1
|
Liao M, Xia X, Meng Q, Zhu C, Liao B, Wang J, Gou L, Zhou X, Yuan W, Cheng L, Ren B. Holotoxin A 1 from Apostichopus japonicus inhibited oropharyngeal and intra-abdominal candidiasis by inducing oxidative damage in Candida albicans. Br J Pharmacol 2024; 181:1857-1873. [PMID: 38382564 DOI: 10.1111/bph.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/26/2023] [Accepted: 01/03/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND AND PURPOSE The holotoxin A1, isolated from Apostichopus japonicus, exhibits potent antifungal activities, but the mechanism and efficacy against candidiasis are unclear. In this study we have studied the antifungal effects and mechanism of holotoxin A1 against Candida albicans and in murine oropharyngeal and intra-abdominal candidiasis. EXPERIMENTAL APPROACH The antifungal effect of holotoxin A1 against C. albicans was tested in vitro. To explore the antifungal mechanism of holotoxin A1, the transcriptome, ROS levels, and mitochondrial function of C. albicans was evaluated. Effectiveness and systematic toxicity of holotoxin A1 in vivo was assessed in the oropharyngeal and intra-abdominal candidiasis models in mice. KEY RESULTS Holotoxin A1 was a potent fungicide against C. albicans SC5314, clinical strains and drug-resistant strains. Holotoxin A1 inhibited oxidative phosphorylation and induced oxidative damage by increasing intracellular accumulation of ROS in C. albicans. Holotoxin A1 induced dysfunction of mitochondria by depolarizing the mitochondrial membrane potential and reducing the production of ATP. Holotoxin A1 directly inhibited the enzymatic activity of mitochondrial complex I and antagonized with the rotenone, an inhibitor of complex I, against C. albicans. Meanwhile, the complex I subunit NDH51 null mutants showed a decreased susceptibility to holotoxin A1. Furthermore, holotoxin A1 significantly reduced fungal burden and infections with no significant systemic toxicity in oropharyngeal and intra-abdominal candidiasis in murine models. CONCLUSION AND IMPLICATIONS Holotoxin A1 is a promising candidate for the development of novel antifungal agents against both oropharyngeal and intra-abdominal candidiasis, especially when caused by drug-resistant strains.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuekui Xia
- Biology Institute, Key Laboratory of Bio-manufacturing of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qingzhou Meng
- Biology Institute, Key Laboratory of Bio-manufacturing of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chengguang Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jiannan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenpeng Yuan
- Biology Institute, Key Laboratory of Bio-manufacturing of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Kulkarni R, Kasani SK, Tsai CY, Tung SY, Yeh KH, Yu CHA, Chang W. FAM21 is critical for TLR2/CLEC4E-mediated dendritic cell function against Candida albicans. Life Sci Alliance 2023; 6:e202201414. [PMID: 36717248 PMCID: PMC9888482 DOI: 10.26508/lsa.202201414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
FAM21 (family with sequence similarity 21) is a component of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) protein complex that mediates actin polymerization at endosomal membranes to facilitate sorting of cargo-containing vesicles out of endosomes. To study the function of FAM21 in vivo, we generated conditional knockout (cKO) mice in the C57BL/6 background in which FAM21 was specifically knocked out of CD11c-positive dendritic cells. BMDCs from those mice displayed enlarged early endosomes, and altered cell migration and morphology relative to WT cells. FAM21-cKO cells were less competent in phagocytosis and protein antigen presentation in vitro, though peptide antigen presentation was not affected. More importantly, we identified the TLR2/CLEC4E signaling pathway as being down-regulated in FAM21-cKO BMDCs when challenged with its specific ligand Candida albicans Moreover, FAM21-cKO mice were more susceptible to C. albicans infection than WT mice. Reconstitution of WT BMDCs in FAM21-cKO mice rescued them from lethal C. albicans infection. Thus, our study highlights the importance of FAM21 in a host immune response against a significant pathogen.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Siti Khadijah Kasani
