1
|
Chakravarty P, Ashbury AM, Strandburg-Peshkin A, Iffelsberger J, Goldshtein A, Schuppli C, Snell KRS, Charpentier MJE, Núñez CL, Gaggioni G, Geiger N, Rößler DC, Gall G, Yang PP, Fruth B, Harel R, Crofoot MC. The sociality of sleep in animal groups. Trends Ecol Evol 2024:S0169-5347(24)00176-9. [PMID: 39242333 DOI: 10.1016/j.tree.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 09/09/2024]
Abstract
Group-living animals sleep together, yet most research treats sleep as an individual process. Here, we argue that social interactions during the sleep period contribute in important, but largely overlooked, ways to animal groups' social dynamics, while patterns of social interaction and the structure of social connections within animal groups play important, but poorly understood, roles in shaping sleep behavior. Leveraging field-appropriate methods, such as direct and video-based observation, and increasingly common on-animal motion sensors (e.g., accelerometers), behavioral indicators can be tracked to measure sleep in multiple individuals in a group of animals simultaneously. Sleep proximity networks and sleep timing networks can then be used to investigate the collective dynamics of sleep in wild group-living animals.
Collapse
Affiliation(s)
- Pritish Chakravarty
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| | - Alison M Ashbury
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ariana Strandburg-Peshkin
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Josefine Iffelsberger
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aya Goldshtein
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany; Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Caroline Schuppli
- Development and Evolution of Cognition Research Group, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Katherine R S Snell
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Migration, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Marie J E Charpentier
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR5554, University of Montpellier/CNRS/IRD/EPHE, Montpellier, France
| | - Chase L Núñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Giulia Gaggioni
- Institut des Sciences de l'Evolution de Montpellier (ISEM), UMR5554, University of Montpellier/CNRS/IRD/EPHE, Montpellier, France; Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Nadja Geiger
- Department of Biology, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Daniela C Rößler
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Gabriella Gall
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany; Zukunftskolleg, University of Konstanz, Konstanz, Germany
| | - Pei-Pei Yang
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; School of Resources and Environmental Engineering, Anhui University, Hefei, China; International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei, China
| | - Barbara Fruth
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Department of Migration, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for Research and Conservation/KMDA, Antwerp, Belgium
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| | - Margaret C Crofoot
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany; Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
2
|
Harding CD, Vyazovskiy VV. Penguins snatch seconds-long microsleeps. Science 2023; 382:994-995. [PMID: 38033078 DOI: 10.1126/science.adl2398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Chinstrap penguins fall asleep thousands of times per day in the wild.
Collapse
Affiliation(s)
- Christian D Harding
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Roach ST, Ford MC, Simhambhatla V, Loutrianakis V, Farah H, Li Z, Periandri EM, Abdalla D, Huang I, Kalra A, Shaw PJ. Sleep deprivation, sleep fragmentation, and social jet lag increase temperature preference in Drosophila. Front Neurosci 2023; 17:1175478. [PMID: 37274220 PMCID: PMC10237294 DOI: 10.3389/fnins.2023.1175478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Despite the fact that sleep deprivation substantially affects the way animals regulate their body temperature, the specific mechanisms behind this phenomenon are not well understood. In both mammals and flies, neural circuits regulating sleep and thermoregulation overlap, suggesting an interdependence that may be relevant for sleep function. To investigate this relationship further, we exposed flies to 12 h of sleep deprivation, or 48 h of sleep fragmentation and evaluated temperature preference in a thermal gradient. Flies exposed to 12 h of sleep deprivation chose warmer temperatures after sleep deprivation. Importantly, sleep fragmentation, which prevents flies from entering deeper stages of sleep, but does not activate sleep homeostatic mechanisms nor induce impairments in short-term memory also resulted in flies choosing warmer temperatures. To identify the underlying neuronal circuits, we used RNAi to knock down the receptor for Pigment dispersing factor, a peptide that influences circadian rhythms, temperature preference and sleep. Expressing UAS-PdfrRNAi in subsets of clock neurons prevented sleep fragmentation from increasing temperature preference. Finally, we evaluated temperature preference after flies had undergone a social jet lag protocol which is known to disrupt clock neurons. In this protocol, flies experience a 3 h light phase delay on Friday followed by a 3 h light advance on Sunday evening. Flies exposed to social jet lag exhibited an increase in temperature preference which persisted for several days. Our findings identify specific clock neurons that are modulated by sleep disruption to increase temperature preference. Moreover, our data indicate that temperature preference may be a more sensitive indicator of sleep disruption than learning and memory.
