinical setting are further pointed out.
Collapse
Affiliation(s)
- Ștefan Busnatu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandra Bolocan
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - George E. D. Petrescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Dan Nicolae Păduraru
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Iulian Năstasă
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Mircea Lupușoru
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Marius Geantă
- Centre for Innovation in Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Octavian Andronic
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
- Correspondence:
| | - Henrique Martins
- Faculty of Health Sciences, Universidade da Beira Interior, 6200-506 Covilha, Portugal;
| |
Collapse
|
10
|
Christou CD, Tsoulfas G. Challenges and opportunities in the application of artificial intelligence in gastroenterology and hepatology. World J Gastroenterol 2021; 27:6191-6223. [PMID: 34712027 PMCID: PMC8515803 DOI: 10.3748/wjg.v27.i37.6191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/06/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is an umbrella term used to describe a cluster of interrelated fields. Machine learning (ML) refers to a model that learns from past data to predict future data. Medicine and particularly gastroenterology and hepatology, are data-rich fields with extensive data repositories, and therefore fruitful ground for AI/ML-based software applications. In this study, we comprehensively review the current applications of AI/ML-based models in these fields and the opportunities that arise from their application. Specifically, we refer to the applications of AI/ML-based models in prevention, diagnosis, management, and prognosis of gastrointestinal bleeding, inflammatory bowel diseases, gastrointestinal premalignant and malignant lesions, other nonmalignant gastrointestinal lesions and diseases, hepatitis B and C infection, chronic liver diseases, hepatocellular carcinoma, cholangiocarcinoma, and primary sclerosing cholangitis. At the same time, we identify the major challenges that restrain the widespread use of these models in healthcare in an effort to explore ways to overcome them. Notably, we elaborate on the concerns regarding intrinsic biases, data protection, cybersecurity, intellectual property, liability, ethical challenges, and transparency. Even at a slower pace than anticipated, AI is infiltrating the healthcare industry. AI in healthcare will become a reality, and every physician will have to engage with it by necessity.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Organ Transplant Unit, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Organ Transplant Unit, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
11
|
Cascini F, De Giovanni N, Inserra I, Santaroni F, Laura L. A data-driven methodology to discover similarities between cocaine samples. Sci Rep 2020; 10:15976. [PMID: 32994485 PMCID: PMC7525495 DOI: 10.1038/s41598-020-72652-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/27/2020] [Indexed: 11/10/2022] Open
Abstract
Machine learning has been used for distinct purposes in the science field but no applications on illegal drug have been done before. This study proposes a new web-based system for cocaine classification, profiling relations and comparison, that is capable of producing meaningful output based on a large amount of chemical profiling’s data. In particular, the Profiling Relations In Drug trafficking in Europe (PRIDE) system, offers several advantages to intelligence actions across Europe. Thus, it provides a standardized, broad methodology which uses machine learning algorithms to classify and compare drug profiles, highlight how similar drug samples are, and how probable it is that they share a common origin, batch, or preparation process. We evaluated the proposed algorithms using precision and recall metrics and analyzed the quality of predictions performed by the algorithms, with respect to our gold standard. In our experiments, we reached a value of 88% for F0.5-measure, 91% for precision, and 78% for recall, confirming our main hypothesis: machine learning can learn and be applied to have an automatic classification of cocaine profiles.
Collapse
Affiliation(s)
- Fidelia Cascini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
| | - Nadia De Giovanni
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, 00168, Rome, Italy
| | - Ilaria Inserra
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Federico Santaroni
- Department of Computer, Control, and Management Engineering Antonio Ruberti (DIAG), Sapienza University of Rome, 00186, Rome, Italy
| | - Luigi Laura
- International Telematic University Uninettuno of Rome, Rome, Italy
| |
Collapse
|
12
|
Sana MK, Hussain ZM, Shah PA, Maqsood MH. Artificial intelligence in celiac disease. Comput Biol Med 2020; 125:103996. [PMID: 32979542 DOI: 10.1016/j.compbiomed.2020.103996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Celiac disease (CD) has been on the rise in the world and a large part of it remains undiagnosed. Novel methods are required to address the gaps in prompt detection and management. Artificial intelligence (AI) has seen an exponential surge in the last decade worldwide. With the advent of big data and powerful computational ability, we now have self-driving cars and smart devices in our daily lives. Huge databases in the form of electronic medical records and images have rendered healthcare a lucrative sector where AI can prove revolutionary. It is being used extensively to overcome the barriers in clinical workflows. From the perspective of a disease, it can be deployed in multiple steps i.e. screening tools, diagnosis, developing novel therapeutic agents, proposing management plans, and defining prognostic indicators, etc. We review the areas where it may augment physicians in the delivery of better healthcare by summarizing current literature on the use of AI in healthcare using CD as a model. We further outline major barriers to its large-scale implementations and prospects from the healthcare point of view.
Collapse
Affiliation(s)
- Muhammad Khawar Sana
- Department of Internal Medicine, King Edward Medical University, Mayo Hospital Lahore, Lahore, Punjab, 54000, Pakistan.
| | - Zeshan M Hussain
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA, 02139, United States.
| | - Pir Ahmad Shah
- Department of Internal Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, United States.
| | - Muhammad Haisum Maqsood
- Department of Internal Medicine, King Edward Medical University, Mayo Hospital Lahore, Lahore, Punjab, 54000, Pakistan.
| |
Collapse
|