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Xu Z, Qiao S, Qian W, Zhu Y, Yan W, Shen S, Wang T. Card9 protects fungal peritonitis through regulating Malt1-mediated activation of autophagy in macrophage. Int Immunopharmacol 2022; 110:108941. [PMID: 35850054 DOI: 10.1016/j.intimp.2022.108941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/05/2022]
Abstract
Fungal peritonitis is an inflammatory condition of the peritoneum which occurs secondary to peritoneal dialysis. Most cases of peritonitis are caused by microbial invasion into the peritoneal cavity, resulting in high morbidity and mortality. Unlike bacterial peritonitis, little is known on fungal peritonitis. Card9, an adapter protein, plays a critical role in anti-fungal immunity. In this study, by using zymosan-induced peritonitis and C. albicans-induced peritonitis mouse model, we demonstrated that fungal peritonitis was exacerbated in Card9-/- mice, compared with WT mice. Next, we found the autophagy activation of peritonealmacrophages was impaired in Card9-/- peritonitis mice. The autophagy agonist, MG132, ameliorated peritonitis in Card9-/- mice. The result of microarray analysis indicates Malt1 was significantly decreased in Card9-/- peritonitis mice. Furthermore, we demonstrated that Malt1 interacts with P62 and mediates the function of P62 to clear ubiquitinated proteins. After overexpression of Malt1, impaired autophagy activation caused by Card9 deficient was significantly rescued. Together, our results indicate that Card9 protects fungal peritonitis by regulating Malt1-mediated autophagy in macrophages. Our research provides a new idea for the pathogenesis of fungal peritonitis, which is of great significance for the clinical treatment of fungal peritonitis.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224001, China; The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Shuping Qiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Wei Qian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Yanan Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China
| | - Wenyue Yan
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224001, China.
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China.
| | - Tingting Wang
- Department of Oncology, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224001, China; The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
4
|
Guo Y, Wang L, Gou R, Wang Y, Shi X, Zhang Y, Pang X, Tang L. Ameliorative role of SIRT1 in peritoneal fibrosis: an in vivo and in vitro study. Cell Biosci 2021; 11:79. [PMID: 33906673 PMCID: PMC8077771 DOI: 10.1186/s13578-021-00591-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Peritoneal fibrosis is one of the major complications induced by peritoneal dialysis (PD). Damaged integrity and function of peritoneum caused by peritoneal fibrosis not only limits the curative efficacy of PD and but affects the prognosis of patients. However, the detailed mechanisms underlying the process remain unclear and therapeutic strategy targeting TGF‐β is deficient. Transforming growth factor‐β (TGF‐β) signaling participates in the progression of peritoneal fibrosis through enhancing mesothelial-mesenchymal transition of mesothelial cells. Methods The study aims to demonstrate the regulatory role of Sirtuin1 (SIRT1) to the TGF‐β signaling mediated peritoneal fibrosis. SIRT1−/− mice were used to establish animal model. Masson’s staining and peritoneal equilibration assay were performed to evaluate the degree of peritoneal fibrosis. QRT-PCR assays were used to estimate the RNA levels of Sirt1 and matrix genes related to peritoneal fibrosis, and their protein levels were examined by Western blot assays. Results SIRT1 significantly decreased in vivo post PD treatment. SIRT1 knockout exacerbated peritoneal fibrosis both in vivo and vitro. Overexpression of SIRT1 efficiently inhibited peritoneal fibrosis by inhibiting the peritoneal inflammation and the activation of TGF‐β signaling. Conclusion SIRT1 ameliorated peritoneal fibrosis both in vivo and in vitro through inhibiting the expression of protein matrix induced by TGF‐β signaling.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Liuwei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Rong Gou
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yulin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Xiujie Shi
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yage Zhang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Xinxin Pang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|