Collapse
Affiliation(s)
- S. Tanner Roach
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Melanie C. Ford
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vikram Simhambhatla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Vasilios Loutrianakis
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Hamza Farah
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Zhaoyi Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Erica M. Periandri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Dina Abdalla
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Irene Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Arjan Kalra
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul J. Shaw
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Brando S, Vitale A, Bacon M. Promoting Good Nonhuman Primate Welfare outside Regular Working Hours. Animals (Basel) 2023; 13:1423. [PMID: 37106985 PMCID: PMC10135122 DOI: 10.3390/ani13081423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Promoting good primate welfare outside of daylight hours is an important task. The responsibility to provide a complex environment and environmental enrichment is an essential element of primate wellbeing programs that should be approached from a 24-h perspective and planned according to the species and individual needs, including giving animals the ability to interact with and control their environment during hours when animal care staff are not present. One must be aware, however, that their needs may differ at night-time from their care needs during the day when staff are present. Assessing welfare and providing enrichment during times when staff are not on hand can be achieved through the use of a variety of technologies, such as night-view cameras, animal-centred technologies, and data loggers. This paper will address the relevant topics concerning the care and welfare of primates during off-hours, and the use of related technologies to facilitate and assess wellbeing at these times.
Collapse
Affiliation(s)
- Sabrina Brando
- AnimalConcepts, Teulada, P.O. Box 378, 03725 Alicante, Spain
| | - Augusto Vitale
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Madison Bacon
- Department of Animal Science, University of Minnesota-Twin Cities, Saint Paul, MN 55455, USA
| |
Collapse
|
5
|
Campera M, Chimienti M, Nekaris KAI. Applications of Accelerometers and Other Bio-Logging Devices in Captive and Wild Animals. Animals (Basel) 2023; 13:ani13020222. [PMID: 36670762 PMCID: PMC9855032 DOI: 10.3390/ani13020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Bio-logging devices have been widely used in ecology across a range of species to acquire information on the secret lives of animals in the wild, which would otherwise be challenging to obtain via direct observations [...].
Collapse
Affiliation(s)
- Marco Campera
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marianna Chimienti
- Centre d’Etudes Biologiques de Chizé, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France
| | - K. A. I. Nekaris
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
6
|
Functional genomics analysis reveals the evolutionary adaptation and demographic history of pygmy lorises. Proc Natl Acad Sci U S A 2022; 119:e2123030119. [PMID: 36161902 DOI: 10.1073/pnas.2123030119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lorises are a group of globally threatened strepsirrhine primates that exhibit many unusual physiological and behavioral features, including a low metabolic rate, slow movement, and hibernation. Here, we assembled a chromosome-level genome sequence of the pygmy loris (Xanthonycticebus pygmaeus) and resequenced whole genomes from 50 pygmy lorises and 6 Bengal slow lorises (Nycticebus bengalensis). We found that many gene families involved in detoxification have been specifically expanded in the pygmy loris, including the GSTA gene family, with many newly derived copies functioning specifically in the liver. We detected many genes displaying evolutionary convergence between pygmy loris and koala, including PITRM1. Significant decreases in PITRM1 enzymatic activity in these two species may have contributed to their characteristic low rate of metabolism. We also detected many evolutionarily convergent genes and positively selected genes in the pygmy loris that are involved in muscle development. Functional assays demonstrated the decreased ability of one positively selected gene, MYOF, to up-regulate the fast-type muscle fiber, consistent with the lower proportion of fast-twitch muscle fibers in the pygmy loris. The protein product of another positively selected gene in the pygmy loris, PER2, exhibited weaker binding to the key circadian core protein CRY, a finding that may be related to this species' unusual circadian rhythm. Finally, population genomics analysis revealed that these two extant loris species, which coexist in the same habitat, have exhibited an inverse relationship in terms of their demography over the past 1 million years, implying strong interspecies competition after speciation.
Collapse
|
7
|
Video Validation of Tri-Axial Accelerometer for Monitoring Zoo-Housed Tamandua tetradactyla Activity Patterns in Response to Changes in Husbandry Conditions. Animals (Basel) 2022; 12:ani12192516. [PMID: 36230257 PMCID: PMC9559380 DOI: 10.3390/ani12192516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Accelerometers are a technology that is increasingly used in the evaluation of animal behaviour. A tri-axial accelerometer attached to a vest was used on Tamandua tetradactyla individuals (n = 10) at Biodiversity Park. First, the influence of using a vest on the animals’ behaviour was evaluated (ABA-type: A1 and A2, without a vest; B, with a vest; each stage lasted 24 h), and no changes were detected. Second, their behaviour was monitored using videos and the accelerometer simultaneously (experimental room, 20 min). The observed behaviours were correlated with the accelerometer data, and summary measures (X, Y and Z axes) were obtained. Additionally, the overall dynamic body acceleration was calculated, determining a threshold to discriminate activity/inactivity events (variance = 0.0055). Then, based on a 24 h complementary test (video sampling every 5 min), the sensitivity (85.91%) and precision (100%) of the accelerometer were assessed. Animals were exposed to an ABA-type experimental design: A1 and A2: complex enclosure; B: decreased complexity (each stage lasted 24 h). An increase in total activity (%) was revealed using the accelerometer (26.15 ± 1.50, 29.29 ± 2.25, and 35.36 ± 3.15, respectively). Similar activity levels were detected using video analysis. The results demonstrate that the use of the accelerometer is reliable to determine the activity. Considering that the zoo-housed lesser anteaters exhibit a cathemeral activity pattern, this study contributes to easily monitoring their activities and responses to different management procedures supporting welfare programs, as well as ex situ conservation.
Collapse
|
8
|
Harding CD, Yovel Y, Peirson SN, Hackett TD, Vyazovskiy VV. Re-examining extreme sleep duration in bats: implications for sleep phylogeny, ecology, and function. Sleep 2022; 45:zsac064. [PMID: 35279722 PMCID: PMC9366634 DOI: 10.1093/sleep/zsac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Bats, quoted as sleeping for up to 20 h a day, are an often used example of extreme sleep duration amongst mammals. Given that duration has historically been one of the primary metrics featured in comparative studies of sleep, it is important that species specific sleep durations are well founded. Here, we re-examined the evidence for the characterization of bats as extreme sleepers and discuss whether it provides a useful representation of the sleep behavior of Chiroptera. Although there are a wealth of activity data to suggest that the diurnal cycle of bats is dominated by rest, estimates of sleep time generated from electrophysiological analyses suggest considerable interspecific variation, ranging from 83% to a more moderate 61% of the 24 h day spent asleep. Temperature-dependent changes in the duration and electroencephalographic profile of sleep suggest that bats represent a unique model for investigating the relationship between sleep and torpor. Further sources of intra-specific variation in sleep duration, including the impact of artificial laboratory environments and sleep intensity, remain unexplored. Future studies conducted in naturalistic environments, using larger sample sizes and relying on a pre-determined set of defining criteria will undoubtedly provide novel insights into sleep in bats and other species.
Collapse
Affiliation(s)
- Christian D Harding
- Department of Physiology Anatomy and Genetics, Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Stuart N Peirson
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | | | - Vladyslav V Vyazovskiy
- Department of Physiology Anatomy and Genetics, Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| |
Collapse
|
9
|
Smeltzer EA, Stead SM, Li MF, Samson D, Kumpan LT, Teichroeb JA. Social sleepers: The effects of social status on sleep in terrestrial mammals. Horm Behav 2022; 143:105181. [PMID: 35594742 DOI: 10.1016/j.yhbeh.2022.105181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022]
Abstract
Social status among group-living mammals can impact access to resources, such as water, food, social support, and mating opportunities, and this differential access to resources can have fitness consequences. Here, we propose that an animal's social status impacts their access to sleep opportunities, as social status may predict when an animal sleeps, where they sleep, who they sleep with, and how well they sleep. Our review of terrestrial mammals examines how sleep architecture and intensity may be impacted by (1) sleeping conditions and (2) the social experience during wakefulness. Sleeping positions vary in thermoregulatory properties, protection from predators, and exposure to parasites. Thus, if dominant individuals have priority of access to sleeping positions, they may benefit from higher quality sleeping conditions and, in turn, better sleep. With respect to waking experiences, we discuss the impacts of stress on sleep, as it has been established that specific social statuses can be characterized by stress-related physiological profiles. While much research has focused on how dominance hierarchies impact access to resources like food and mating opportunities, differential access to sleep opportunities among mammals has been largely ignored despite its potential fitness consequences.
Collapse
Affiliation(s)
- E A Smeltzer
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - S M Stead
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| | - M F Li
- Department of Anthropology, University of Toronto, 19 Russell St., Toronto, Ontario M5S 2S2, Canada
| | - D Samson
- Department of Anthropology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, Ontario L5L 1C6, Canada
| | - L T Kumpan
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - J A Teichroeb
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
10
|
Loftus JC, Harel R, Núñez CL, Crofoot MC. Ecological and social pressures interfere with homeostatic sleep regulation in the wild. eLife 2022; 11:73695. [PMID: 35229719 PMCID: PMC8887896 DOI: 10.7554/elife.73695] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Sleep is fundamental to the health and fitness of all animals. The physiological importance of sleep is underscored by the central role of homeostasis in determining sleep investment – following periods of sleep deprivation, individuals experience longer and more intense sleep bouts. Yet, most sleep research has been conducted in highly controlled settings, removed from evolutionarily relevant contexts that may hinder the maintenance of sleep homeostasis. Using triaxial accelerometry and GPS to track the sleep patterns of a group of wild baboons (Papio anubis), we found that ecological and social pressures indeed interfere with homeostatic sleep regulation. Baboons sacrificed time spent sleeping when in less familiar locations and when sleeping in proximity to more group-mates, regardless of how long they had slept the prior night or how much they had physically exerted themselves the preceding day. Further, they did not appear to compensate for lost sleep via more intense sleep bouts. We found that the collective dynamics characteristic of social animal groups persist into the sleep period, as baboons exhibited synchronized patterns of waking throughout the night, particularly with nearby group-mates. Thus, for animals whose fitness depends critically on avoiding predation and developing social relationships, maintaining sleep homeostasis may be only secondary to remaining vigilant when sleeping in risky habitats and interacting with group-mates during the night. Our results highlight the importance of studying sleep in ecologically relevant contexts, where the adaptive function of sleep patterns directly reflects the complex trade-offs that have guided its evolution.
Collapse
Affiliation(s)
- J Carter Loftus
- Department of Anthropology, University of California, Davis, Davis, United States.,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya.,Animal Behavior Graduate Group, University of California, Davis, Davis, United States
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya
| | - Chase L Núñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya
| | - Margaret C Crofoot
- Department of Anthropology, University of California, Davis, Davis, United States.,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya.,Animal Behavior Graduate Group, University of California, Davis, Davis, United States
| |
Collapse
|
11
|
Nekaris KAI, Campera M, Chimienti M, Murray C, Balestri M, Showell Z. Training in the Dark: Using Target Training for Non-Invasive Application and Validation of Accelerometer Devices for an Endangered Primate (Nycticebus bengalensis). Animals (Basel) 2022; 12:ani12040411. [PMID: 35203119 PMCID: PMC8868541 DOI: 10.3390/ani12040411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Recent advances in technology allow for the study of animal behaviours through indirect observations. This facilitates research on cryptic animals for which direct observations may miss a considerable portion of their activity. The validity of accelerometers in obtaining accurate animal behaviours, however, needs to be tested before collecting data in the wild. Modern zoos offer excellent opportunities for researchers to test field techniques in a safe setting. Here, we describe a non-invasive training program to attach an accelerometer to an individual Bengal slow loris at the Shaldon Wildlife Trust. This training took 39 15-min sessions and allowed for the attachment of the accelerometer for validation with reduced stress for the animal. We also collected videos to associate to accelerometer data to estimate the accuracy of accelerometers in identifying the behaviours of Bengal slow loris. The accuracy was above 80% with some of the behaviours that were clearly identified (e.g., resting: 99.8%), while others were more difficult to discern (e.g., suspensory walk, a locomotion behaviour, was discerned only 60.3% of times from other behaviours). The non-invasive training and accelerometer validation can be used on similar species before using accelerometers in the wild. Abstract Accelerometers offer unique opportunities to study the behaviour of cryptic animals but require validation to show their accuracy in identifying behaviours. This validation is often undertaken in captivity before use in the wild. While zoos provide important opportunities for trial field techniques, they must consider the welfare and health of the individuals in their care and researchers must opt for the least invasive techniques. We used positive reinforcement training to attach and detach a collar with an accelerometer to an individual Bengal slow loris (Nycticebus bengalensis) at the Shaldon Wildlife Trust, U.K. This allowed us to collect accelerometer data at different periods between January–June 2020 and January–February 2021, totalling 42 h of data with corresponding video for validation. Of these data, we selected 54 min where ten behaviours were present and ran a random forest model. We needed 39 15-min sessions to train the animal to wear/remove the collar. The accelerometer data had an accuracy of 80.7 ± SD 9.9% in predicting the behaviours, with 99.8% accuracy in predicting resting, and a lower accuracy (but still >75% for all of them apart from suspensory walk) for the different types of locomotion and feeding behaviours. This training and validation technique can be used in similar species and shows the importance of working with zoos for in situ conservation (e.g., validation of field techniques).
Collapse
Affiliation(s)
- K. Anne-Isola Nekaris
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford OX3 0BP, UK; (M.C.); (M.B.)
- Correspondence:
| | - Marco Campera
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford OX3 0BP, UK; (M.C.); (M.B.)
| | | | - Carly Murray
- Shaldon Wildlife Trust, Shaldon TQ14 0HP, UK; (C.M.); (Z.S.)
| | - Michela Balestri
- Nocturnal Primate Research Group, Oxford Brookes University, Oxford OX3 0BP, UK; (M.C.); (M.B.)
| | - Zak Showell
- Shaldon Wildlife Trust, Shaldon TQ14 0HP, UK; (C.M.); (Z.S.)
| |
Collapse
|
12
|
Fei H, de Guinea M, Yang L, Chapman CA, Fan P. Where to sleep next? Evidence for spatial memory associated with sleeping sites in Skywalker gibbons (Hoolock tianxing). Anim Cogn 2022; 25:891-903. [PMID: 35099623 DOI: 10.1007/s10071-022-01600-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022]
Abstract
Finding suitable sleeping sites is highly advantageous but challenging for wild animals. While suitable sleeping sites provide protection against predators and enhance sleep quality, these sites are heterogeneously distributed in space. Thus, animals may generate memories associated with suitable sleeping sites to be able to approach them efficiently when needed. Here, we examined traveling trajectories (i.e., direction, linearity, and speed of traveling) in relation to sleeping sites to assess whether Skywalker gibbons (Hoolock tianxing) use spatial memory to locate sleeping trees. Our results show that about 30% of the sleeping trees were efficiently revisited by gibbons and the recursive use of trees was higher than a randomly simulated visiting pattern. When gibbons left the last feeding tree for the day, they traveled in a linear fashion to sleeping sites out-of-sight (> 40 m away), and linearity of travel to sleeping trees out-of-sight was higher than 0.800 for all individuals. The speed of the traveling trajectories to sleeping sites out-of-sight increased not only as sunset approached, but also when daily rainfall increased. These results suggest that gibbons likely optimized their trajectories to reach sleeping sites under increasing conditions of predatory risk (i.e., nocturnal predators) and uncomfortable weather. Our study provides novel evidence on the use of spatial memory to locate sleeping sites through analyses of movement patterns, which adds to an already extensive body of literature linking cognitive processes and sleeping patterns in human and non-human animals.
Collapse
Affiliation(s)
- Hanlan Fei
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,College of Life Science, China West Normal University, Nanchong, 637002, China
| | - Miguel de Guinea
- Movement Ecology Laboratory, Department of Ecology Evolution and Behavior, Alexander Silverman Institute of Life Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Li Yang
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Colin A Chapman
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC, 20004, USA.,Department of Anthropology, The George Washington University, Washington, DC, 20037, USA.,School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, 3209, South Africa.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710127, China
| | - Pengfei Fan
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
13
|
Dimanico MM, Klaassen AL, Wang J, Kaeser M, Harvey M, Rasch B, Rainer G. Aspects of tree shrew consolidated sleep structure resemble human sleep. Commun Biol 2021; 4:722. [PMID: 34117351 PMCID: PMC8196209 DOI: 10.1038/s42003-021-02234-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species. Dimanico et al investigated sleep in tree shrews using electrophysiological recordings and compared it to equivalent read-outs in rats and humans. They reported that there was considerable homology of sleep structure between humans and tree shrews despite the difference in body mass between these species.
Collapse
Affiliation(s)
- Marta M Dimanico
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Arndt-Lukas Klaassen
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Jing Wang
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.,Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Melanie Kaeser
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Harvey
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gregor Rainer
- Department of Neuroscience and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
14
|
|
15
|
Li M, Cui J, Xu B, Wei Y, Fu C, Lv X, Xiong L, Qin D. Sleep Disturbances and Depression Are Co-morbid Conditions: Insights From Animal Models, Especially Non-human Primate Model. Front Psychiatry 2021; 12:827541. [PMID: 35145441 PMCID: PMC8821160 DOI: 10.3389/fpsyt.2021.827541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
The incidence rates of depression are increasing year by year. As one of the main clinical manifestations of depression, sleep disorder is often the first complication. This complication may increase the severity of depression and lead to poor prognosis in patients. In the past decades, there have been many methods used to evaluate sleep disorders, such as polysomnography and electroencephalogram, actigraphy, and videography. A large number of rodents and non-human primate models have reproduced the symptoms of depression, which also show sleep disorders. The purpose of this review is to examine and discuss the relationship between sleep disorders and depression. To this end, we evaluated the prevalence, clinical features, phenotypic analysis, and pathophysiological brain mechanisms of depression-related sleep disturbances. We also emphasized the current situation, significance, and insights from animal models of depression, which would provide a better understanding for the pathophysiological mechanisms between sleep disturbance and depression.
Collapse
Affiliation(s)
- Meng Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jieqiong Cui
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Bonan Xu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Chenyang Fu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoman Lv
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
16
|
Hernani Lineros LM, Chimènes A, Maille A, Dingess K, Rumiz DI, Adret P. Response of Bolivian gray titi monkeys ( Plecturocebus donacophilus) to an anthropogenic noise gradient: behavioral and hormonal correlates. PeerJ 2020; 8:e10417. [PMID: 33240684 PMCID: PMC7682439 DOI: 10.7717/peerj.10417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Worldwide urban expansion and deforestation have caused a rapid decline of non-human primates in recent decades. Yet, little is known to what extent these animals can tolerate anthropogenic noise arising from roadway traffic and human presence in their habitat. We studied six family groups of titis residing at increasing distances from a busy highway, in a park promoting ecotourism near Santa Cruz de la Sierra, Bolivia. We mapped group movements, sampled the titis’ behavior, collected fecal samples from each study group and conducted experiments in which we used a mannequin simulating a human intrusion in their home range. We hypothesized that groups of titi monkeys exposed to higher levels of anthropogenic noise and human presence would react weakly to the mannequin and show higher concentrations of fecal cortisol compared with groups in least perturbed areas. Sound pressure measurements and systematic monitoring of soundscape inside the titis’ home ranges confirmed the presence of a noise gradient, best characterized by the root-mean-square (RMS) and median amplitude (M) acoustic indices; importantly, both anthropogenic noise and human presence co-varied. Study groups resided in small, overlapping home ranges and they spent most of their time resting and preferentially used the lower forest stratum for traveling and the higher levels for foraging. Focal sampling analysis revealed that the time spent moving by adult pairs was inversely correlated with noise, the behavioral change occurring within a gradient of minimum sound pressures ranging from 44 dB(A) to 52 dB(A). Validated enzyme-immunoassays of fecal samples however detected surprisingly low cortisol concentrations, unrelated to the changes observed in the RMS and M indices. Finally, titis’ response to the mannequin varied according to our expectation, with alarm calling being greater in distant groups relative to highway. Our study thus indicates reduced alarm calling through habituation to human presence and suggests a titis’ resilience to anthropogenic noise with little evidence of physiological stress.
Collapse
Affiliation(s)
- Lucero M Hernani Lineros
- Zoología Vertebrados, Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia.,Carrera de Biología, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Amélie Chimènes
- Unité Eco-anthropologie UMR 7206, Museum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Audrey Maille
- Unité Eco-anthropologie UMR 7206, Museum National d'Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | | | - Damián I Rumiz
- Zoología Vertebrados, Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia.,Fundación Simón I. Patiño, Santa Cruz de la Sierra, Bolivia
| | - Patrice Adret
- Zoología Vertebrados, Museo de Historia Natural Noel Kempff Mercado, Santa Cruz de la Sierra, Bolivia
| |
Collapse
|
17
|
Reinhardt KD. Wild primate sleep: understanding sleep in an ecological context. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Abstract
Sleep duration and lifespan vary greatly across Animalia. Human studies have demonstrated that ageing reduces the ability to obtain deep restorative sleep, and this may play a causative role in the development of age-related neurodegenerative disorders. Animal models are widely used in sleep and ageing studies. Importantly, in contrast to human studies, evidence from laboratory rodents suggests that sleep duration is increased with ageing, while evidence for reduced sleep intensity and consolidation is inconsistent. Here we discuss two possible explanations for these species differences. First, methodological differences between studies in humans and laboratory rodents may prevent straightforward comparison. Second, the role of ecological factors, which have a profound influence on both ageing and sleep, must be taken into account. We propose that the dynamics of sleep across the lifespan reflect both age-dependent changes in the neurobiological substrates of sleep as well as the capacity to adapt to the environment.
Collapse
|
19
|
Sakai K, Ishikawa A, Mizuno Y, Maki T, Oda Y, Takahashi E. Simplified drug efficacy screening system for sleep-disorder drugs using non-human primates. Heliyon 2020; 6:e03524. [PMID: 32154428 PMCID: PMC7058904 DOI: 10.1016/j.heliyon.2020.e03524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/21/2019] [Accepted: 02/28/2020] [Indexed: 11/28/2022] Open
Abstract
The most widely used animal models to develop sleep-disorder drugs are rodents, particularly rats and mice. However, unlike humans, these rodents are nocturnal. Thus, diurnal non-human primates represent a valuable and more translational animal model to study sleep. Although sleep-disorder drugs have been screened in non-human primates, the use of a telemetry system is not a desirable method for a rapid drug efficacy assessment system because of the need for expensive equipment, complicated surgery, and the long time before results can be obtained from analysis by inspection. Locomotor activity has traditionally been used as an indicator of the effects of drugs, genes, and disease models. The Nano-Tag, a new device for analyzing activity after an easy implantation surgery, measures locomotor activity without expensive equipment and the need for inspection for data processing, and the overall cost is much lower than that of a telemetry system. In this study, we compared the data obtained from polysomnography and on locomotor activity in telemetry transmitter-embedded cynomolgus monkeys by implanting the Nano-Tag subcutaneously in the forehead and administering sleep-disorder drugs to confirm if sleep–wake states could be measured using the Nano-Tag. When we compared the changes in awake time per unit time measured using polysomnography and locomotor activity counts per unit time measured using the Nano-Tag, cynomolgus monkeys exhibited a diurnal preference, and the correlation coefficients were positive during the 24-h period. Additionally, the correlation coefficients during the 12-h dark period were positive when the hypersomnia treatment drug modafinil was administered. The correlation coefficients during the 12-h light period were also positive when the insomnia treatment drug triazolam was administered. These results suggest that measuring locomotor activity is an effective tool for identifying sleep–wake states and screening sleep-disorder drugs at low cost and with less burden to animal subjects.
Collapse
Affiliation(s)
- Keita Sakai
- Sleep Science Laboratories, HAMRI Co., Ltd., Ibaraki, 306-0128, Japan
| | - Akiyoshi Ishikawa
- Sleep Science Laboratories, HAMRI Co., Ltd., Ibaraki, 306-0128, Japan
| | - Yuri Mizuno
- Sleep Science Laboratories, HAMRI Co., Ltd., Ibaraki, 306-0128, Japan
| | - Takehiro Maki
- Sleep Science Laboratories, HAMRI Co., Ltd., Ibaraki, 306-0128, Japan
| | - Yasuhiro Oda
- Sleep Science Laboratories, HAMRI Co., Ltd., Ibaraki, 306-0128, Japan
| | - Eiki Takahashi
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.,Research Resources Division, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| |
Collapse
|
20
|
Cajochen C, Reichert C, Maire M, Schlangen LJM, Schmidt C, Viola AU, Gabel V. Evidence That Homeostatic Sleep Regulation Depends on Ambient Lighting Conditions during Wakefulness. Clocks Sleep 2019; 1:517-531. [PMID: 33089184 PMCID: PMC7445844 DOI: 10.3390/clockssleep1040040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
We examined whether ambient lighting conditions during extended wakefulness modulate the homeostatic response to sleep loss as indexed by. slow wave sleep (SWS) and electroencephalographic (EEG) slow-wave activity (SWA) in healthy young and older volunteers. Thirty-eight young and older participants underwent 40 hours of extended wakefulness [i.e., sleep deprivation (SD)] once under dim light (DL: 8 lux, 2800 K), and once under either white light (WL: 250 lux, 2800 K) or blue-enriched white light (BL: 250 lux, 9000 K) exposure. Subjective sleepiness was assessed hourly and polysomnography was quantified during the baseline night prior to the 40-h SD and during the subsequent recovery night. Both the young and older participants responded with a higher homeostatic sleep response to 40-h SD after WL and BL than after DL. This was indexed by a significantly faster intra-night accumulation of SWS and a significantly higher response in relative EEG SWA during the recovery night after WL and BL than after DL for both age groups. No significant differences were observed between the WL and BL condition for these two particular SWS and SWA measures. Subjective sleepiness ratings during the 40-h SD were significantly reduced under both WL and BL compared to DL, but were not significantly associated with markers of sleep homeostasis in both age groups. Our data indicate that not only the duration of prior wakefulness, but also the experienced illuminance during wakefulness affects homeostatic sleep regulation in humans. Thus, working extended hours under low illuminance may negatively impact subsequent sleep intensity in humans.
Collapse
Affiliation(s)
- Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstr. 27, CH-4002 Basel, Switzerland;
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, CHF-4055 Basel, Switzerland
| | - Carolin Reichert
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Wilhelm Kleinstr. 27, CH-4002 Basel, Switzerland;
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Birmannsgasse 8, CHF-4055 Basel, Switzerland
| | - Micheline Maire
- Institute of Primary Health Care (BIHAM), University of Bern, 3012 Bern, Switzerland;
| | - Luc J M Schlangen
- Intelligent Lighting Institute, School of Innovation Sciences, Department of Human Technology Interaction, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
| | - Christina Schmidt
- GIGA-Research, Cyclotron Research Centre-In Vivo Imaging Unit, Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, 4000 Liège, Belgium;
| | | | - Virginie Gabel
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA 94305, USA;
| |
Collapse
|